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Abstract: Currently, visible light positioning (VLP) enabling an illumination infrastructure requires a
costly retrofit. Intensity modulation systems not only necessitate changes to the internal LED driving
module, but decrease the LEDs’ radiant flux as well. This hinders the infrastructure’s ability to meet
the maintained illuminance standards. Ideally, the LEDs could be left unmodulated, i.e., unmodulated
VLP (uVLP). uVLP systems, inherently low-cost, exploit the characteristics of the light signals of
opportunity (LSOOP) to infer a position. In this paper, it is shown that proper signal processing
allows using the LED’s characteristic frequency (CF) as a discriminative feature in photodiode
(PD)-based received signal strength (RSS) uVLP. This manuscript investigates and compares the
aptitude of (future) RSS-based uVLP and VLP systems in terms of their feasibility, cost and accuracy.
It demonstrates that CF-based uVLP exhibits an acceptable loss of accuracy compared to (regular) VLP.
For point source-like LEDs, uVLP only worsens the trilateration-based median p50 and 90th percentile
root-mean-square error p90 from 5.3 cm to 7.9 cm (+50%) and from 9.6 cm to 15.6 cm (+62%), in the
4 m× 4 m room under consideration. A large experimental validation shows that employing a robust
model-based fingerprinting localisation procedure, instead of trilateration, further boosts uVLP’s p50

and p90 accuracy to 5.0 cm and 10.6 cm. When collating with VLP’s p50 = 3.5 cm and p90 = 6.8 cm,
uVLP exhibits a comparable positioning performance at a significantly lower cost and at a higher
maintained illuminance, all of which underline uVLP’s high adoption potential. With this work,
a significant step is taken towards the development of an accurate and low-cost tracking system.

Keywords: unmodulated visible light positioning; uVLP; visible light positioning; VLP; LED;
received signal strength; localisation

1. Introduction

Visible Light Positioning (VLP) is the latest indoor localisation technology, competing with,
amongst others, ultra-wideband (UWB), Bluetooth Low Energy (BLE) and WiFi for a share of the
booming Indoor Positioning and Indoor Navigation market. As a neophyte technology, VLP mainly
situates itself in the research stage [1]. However, early (commercial) roll-outs have already appeared as
well [2].

Innovation in VLP-based systems is driven by the promise of pairing a low cost to a high
accuracy. The latter results from the sub-decimetre order positioning error reported in theoretical
studies [3–5]. The practical evaluations of Li et al. [6] in a 2.5 m by 2.84 m by 2.5 m area equipped with
7 Light-Emitting Diode (LED) lamps exhibited a 90th percentile root-mean-square error (rMSE) p90 of
approximately 25 cm and 60 cm, respectively, with and without the application of particle filter-based
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sensor fusion. A 1.9 cm and a 16.1 cm median positioning error was found in, respectively, a 3.3 m by
2.1 m laboratory and a 7.5 m by 8 m open foyer environment, when employing spring-relaxation-based
positioning [7].

The inherent low cost of VLP systems should arise from them adding communication (and thus
positioning) capability to the existing LED lighting infrastructure. Enabling this dual functionality is
(1) the LEDs’ ability to imperceptibly switch between intensity levels at a high frequency i.e., intensity
modulation (IM) [8,9] and (2) the ability to modulate the LED light’s polarisation [10,11]. In reality,
VLP-enabling the (existing) illumination infrastructure requires a retrofitting step. In IM systems,
hardware changes to the internal LED driving module are needed. In addition, modulating the
driving current of the illumination LEDs decreases their radiant flux. In the frequency division
multiplexing access (FDMA) scheme of De Lausnay et al. [12] the radiant flux Pt,i effectively halves.
The associated VLP system hence requires double the amount of LEDs for the same maintained
illuminance, significantly augmenting the capital expenditure (capex). Polarisation-based VLP also
reduces Pt,i by at least 50% by employing linearly polarised light. Maturing advances in polarised
LEDs [13] may render polarisation-based VLP more promising. Yang et al. obtain a decimetre 90th
percentile positioning error p90 with a 120 by 160 pixels Galaxy SII camera when operating in a
1.8 m by 2.4 m zone with 8 5V LED lamps covered with a twisted nematic liquid crystal polarisation
modulator [11].

Employing the characteristics of light signals of opportunity (LSOOP), i.e., unmodulated VLP
(uVLP), might pose a solution. In uVLP, the LED lamps remain unmodified, no modulation is
performed. In [14], the authors treated 2 LSOOP localisation principles: (1) Georeferencing the
measured (with a spectrometer) wavelength spectrum with respect to a database using correlation
and (2) a LED lamp proximity-matching of the peaks of the total measured illuminance over distance
relation. In [15], Amsters et al. input received signal strength (RSS) and encoder values in an iterated
extended Kalman filter to navigate a photodiode (PD)-equipped mobile robot inside 10 m by 10 m
room fitted out with a square 4 LED configuration. A simulation experiment showed that a single PD
(and thus a single light measurement) not necessarily results in an unambiguous position, and that
even with multiple PDs the positioning error keeps exceeding 50 cm. In [16], the authors propose
IDyLL, which combines dead-reckoning and light measurements to achieve mean location errors up to
and exceeding 50 cm. In [17], a tilted receiver on a rotator is able to 3D localise around a single LED.
The previous works [14–17] all considered the total illuminance measured, i.e., the sum of all LEDs’
individual illuminance contributions. Their applicability depends on the presence of an illuminance
gradient, which is minimised in practice as a uniform illuminance distribution is strived for.

Zhang et al in [18] exploit the inherent characteristic frequency (CF) (to demultiplex the individual
contributions) of fluorescent lights with a commercial off-the-shelf smartphone to ensure a 37 cm
p90 accurate positioning in 23.7 m by 6.4 m by 3.1 m area. The CF originates from a resonance in the
fluorescent light’s inverter.

1.1. Problem Statement

Though fluorescent lights’ low cost and high availability restrain them from phasing out
rapidly, the solid-state lighting (r)evolution will see the illumination market transition to LED
technology. While mid/high-power LED deployments differ extensively from their fluorescent light
counterparts, their constant current driver induces resonance frequencies as well [19]. In LED drivers,
additional output capacitors tend to suppress the non-DC frequencies, which in turn attenuates the
CFs significantly. To what extent the attenuated CFs can still be employed for accurate positioning has
not yet been studied.
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1.2. Paper Content

This paper studies whether the LED’s characteristic frequency can serve as a discriminative
feature in PD-based received signal strength (RSS) uVLP. Usually, in RSS-based VLP, LEDs are intensity
modulated for the transmission of signals that are demultiplexable at the receiver. In case of frequency
division multiple access [12], each LED is purposely assigned a unique and distinguishable frequency.
The premise of RSS-based uVLP is to use the LEDs’ characteristic frequency to separate each individual
LED’s RSS contribution.

Hereto, first, the frequency (pseudo)spectrum of 5 different types of LED—LED driver topologies,
as obtained via MUltiple SIgnal Classification (MUSIC) [20], is studied as to ascertain the (potential)
presence of a unique CF. The (frequency) dependence and/or stability of the CF with respect to
driving current amplitude or pulse-width modulation dimming is reported. Secondly, based on
2 large datasets collected, the positioning performance of uVLP and regular VLP is experimentally
compared in a 3.95 m by 3.95 m by 2.25 m (length × width × height) room equipped with a 4-LED
constellations [21]. Finally, simulations are performed to evaluate the aptitude of uVLP in higher-ceiling
(i.e., industrial) environments and to identify the minimal CF magnitude required for accurate
positioning in noisy environments.

The main contributions of this paper are:

• A measurement-based study towards the manifestation of a characteristic frequency with
5 different LED light and LED driver combinations.

• An experimental positioning performance comparison between uVLP and (regular) VLP
positioning, for different demodulation and positioning procedures.

• The introduction of more robust versions of the model-based fingerprinting approach of [22].
• Simulations, matching and extending the experimental results, to investigate the feasibility of

uVLP in environments with higher ceilings.

Inherently low-cost, RSS-based uVLP has a significant potential for application in next-generation
tracking systems. This manuscript’s aim is to demonstrate CF-based uVLP’s feasibility and to optimise
its positioning accuracy in order to reach that potential.

Compared to the total illuminance-based approaches [14–17], which are unable to cope with the
minimised illuminance gradients found in practice, CF-based uVLP attains more accurate localisation
as a consequence of it employing the per LED RSS values. This work differentiates from [18] as it
focusses on uVLP systems with LEDs and PDs (versus with fluorescent lights and camera). It is also the
first work that studies CF-based uVLP positioning performance with detailed measurement datasets.

2. Materials and Methods

2.1. Characteristic Frequency

LED lamps appear in conjunction with LED drivers of different topologies and complexity,
depending on the envisioned cost and application [19]. As a result, the LED lamp roll-outs vary in
radiated waveform distortion (and associated spectrum interharmonics), (grid) emission characteristics
and impedance level [23,24]. The radiated waveform of LEDs is generally more miscellaneous than for
their fluorescent counterparts [24]. Interestingly, within LEDs of the same type as well, a substantial
variation in their emitted radiant spectrum is present, which allows the identification of a characteristic
frequency (CF) for each LED. This CF can be exploited to demodulate the individual photovoltage
contributions VPD,i(t), i = 1...N of each of the N LEDs from the total photovoltage VPD(t) generated at
the PD-receiver, without having to modulate or even modify the LEDs. The next section measures
VPD(t) for various LED lamp types and topologies (all of which are depicted in Figure 1) in order to
study the manifestation and the magnitude of the CF.
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Figure 1. Illustration of the LED fixtures and drivers considered: (a) KLLUG-511, (b) 18WLEDQSM,
(c) HLG-40H-48A, (d) BXRE-35E2000-C-73, (e) LTM8005 Demo Board and (f) E4010/LED1N060D.

2.2. Measuring the Characteristic Frequency

A Thorlabs PDA36A2 (https://www.thorlabs.com/thorproduct.cfm?partnumber=PDA36A2)
is placed horizontally opposite to the LED under consideration at 50 cm distance, unless otherwise
specified. The PD in combination with National Instrument’s USB-6212 DAQ device measures VPD(t)
(100 times for a number of samples Na = 51.2 kS at a rate fS = 256 kHz and with a 1.51× 103 V/A

transimpedance gain) [21]. The LEDs’ CF is identified via peak detection on the 100 times averaged
pseudospectrum, obtained by running the well-known algorithm MUltiple SIgnal Classification
(MUSIC) [20] on the VPD(t) time series. MUSIC’s subspace order is set to 10. The five LED driver—LED
combinations of Figure 1 are investigated.

2.2.1. Single-Phase Bridge Rectifier-Based LED Topology

The first LED to be investigated is a GU10-connected 4 W KLLUG-511 LED lamp of the Ascher
make (see Figure 1a), meant to replace the 50 W halogen bulbs. It outputs 400 lm at 2900 K and
consists of individual LED surface mounted devices. The passive LED driving module lacks a
constant current integrated circuit, and mainly operates by linking a single-phase bridge rectifier
to the LED’s terminals. The mean-subtracted normalised VPD(t) time domain waveform, the first
harmonic-normalised fast Fourier transform (FFT) spectrum and MUSIC’s output pseudospectrum
(of five LEDs from the same batch) are depicted in Figure 2.
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Figure 2. KLLUG-511 appertaining (a) mean-subtracted normalised VPD,i(t) time domain waveform,
(b) first harmonic-normalised fast Fourier transform (FFT) spectrum and (c) MUSIC’s output
pseudospectrum for 5 LEDs.

Figure 2a boasts a non-smooth and oscillation-filled waveform, while (b) shows the abundance
of harmonics of the 100 Hz double mains frequency [24] clearly visible in the below 2 kHz range [25].
Figure 2c shows the presence of higher-frequency resonances (e.g., around 8 or 16 kHz), which could
feature as CF. The pseudo-spectrum peaks are rounded and the small inter-LED spread (<20 Hz),
renders it difficult to define a unique and robust CF.

2.2.2. 18wledqsm LED Panel

The pseudospectrum of the floodlight LED panel 18WLEDQSM (depicted in Figure 1b) with a
Dark Energy LED driver is shown in black in Figure 3. The LED driver module has a buck constant
current driver and an isolation transformer as main additional building blocks. It can be remarked

https://www.thorlabs.com/thorproduct.cfm?partnumber=PDA36A2
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that the distortions are found higher-up in frequency, and that a CF is present around 49.75 kHz.
The current waveform is smoother than for the previous LED.
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Figure 3. MUSIC pseudospectrum versus frequency of the 18WLEDQSM LED panel (black curve) and
for a single HLG-40H-48A module driving two different BXRE chip on board (COB) LEDs (in green).

2.2.3. BXRE-35E COB LEDs

Chip on board (COB) LEDs, of which BXRE-35E2000-C-73 (https://www.bridgelux.com/
sites/default/files/resource_media/Bridgelux%20DS101%20Gen%207%20V13%20Array%20Data%
20Sheet%2020190930%20Rev%20N.pdf) is the considered example shown in Figure 1d, are favoured
in VLP as their resemblance to Lambertian radiating point sources allows an easy localisation [21].
Coupling 2 different BXRE LEDs with the same high-end HLG-40H-48A (https://www.meanwell-
web.com/en-gb/ac-dc-single-output-led-driver-mix-mode-cv-cc-with-hlg--40h--48a) (Figure 1c)
constant current regulator of MEAN WELL results in the green pseudospectra of Figure 3. Both LEDs
show a distinct CF at, respectively, 51.84 kHz and 52.29 kHz.

As this manuscript’s goal is to compare positioning based on the CF, i.e., unmodulated VLP
(uVLP) with dedicated VLP, an identical LED driver is to be used for both to ensure a fair comparison.
Commercial VLP drivers are however not readily available. As such, in this paper, the LTM8005
Demo Board (https://www.analog.com/en/products/ltm8005.html#product-overview) (Figure 1e) is
chosen to drive the BXRE-35E2000-C-73 COBs in either AC or DC. The DC pseudospectrum for the
N = 4 LEDs, measured on the ground in the positioning setup of Section 2.6, is given in Figure 4a.
The found CFs amount to 76.57 kHz, 81.82 kHz, 83.49 kHz and 86.09 kHz.
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Figure 4. MUSIC pseudospectrum versus frequency on (a) a logarithmic scale of 4 LTM8005 demo
boards each driving a BXRE COB LED (subspace order 20), and (b) on a linear scale of 4 ETAP E410
LED armatures.
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2.2.4. ETAP’S E4010 LED Armature

Figure 4b shows the pseudospectrum belonging to 4 industry-grade ETAP (https://www.
etaplighting.com/en) narrow-angle E4010/LED1N060D (https://www.etaplighting.com/en/series/
e4/e4010led1n060d) LED luminaires (shown in Figure 1f). Each LED armature has a distinct peak
around 30 kHz that can serve as CF. The minimal spacing between the LEDs’ CF is 80 Hz.

In this Section 2.2, the scope was limited to LED lamps on account of LEDs being both the
‘illumination sources of the future’ [26] and the lights typically used in VLP. The latter, which can
(partially) be attributed to the LEDs supporting higher modulation frequencies [2], allows comparing
the positioning accuracy of PD-based uVLP and standard VLP.

2.3. Applicability of the Characteristic Frequency

The CF measurements of the 4 constant current LEDs permit drawing 4 conclusions. First, the CF
is dependent on the individual LED lamp’s characteristics. Second, all constant current driven LED
lamps exhibit a unique CF that is furthermore prominent enough to use as a basis for positioning,
provided that the CF is robust. The robustness will be demonstrated in the next Sections 2.3.1 and 2.3.2.
The KLLUG-511 LED lamp, characterised by the absence of a constant current driver, is ill-suited for
CF-based uVLP. Third, with the CFs up to and exceeding 80 kHz, uVLP either dictates a significant rate
fS or necessitates the use of the CF aliases. For the former, fS should exceed 2 times the maximum CF,
provided the absence of higher frequency components that could alias into the CF range. The CF-range
also imposes a minimal 3 dB receiver bandwidth, which in turn puts restrictions on the receiver chain
due to the inherent bandwidth—gain trade-off (of the involved (transimpedance) amplifier circuits).
Depending on the photodiode’s junction capacitance, PD-bootstrapping or multiple gain stages may
need to be used. Interestingly, the CF of a fluorescent lamp is also found to be larger than 80 kHz.
It is located in the 80–160 kHz range [18]. Hence, camera-based uVLP needs the receiver camera’s
sampling process to be optimised in order to reach the required bandwidth and fS as well [18].

Finally, as inter-CF spreads are found to be as limited as 80 Hz, CF-based uVLP will require a
fine frequency resolution. As a consequence of the fS requirement of conclusion three, the number of
recorded samples Na will be more substantial than generally is the case for VLP. Unfortunately, as a
higher Na dictates a lower refresh rate, it is more difficult uVLP-based tracking system to be real-time.

2.3.1. Stability of the CF over Time

For uVLP to be able to ensure accurate and consistent localisation, it requires a certain robustness
i.e., frequency stability of the LEDs’ CF. Figure 5a portrays a time-lapse of the CF for the same BXRE
LED, coupled to the HLG-40H-48A and LTM8005 LED driver. As was reported for fluorescent lamps
by Zhang et al. in [18], the LEDs CF shows a significant start-up behaviour that lasts for more than an
hour. At the end of this start-up, the LED current magnitude and temperature stabilise. Importantly
though, in stable regime, the standard deviation on the CF equals a workable 6.47 Hz and 8.47 Hz,
respectively. Discontinuing and reapplying the LED current, i.e., a new start-up, yields a comparable
(within a standard deviation tolerance) CF as before. Hence, the CF remains stable across switching the
LEDs ‘off’ and ‘on’. It should be noted that temporal variation is not only present in the CF, but also
in its spectral magnitude. Possible temperature-dependencies of the nominal value and temporal
variation of the CF requires further study.

https://www.etaplighting.com/en
https://www.etaplighting.com/en
https://www.etaplighting.com/en/series/e4/e4010led1n060d
https://www.etaplighting.com/en/series/e4/e4010led1n060d
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Figure 5. Characterising the characteristic frequency (CF) as a function of (a) time and compatibility
with dimming with respect to (b) the average LED current and the (c) pulse-width modulation (PWM)
frequency, for a BXRE chip on board (COB) LED measured on the ground in the positioning setup of
Section 2.6.

2.3.2. Stability of the CF with Light Dimming

As stated in the introduction, VLP intends to leverage the existing illumination infrastructure.
Important herewith is to remain compatible with the in-place interfaces (e.g., Digital Addressable
Lighting Interface (DALI)) and to support LED driving current dimming via amplitude and/or
pulse-width modulation. Ideally, a LED’s CF would be unaffected by variations in its LED current.

However, Figure 5b,c show that this is not the case. In (b), it displays (in red) an approximately
linear relation between the CF and the driving current. For pulse-width modulation (PWM) frequencies
up to 200 Hz, increasing the duty cycle, and thus the average LED driving current, also rises the CF.
PWM frequencies exceeding the 2 kHz threshold exhibit a more peaky pseudospectrum, requiring a
higher subspace order distinguish a CF. Identifying the CF as the frequency peak closest to the DC CF
value, shows the higher-up PWM frequencies remaining more constant with increasing duty cycle
(see Figure 5c).

A frequency shifting CF does not necessarily mean that uVLP is incompatible with PWM dimming
i.e., as long the LEDs’ VPD(t) contributions are demultiplexed to the correct LED. In RSS-based uVLP,
the receiver needs to be aware of the varying duty cycle as the CF’s magnitude and frequency can
change. This change can be coped with by either modelling the shifts or via (re)calibration.

2.4. Demodulation

The positioning methods of the next Section 2.5 employ the set of per LED received radiant
powers {PR,i}, i = 1..N as input, i.e., as RSS values. The individual power contributions {PR,i} are
derived from their photovoltage variants {VPD,i} after division by the transimpedance gain (leading to
the photocurrent magnitudes {IPD,i}) and subsequently by the receiver responsivity [21]. {VPD,i} are
in turn demodulated from the total photocurrent VPD(t). Figure 6 visualises the receiver demodulation
and positioning methods to be described below, the names of which are also collected in Abbreviations
in list format.
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Figure 6. Flowchart representation of the (unmodulated) visible light positioning (u)VLP demodulation
and positioning chain. The acronyms of Sections 2.4 and 2.5 are also gathered in a table in Abbreviations.

Three demodulation methods are considered: (i) the FFT spectrum-based magnitude method
from [12], (ii) sliding frequency window correlation, and (iii) the identification method of (i) applied
on the (autoregressive) Yule-Walker method-based power spectral density (PSD) spectrum. In all three
methods, the LED contributions are sought at and around the frequencies { fc,i}, which either equals
the (first harmonic) modulation frequency (in case of VLP) or the characteristic frequency (in case of
uVLP). Due to temporal variation in the CF (see Section 2.1), methods (i) and (iii) first perform a peak
detect in the neighbourhood 2∆ f of the nominal fc,i i.e., [ fc,i − ∆ f , fc,i + ∆ f ]. In (ii), the maximum of
all correlations of VPD(t) and the sinusoids with fc,i ∈ [ fc,i − ∆ f , fc,i + ∆ f ] is computed. (ii) is denoted
by C-F. C-FPh is an extended version of C-F with an additional slide over the phase angle θ. For uVLP
and VLP, ∆ f = 100 Hz (in steps of 10 Hz) and ∆ f = 15 Hz (in steps of 2 Hz), respectively.

Prior to demodulation, the VPD,i(t) time signal, spanning 1 s, is subdivided in AVG segments to
average {VPD,i}. Two averaging methods are discerned: (1) the complex spectrum is averaged prior to
peak detection of {VPD,i} on the amplitude spectrum, and (2) the peak detected {VPD,i} of each of the
segments is averaged. For (i), methods (1) and (2) are, respectively, named SPECT (with abbreviation S)
and PEAK (with abbreviation P). During (iii), (1) and (2) are designated by AR-S and AR-P.

The last two demodulation techniques considered entail FFT-based zero padding (a) as to double
the photovoltage signal’s length (denoted with suffix Pd) and (b) as to obtain a per LED FFT period that
is a multiple of fc,i (denoted with suffix PdF). Striving for coherent sampling, PdF consists of 3 steps
for each LED: a peak detect on the ‘standard’ FFT amplitude spectrum to determine the instantaneous
CF, a recompute of the FFT-spectrum based on the new zero padded signal, and a second peak detect.
PdF represents a limited-complexity version of finding the best match in terms of the CF and the
amount of zero-padded samples.

2.5. Positioning Procedure

Ensuring an accurate localisation of the unknown receiver position denoted by (xu, yu, zu), both
during uVLP and VLP, requires an off-line site survey to accurately chart the LEDs’ coordinates
(xS,i, yS,i, zS,i), radiant powers Pt,i and fc,i, i = 1..N. (xu, yu, zu) is estimated by means of the
localisation algorithms detailed in the subsequent parts, all of which require a channel model as input.
In this work, as is frequent in literature [2], the infrared propagation models of Kahn et al. [27] will serve
as the VLP channel models for converting the {PR,i} sets into positioning estimates. The description
of Kahn’s models is the same as in our previous work [21]. A SQ receiver angular acceptance is
assumed [21]. For the various positioning algorithms to follow, the K parameter (with K ≤ N) selects,
in terms of a descending PR,i/Pt,i order, which (sub)set of {PR,i}, i = 1..N is used to determine the
position estimate.
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2.5.1. Trilateration-Based Localisation

This work will compare the positioning performance of 4 trilateration-based 2D RSS algorithms.
(1) The baseline trilateration algorithm, denoted by Tril, computes a location estimate of (xu, yu, zu) by
(least-squares) solving the linear system relating (xS,i, yS,i, zS,i) to the LED-receiver distance estimates
di [28]. The system only accounts for the K = 3 LEDs with smallest di. (2) To increase robustness,
Tril–AVG averages the location estimate obtained via Tril for the 4 LED combinations of 3 LEDs.
(3) WLS employs a singular value decomposition to weigh the LEDs’ trilateration contributions as
outlined in [29]. (4) 2D localisation 3D Tril by discarding the height estimation from the 3D trilateration
approach detailed in [30].

di is directly obtained from PR,i by inverting the VLP channel model. Requiring an invertible
channel model has as drawbacks that it restricts both the LED radiation pattern and receiver acceptance
model, and that it hinders the modelling of non-line-of-sight propagation. Both lead to a significantly
degraded positioning performance [21,28]. In trilateration, the LEDs’ radiation pattern is approximated
to be Lambertian. The best fitting Lambertian order of the Lambertian-like BXRE-35E2000-C-73 equals
1.14 [21].

2.5.2. Cayley-Menger Determinant Localisation

Positioning based on a geometrical formulation, as opposed to the above algebraic formulation,
leads to the Cayley-Menger Determinant-based localisation procedure (5) CMD of [31]. This paper
studies CMD in 2D.

2.5.3. Model-Based Fingerprinting Localisation

Model-based fingerprinting (MBF (6)) RSS VLP initially computes a propagation map (according
to the VLP channel model), holding the expected RSS values per LED, i.e., {PR,i}, for all locations
on a predefined positioning grid. The propagation map accounts for the LEDs’ C0/C90 photometric
diagram [21]. Upon a {PR,i}measurement, the grid position that has the minimal difference, in terms
of a cost function, between the modelled {PR,i} and measured {P̂R,i} is taken to be the positioning
estimate. The following cost function C(x, y) is utilised (chosen based on later experimental results):

C(x, y) =
K

∑
i=1

(
1− PR,i

P̂R,i

)2

. (1)

(7) MBF-AVG is analogously defined as (2). This paper also proposes an MBF variant, namely (8)
MBFB, to better cope with measurement variance of uVLP. In MBFB, the location estimate is taken to
be the mean of all grid coordinates for which the C(x, y) is smaller than the pth percentile of C(x, y),
rather than C(x, y)’s minimum was in MBF. MBF and MBFB are similar to the (K-) nearest neighbours
(KNN) algorithm. However, a distinction is made between both on the grounds that in MBF and MBFB
the fingerprinting database is being generated by computing a predefined channel model, while for
KNN it is composed of measurements. An advantage of the MBF-approach is that upon positioning
environment changeover, the fingerprints can be scaled or recomputed via the propagation model.

2.5.4. Simultaneous Positioning and Orientating

This paper also reports the 2D positioning performance achieved with the Simultaneous
Positioning and Orientating SPAO (9) approach of Zhou et al. [32]. 10 iterations are performed,
and the (bounded) receiver orientation and z-coordinate are finally discarded. 3D Tril’s output is taken
as the initial position.
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2.6. Positioning Setup

The associated positioning performance is verified in our VLP lab [21], depicted in
Figure 7a. Surrounded by black cloths to minimise reflections, the PDA36A2-based receiver
(see Section 2.1) traverses a 2D plane that is situated 2.25 m below the LED plane ({zS,i} =

[2.242, 2.252, 2.247, 2.250] (m)). IPD,i (t), which is derived from VPD,i (t) by division with the (new)
transimpedance gain 1.51× 105 V/A is measured (during 1 s at a rate fS = 256 kHz) every 2.5 cm across
the ground plane and sequentially 1 m2 at the time via Velmex’ BiSlides [21]. The photocurrent RSS
values IPD,i are then subsequently obtained from the IPD,i (t) time waveforms as outlined in Section 2.4.
The LED plane is occupied by N = 4 LTM8005-connected BXRE-35E2000-C-73 LEDs placed in a
rectangle: {xS,i} = [−1.13, −1.12, 1.17, 1.15] (m) and {yS,i} = [−1.41, 1.44, −1.43, 1.4] (m). Both
LED types are driven to transmit either DC light or 50% duty cycle pulse train intensity modulated
light. In AC regime, the LTM8005 driver’s frequency fc,i is dictated over WiFi via the Adafruit
Feather M0 WIFI w/ATWINC1500 (https://www.adafruit.com/product/3010) module to satisfy:
fc,i = 2i−1 f0 [12] with f0 = 500 Hz exceeding the flicker threshold. The root-Mean-Square Error (rMSE)
is the metric used to evaluate the positioning. Figure 7b provides a schematic overview of the employed
VLP system.

(a)

MATLAB

 backend

VPD(t)

DAQ

Demodula�on
Localisa�on

LED PD

AC

DC

LED Driver

(b)

Figure 7. Illustration of the COB (u)VLP (visible light positioning) (a) lab setup and (b) schematic
system overview.

PT,I and FC,I Calibration

{ fc,i} are calibrated directly underneath each LED, with a single measurement. The nominal Pt,i
is computed by taking the mean of Pt,i · (di/zS,i)

3 for all grid points within a 20 cm radius of LEDi’s
projection. For uVLP and VLP, the (rounded) mean M · Pt,i · RP(0), respectively, amounts to 0.04 A
and 5 A (to be used in Section 4). The actual M · Pt,i · RP(0) values however (slightly) depend on the
employed demodulation strategy (Section 2.4).

3. Experimental Results

This experimental section is devoted to studying the feasibility of CF-based uVLP, and to
comparing the positioning performance of uVLP and VLP. As VLP localisation generally entails
performing FFT-based demodulation [12], the latter is the demodulation technique discussed in the
first Sections 3.1 and 3.2. Later, Section 3.3 demonstrates the influence of the employed demodulation
on both (u)VLP and whether it can boost the positioning accuracy.

https://www.adafruit.com/product/3010
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3.1. IPd,I Propagation

Figure 8 shows a contour plot of the SPECT demodulated photocurrent contributions IPD,i of
LED 3 (i.e., IPD,3) for (a) VLP and (b) uVLP. The difference in both the absolute IPD,i magnitude and
the (erratic) regularity of the IPD,i distribution between (u)VLP and VLP is clearly visible. It should be
noted that during FFT-demodulation, the uVLP’s IPD,i is similarly scaled to the VLP’s IPD,i, i.e., with π

instead of 4, to show the relative RSS difference between VLP and uVLP at the receiver. π and 4 are
the scaling factors of the first Fourier coefficient for a square and sine wave, respectively [12].

(a) (b) (c) (d)

Figure 8. Distribution of IPD,3, which is measured in 1572 grid points, for (a) VLP with AVG = 1
and SPECT fast Fourier transform (FFT)-based demodulation and for uVLP with AVG = 10 with,
respectively, (b) SPECT-based, (c) PEAK-based and (d) correlation (C-FPh)-based demodulation.

Now considering Figure 8b,c, appertaining to SPECT and PEAK, allows to conclude that uVLP’s
PEAK IPD,i distribution exhibits less noisy, i.e., capricious behaviour than SPECT’s. In other words,
PEAK exhibits a larger signal-to-noise-ratio (SNR) than SPECT. An explanation is found in the temporal
instability of the (instantaneous) CF (see Section 2.3.1). As a consequence of a stable fc,i, VLP PEAK and
VLP SPECT yield the exact same IPD,i. As SPECT is of lower complexity, it is therefore the designated
FFT demodulation technique (for VLP). Finally, comparing Figure 8a with Figure 8b/Figure 8c permits
concluding that uVLP’s IPD,i is 2 orders of magnitude smaller than VLP’s. Figure 8d also depicts the
uVLP correlation-based IPD,i as showing a comparable regularity to PEAK. Correlation-based uVLP is
treated more in detail later on.

3.2. Fft-Based Localisation

The subsequent parts of this section study FFT-based demodulation and characterise the influence
of AVG.

3.2.1. Tuning the Positioning Algorithm Parameters

First, the positioning algorithms of Section 2.5 need to be fully specified. MBFB, whose
performance depends on the percentile p, is started with. As a consequence of the convexity of the
MBFB p− p75 relation (with p75 being the 75th percentile rMSE) associated with each demodulation
configuration (of Figure 8), the optimal p can be determined to equal p = 0.02%. After the p− p75

infliction point (for p values exceeding 1%), an increasing p introduces errors at the room’s corners
where the centre of gravity pulls MBFB’s location estimates inwards. Lowering the SNR (e.g., to an
SNR comparable or lower than uVLP SPECT’s), shift the optimal p to a larger magnitude. p = 0.02
corresponds to model-based KNN with 5 neighbours, which has been checked to outperform both
KNN with 4 and 6 neighbours.

The parameter K denotes whether per grid point the 3 LEDs with the largest PR,i/Pt,i are selected,
or all 4 LEDs are employed, for positioning. For MBFB, it turns out that K = 3 works superiorly
to K = 4 for the demodulation configurations showing a higher SNR than uVLP SPECT. In fact,
K = 3 is also optimal (and is hence applied) for all positioning algorithms that do not perform a 3D
localisation (except WLS). In 3D Tril, the height search range is limited to 2.2–2.7 m to avoid position
ambiguities [33].
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3.2.2. AVG’s Frequency Resolution and Averaging Trade-Off

Now that the positioning algorithms are tuned, this part discusses the trade-off between the
frequency domain resolution and the averaging amount during FFT-based (u)VLP. As stated in
Section 2.4, per grid location, the 1 s measurement duration is subdivided into AVG time domain
segments (of length Na = Ns/AVG with Ns = 256 kS the total sample count). AVG also denotes the FFT
bin separation i.e., the frequency resolution. Hence, an upper bound AVG is instilled by the minimum
fc,i separation of the LEDs.

Figure 9 shows a different AVG dependence of the 50th percentile p50 and 90th percentile p90

rMSE for VLP, uVLP PEAK and SPECT. In VLP, once AVG ≥ 5, the localisation performance remains
constant due to its large SNR. Its p50/p90 are subsequently dominated by consistent errors (treated later
on in Section 3.3.3).

1 2 5 10 16 20 25 50 100
0

0.1

0.2

0.3

0.4

0.5
256 128 51.2 25.6 16 12.8 10.24 5.12 2.56

Figure 9. Influence of the AVG parameter on the p50 and p90 found both during FFT demodulation-
and MBFB-based positioning in VLP (in black), uVLP SPECT (subscript ‘u, S’, in green) and PEAK
systems (‘u, P’, in blue), and during trilateration (Tril)-based uVLP PEAK (in the red shades). ‘MBFB’ is
abbreviated to ‘MB’.

Figure 9 also illustrates the significant discrepancy between uVLP PEAK and SPECT. Better in
accounting for instantaneous CF (magnitude)-instability, PEAK’s AVG− p50/p90 curves are convex
and exhibit distinct minima. For AVG larger than the optimal AVG, issues in resolving the correct fc,i
(magnitude) augment the p50 and p90. For uVLP SPECT, which is (vastly) outperformed by PEAK
for AVG > 1 and AVG < 100, the AVG− p50/p90 curves vary more gradually. The p50/p90 curves
appertaining to uVLP SPECT show a minimum at AVG = 16, while AVG = 10 minimises PEAK’s
p50 and p90. It should be noted that uVLP SPECT’s p50/p90 can be lowered by fine-tuning MBFB’s p
parameter (see Section 3.2.1). From Figure 9, it is also clear that the cost-effectiveness of PEAK uVLP
does come at a p50/p90 cost when comparing with VLP systems.

Finally, MBFB outperforms Tril by 15.8%/16.8% and 11.2%/11.3% in terms of their p50/p90,
respectively, for uVLP PEAK and SPECT. Tril exhibits the same AVG behaviour as MBFB, supporting
this section’s conclusions.

3.3. Demodulation Technique and (U)VLP Accuracy

The above analysis demonstrated the feasibility of uVLP, potentially supplemented with location
tracking/filtering techniques [34], for indoor localisation applications that require positioning
accuracies in the 10–30 cm range. Several applications, such as the indoor navigation of robots
require positioning errors in the subdecimetre range.
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This Section 3.3 looks at the other demodulation methods of Section 2.4 (with or without additional
filtering techniques) in an attempt to further boost (u)VLP’s positioning rMSE. This analysis is
performed for AVG = 10 and Na = 25.6 kS as to discern between 10 Hz-spread fc,i.

3.3.1. Influence of Demodulation on (U)VLP Rmse

Figure 10 shows a bar chart representation of the p50 and p90 for 3 positioning
algorithms (namely Tril, MBF-AVG and MBFB) for (the first) 9 uVLP and (the latter) 3 VLP
demodulation configurations.

S S-Fi S-Pd AR-S P P-PdP-PdF C-F C-FPh S C-F C-FPh
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 10. A bar chart representing the p50 and p90 for Tril, MBF-AVG and MBFB for various
(u)VLP demodulation configurations. The left 9 bars represent uVLP configurations, while the right
3 bars constitute VLP-based demodulation schemes. The etymology of the configuration names is
clarified in Figure 6.

The first configuration SPECT (S) serves as a uVLP rMSE baseline. Its associated p50/p90 in order
amounts to 15.0 cm/27.5 cm for MBF-AVG, to 17.1 cm/30.9 cm for MBFB and to 19.1 cm/35.3 cm for
Tril. Configuration 2, S-Fi demonstrates the limited added benefit of using time/frequency-based
filtering. Filtering based on the maximal overlap discrete wavelet transform with the Daubechies 4
wavelet improves the SPECT-based MBF-AVG scores but with a few millimetres. Utilising other filters,
such as the savitzky-golay filter, in combination with either demodulation technique, also did not
effectuate much rMSE gain. Zero padding before SPECT demodulation, namely S-Pd, ameliorates the
p50 of MBF-AVG, MBFB and Tril, respectively, by 1.8 cm, 2.8 cm and 2.8 cm. For MBF-AVG, this comes
at the cost of a (slight) p90 increase. In configuration 4 with the autoregression-based demodulation
(AR-S), MBF-AVG still scores best and even better than for SPECT. It rates at 13.5 cm/25.7 cm.
AR-S’s PSD estimations seemingly cope better with the CF variance.

As stated in Sections 3.1 and 3.2.1, utilising PEAK FFT-demodulation drastically reduces the
positioning rMSE to 6.8 cm/13.8 cm for MBFB, to 7.1 cm/15.2 cm for MBF-AVG and to 8.5 cm/16.7 cm
for Tril. The rMSE values represent relative improvements over the SPECT baseline’s of 60.2%/55.3%,
52.5%/44.7% and 55.4%/52.6%, respectively. P is the first demodulation technique that delivers its
best positioning estimates in conjunction with MBFB instead of MBF-AVG. In fact, all techniques that
deliver positioning estimates at least as accurate, benefit from using MBFB over MBF-AVG.

Employing zero padding with PEAK, P-Pd, boosts the MBFB positioning accuracy by
1.7 cm/3.2 cm. While the zero pad operation does not increase the frequency resolution,
the sinc-interpolation ‘combines’ (i.e., filters) the magnitudes of the closely-spread peaks originating
from the variation in the instantaneous CF (over an FFT interval) to ensure a more accurate total
spectral magnitude at the CF. Finally, P-PdF manages to shave an additional 1.5 mm and 0.6 mm of
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MBFB’s p50 and p90 with respect to P-Pd, whilst also improving the metrics of Tril and MBF-AVG.
MBFB’s, MBF-AVG’s and Tril’s p50/p90 now equal, respectively, 5.0 cm/10.6 cm, 5.3 cm/11.5 cm and
7.9 cm/15.6 cm. P-PdF’s MBFB’s performance starts rivalling VLP’s (see Sections 3.2.2 and 3.3.2).

Frequency-sliding correlation C-F betters SPECT, but not quite PEAK with a MBF-AVG p50

performance of 8.3 cm. C-F does come at a skyrocketing p90. C-FPh improves upon C-F to also
account for phase dependence. With steps of θ = 30◦, C-FPh diminishes the MBF-AVG p50/p90 to
7.3 cm/16.0 cm. However, for the practical parameters, C-FPh does not succeed in besting PEAK.
This can (partly) be attributed to the coarseness of the phase and frequency stepping as can be
seen at the top right of Figure 8d. Lastly, to round out this analysis, AR-P only effectuates limited
improvements, in the range of a centimetre, over AR-S. AR-P’s limited performance can be attributed
to the power spectral density estimation (slightly) altering the PR,i-di relation.

3.3.2. Influence of Demodulation on VLP Rmse

Figure 10 also delineates ‘regular’ VLP’s FFT and correlation-based positioning performance.
SPECT/PEAK FFT-based demodulation, i.e., configuration 10 dubbed S, shows that the MBFB,
MBF-AVG and Tril algorithms in order achieve p50/p90 values of 3.5 cm/6.8 cm, 5.0 cm/10.1 cm
and 5.3 cm/9.6 cm. As there is little to no impact of the zero padding, the corresponding results are
omitted. In combination with sliding window correlation every θ = 10◦ i.e., C-FPh with ∆ f = 15 Hz,
MBFB exhibits the exact same p50/p90 values as for FFT-based VLP. The improved MBF-AVG accuracies
now total 4.6 cm/9.7 cm. C-FPh does (slightly) augment the Tril inaccuracy.

Disregarding their equivalent MBFB performance, both demodulation techniques reach their
minimal p50 when applying MBF-AVG. The reported p50/p90 values hence allow ranking C-FPh
slightly ahead of SPECT in terms of the attainable rMSE. For the sake of completeness, the C-F bar plot
justifies the additional phase sliding of C-FPh. Finally, it was also verified that sine-based C-FPh and its
square wave-based variant score comparable. Both exhibit the same MBFB p50 and p90. Square-wave
C-FPh reduces the outliers (and p90) of both MBF-AVG and Tril, compared to sine-based C-FPh
(and SPECT). The reduction comes at the cost of a larger p50 for MBF-AVG.

The principle conclusion of this entire Section 3.3 is that VLP, either with SPECT or C-FPh in
conjunction with MBFB, effectuates a mere 1.5 cm (29.2%) and 3.8 cm (35.6%) improvement over
uVLP’s best scores of 5.0 cm/10.6 cm (also obtained with MBFB). This highlights the localisation
potential of uVLP, certainly when considering its economics.

3.3.3. Sources of Localisation Error

The main positioning degrading factors are identified to be LED interference (certainly for VLP,
see Figure 11), the (limited) LED tilt present (i.e., due to the nonideal lab setup) [21], measurement
errors, and noise. Once accurately measured, the tilt influence could be mitigated by incorporating it
into the propagation model of the MBF-based techniques (Section 2.5.3). For VLP, LED interference
does impede IPD,i-based tilt estimation [35].

(a) (b) (c) (d) (e)

Figure 11. Per grid point normalised standard deviation σ(IPD,i)/(M · Pt,i · RP(0)) of the AVG = 10 segments’
IPD,i for various LEDs for (a) VLP and (c) uVLP PEAK. σ(IPD,i)/IPD,i is also shown for (b) VLP, for uVLP
(d) PEAK and (e) P-Pd. The red cross designates the LED’s location.
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The first 4 degrading factors introduce (consistent) bias errors and impact the localisation accuracy.
The latter, the noise influence, determines the localisation precision. Reverting to the set of AVG = 10
per segment IPD,i values per grid point, allows to discern the portion of the positioning error that
can be attributed to noise. Hereto, 2 metrics are computed per grid point with respect to (localisation
with) the mean IPD,i, namely the standard deviation on (1) IPD,i denoted by σ(IPD,i) and (2) the rMSE.
The 50th and 90th percentile deviation on the localisation error during MBFB, with respect to the mean
IPD,i’s rMSE, is represented by p50,err and p90,err.

Standard Deviation σ(IPD,i) on IPD,i

Figure 11 depicts the spatial distribution of σ(IPD,i) normalised by M · Pt,i · RP(0) for (a) VLP
and (c) uVLP PEAK/SPECT. It also plots the ratio σ(IPD,i)/IPD,i for (b) VLP, for uVLP (d) PEAK and
(e) P-Pd. Figure 11 shows both the location-dependence and the uVLP/VLP difference when it
comes to σ(IPD,i)/(M · Pt,i · RP(0)). Both FFT- and correlation-based VLP’s σ(IPD,i) is dominated by LED
interference. Neighbouring (both in space and frequency) LEDs influence each other’s IPD,i. For LED
4’s IPD,4 ( fc,4 = 4 kHz) shown in Figure 11a, LED 3 (with fc,3 = 2 kHz and located at the bottom right)
supplies the largest contribution.

During uVLP, no (dominant) interference contribution is present. Moreover, the (dominant)
σ(IPD,i)/(M · Pt,i · RP(0)) component varies with the employed demodulation technique as attested by
Figure 11d,e. uVLP PEAK/SPECT’s σ(IPD,i) exhibits a strong proportional component to IPD,i

(see Figure 11c,d). As the associated spatial sample variance σ(IPD,i)
2
/I2

PD,i profile follows a scaled
Chi-squared distribution, Cochran’s theorem dictates that the underlying noise contribution can be
modelled to be additive Gaussian with zero mean and with a variance amounting to the expectation of
the sample variance. Hence, σ(IPD,i)/IPD,i is location-independent. Nor σ(IPD,i)

2 nor σ(IPD,i)
2
/I2

PD,i are
chi-squared distributed for P-Pd (or for VLP). As can be expected from their associated localisation
performance, VLP outranks in order uVLP P-Pd and PEAK/SPECT in terms of the absolute magnitude
of the spatial expectation of σ(IPD,i)/(M · Pt,i · RP(0)).

Localisation Precision

For uVLP PEAK/SPECT, p50,err and p90,err amount to 15.5 cm and 21.6 cm. uVLP P-Pd effectuates
a significant p50,err/p90,err reduction, the quantities now equalling 7.8 cm/12.8 cm. For FFT-based VLP,
in order, the values are 1.3 cm and 3.8 cm. However, the positioning results of Section 3.3 are obtained
on the averaged IPD,i. Under assumptions (such as uncorrelatedness), the above numbers are reduced
by a factor

√
AVG. Later, in Section 4, it is revealed that this is not necessarily the case.

It can be concluded that (1) VLP’s performance is mainly limited by inaccuracies (listed in the
beginning of this section), that (2) a significant part of uVLP’s loss of accuracy (compared to VLP) is
due to its significantly lower SNR and that (3) the superior (uVLP) demodulation techniques deliver a
higher SNR.

Influence Segment Count for IPD,i Averaging

To further study the precision, Figure 12 depicts the p50 and p90 for VLP S, uVLP S, uVLP P
and uVLP P-Pd as a function of how many segments’ IPD,i is averaged before positioning,
i.e., the segment count. The segment count, ranging from 1 to 10, dictates how many of the AVG
segments are employed for calibration and MBFB-based localisation. In this analysis, each segments’
length remains constant at Na = Ns/10 with Ns = 256 kS the total amount of samples recorded during
the 1 s measurement interval.
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Figure 12. Influence on the p50 and p90 of MBFB-based VLP S, uVLP S, uVLP P and uVLP P-Pd of
averaging the segments’ IPD,i.

Figure 12 again highlights the significant improvement arising from utilising PEAK over SPECT
in uVLP. The latter even, being plagued by the fc,i time variation mismatch, inadvertently increases the
rMSE before reducing it, when increasing the segment count. The uVLP curves do not yet demonstrate
convergence, meaning that uVLP’s performance can still be ameliorated by increasing the segment
count coming at a latency cost.

For VLP S, MBFB’s discrete nature and small σ(IPD,i) allows achieving the same p50 with
1 segment as with 5 segments. The accompanying p90 of 5 segments meanwhile save 13.1% over the
single segment’s p90. At a segment count of 6, convergences starts to set in. Not measuring the other
4 segments, increases the update rate by 40%. VLP C-FPh coincides with S, except when a single
segment is used (treated in the next Section 3.3.4).

3.3.4. Influence of Na for uVLP

A location update rate of 1 Hz is, depending on the application, insufficient, think, e.g., drone
flight (combining a 1D Lidar height estimate with 2D (u)VLP) or the tracking of fast-moving vehicles
such as forklift trucks. Hence, in this part, the positioning influence of a single segment’s length Na is
investigated (i.e., no averaging is performed). The optimal Na will be lower bounded by the frequency
separation fS/Na needed to separate all fc,i values of the different LEDs.

Figure 13 shows the p50 − Na relation for VLP and uVLP PEAK, C-FPh, P-Pd and P-PdF. For VLP
combining coherent sampling and stable fc,i’s, p50 gradually drops with increasing Na (until saturation)
as a higher Na allows better resolving the fc,i mismatch (between the set and the actual fc,i).

uVLP exhibits a different p50 − Na behaviour. Figure 13 portrays an unequivocal minimum for
C-FPh, P-Pd and P-PdF that is located at 12.8 kS (with p50 = 9.6 cm), 25.6 kS (with p50 = 9.6 cm) and
25.6 kS (with p50 = 9.2 cm), respectively. Comparing with Figure 10 allows to quantify the effect of not
averaging IPD,i, namely it augments the p50 of P-Pd/P-PdF by approximately 85%. PEAK’s minimum
is reached for both Na = 12.8 kS and Na = 16 kS. Compared to Figure 10, PEAK’s p50 substantially
increases from 6.8 cm to 17.9 cm.
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Figure 13. Influence of the sample size Na on the p50 of MBFB for VLP (in black) and for uVLP PEAK,
C-FPh, P-Pd and P-PdF.

Interestingly, for uVLP, the optimal p50 performance depends on the value of Na and is linked
with a specific demodulation method. A too small Na hinders an accurate CF resolving, while a larger
segment length holds (too) much temporal (magnitude) variation. This again shows the difficulty of
dealing with the temporal variation in both frequency and magnitude of the CF.

This part is concluded by providing three examples elaborating on this difficulty. Intuitively,
as C-FPh’s optimal Na amounts to 12.8 kS, averaging all AVG = 20 segments should better the p50/p90

of AVG = 10 (with Na = 25.6 kS). However, p50/p90 growths of 1.2 cm/0.7 cm are incurred. A second
example is found in uVLP PEAK with AVG = 16 having both a lower σ(IPD,i) (over the AVG = 16
segments) and a higher p50/p90 than AVG = 10. Finally, taking the median instead of the mean IPD,i,
does not improve the positioning performance of uVLP and VLP. The accurate configurations, such as
P-PdF and VLP, not necessarily exhibit a MBFB p50/p90 increase (PEAK does) when taking the median,
but the p50/p90 belonging to Tril rises in all cases.

3.3.5. Localisation Complexity

In localisation, it is not only the positioning performance parameter that matters. The complexity
and thus latency is important as well. This part provides an approximation analysis. The total
discretised VPD,i(t) sample length is Ns = 256 kS, resulting in a Na = Ns/AVG sample length
per segment.

Assuming an FFT complexity of order O(L · log2 (L)) (with L the FFT length) and a N-fold
(for each LED) peak detect operation of order O(Pk(L)), allows to discern the different demodulation
algorithms based on complexity. O(Pk(L)) depends on the fc,i stability and the frequency
characteristics of (interfering) ambient LED sources. Pk(L) may be as simple as a binary search
peak detection limited to 2∆ f or more complex to also consider the peaks’ prominence (genre the
‘findpeaks’ function of MATLAB®).

In SPECT (or S), taking the mean of AVG FFT operations is succeeded by a single peak detect.
The corresponding order of complexity amounts to O(AVG · Na log2 (Na))+ O(Pk(Na))). In S and the
subsequent, the O(Na) of the mean operation is assumed negligible (with respect to the dominant term).
The order of zero padding (S-Pd) then augments to O(AVG · Na (1 + log2 (Na)))+ O(Pk(2 · Na))).
For PEAK (or P), the order equals O(AVG · (Na log2 (Na) + Pk(Na))). In the previous, taking the
mean IPD,i is neglected. P and P-Pd should be feasible for real-time applications (depending on the
receiver’s constraints). The added complexity of the 3 step approach of P-PdF, however, will only be
justified when the highest obtainable accuracies are required.
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The complexity of the correlation-based demodulation routines also largely depends on the
fc,i stability, and the frequency ( fstep) and phase (θstep) granularity: O(C-F) = N · Na · 2 ∆ f/ fstep and
O(C-FPh) = N · Na · 2 ∆ f/ fstep · 2 ∆θ/θstep. For the parameters considered in this manuscript O(C-FPh)�
O(P-Pd).

In conclusion, the optimal demodulation algorithm is governed by a trade-off regarding
complexity and positioning accuracy. This trade-off is elaborated upon in Section 5, where various
applications of (u)VLP are studied.

3.4. Influence of Positioning Algorithm

Figure 14 zooms in on the localisation aptitude of the different positioning algorithms of Section 2.5
related to both uVLP with (a) S, (b) C-FPh, (c) P and (d) P-PdF demodulation, and to VLP with (e) S
and (f) C-FPh demodulation.

The cumulative distribution function (CDF) Figure 14a–d show that the positioning algorithms’
performance exhibits an SNR-dependence during uVLP. At low SNR and for uVLP SPECT, MBF-AVG
with a p50 = 15.0 cm significantly outperforms WLS with a p50 = 16.2 cm (rank 2) and SPAO with
a p50 = 16.9 cm (rank 3). Tril and CMD display the worst p50/p90. When employing C-FPh or a
PEAK-based demodulation, the MBF-family can be ranked as the best algorithms. It is a consequence
of the MBF algorithms accounting for the receiver acceptance and the non-approximated LED radiation
pattern [21]. The gap with the trilateration-family of algorithms widens furthermore with an increasing
SNR. For P-PdF (and P), MBFB outscores, respectively, WLS and Tril by 2.0 cm/3.8 cm (0.3 cm/0.7 cm)
and by 2.9 cm/5 cm (1.7 cm/2.9 cm) in terms of their p50/p90. As already stated in Section 3.3.1, MBFB
takes the throne (over MBF and MBF-AVG) for P-PdF uVLP. In uVLP, Tril/CMD consistently display
the loftiest p50/p90 rMSE values. WLS can be categorised as the best of the trilateration ‘enhancing’
algorithms due to its inherent robustness.

In the case of ‘regular’ VLP, MBFB and MBF still hold the top spots. In contrast to when uVLP is
used, the algorithms considering the IPD,i of all N LEDs (namely MBF-AVG, Tril-AVG and WLS) show
a distinctively inferior, and more rapidly stagnating CDF. This phenomenon can be attributed to the
perceptual IPD,i found (see Figure 11b) being relatively more subject to LED interference than to other
induced noise sources (e.g., the receiver chain’s input-referred current noise). MBF-AVG now manages
to achieve a p50 of 5.0 cm/4.4 cm and p90 of 10.0 cm/9.7 cm in Figure 14e,f, only narrowly ducking
below P-PdF uVLP’s 5.3 cm and p90 of 11.5 cm rMSE. C-FPh’s lower relative σ(IPD,i) in the room’s
corner, effectuates an MBF-AVG performance gain over FFT-based VLP. The gain does not manifest
itself for MBFB. Its inherent robustness ensures that C-FPh and S exhibit the same p50/p90. Finally,
during VLP, CMD and Tril rise to rank, respectively, 3th and 4 th in terms of the p90.

Figure 14 thus illustrates that the optimal localisation algorithm depends on the utilised
demodulation strategy. The MBF-based algorithms, and in particular MBFB with a tuned parameter p,
are good choices (see Section 3.3.3). MBFB generalises better than MBF, when the measurement points
do not overlap with the propagation model’s grid. While adequately performing at low SNR, 3D Tril
and SPAO are not worth the additional effort if indeed no 3D location is required and (receiver) tilt is
limited. CMD and Tril score comparable, with Tril being (slightly) better in conjunction with uVLP
while CMD is with VLP.
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Figure 14. Cumulative distribution function (CDF) of the rMSE appertaining to the positioning
algorithms of Section 2.5 in the case of uVLP in combination with (a) S, (b) C-FPh, (c) P and (d) P-PdF
demodulation, and of VLP with (e) S and (f) C-FPh.

4. Simulation Results

The previous Section 3 demonstrated the decimetre potential of uVLP-based indoor localisation
for a (lab) VLP roll-out with a 2.25 m perpendicular distance between the illumination and receiver
plane. This simulation section extends the experimental results to also consider (1) the feasibility of
uVLP when LEDs are suspended higher up (Section 4.1) and (2) the cost-saving effect of uVLP from
not modifying the existing lighting infrastructure (Section 4.2).

To provide answers for these two viable research questions, the 4 m by 4 m VLP setup is
virtualised. The simulation setup resembles Section 2.6, in i.a. the LED locations, and employs
the propagation model of Section 2.5 with additive Gaussian noise characterised by a zero mean and
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σ̂2 variance. AVG = 10 noise samples will be averaged. For generality, all LEDs are assumed to have
both a uniform z-coordinate and a M · Pt,i · RP(0) (see Section 2.6) value.

Noise Models

The simulations account for the spatial dependence of the noise contribution, i.e., of the sample
standard deviation σ(IPD,i) reported in Section 3.3.3, by introducing three models that are denoted by
(1) σu, P, M, (2) σu, Pd, M and (3) σV, S, M.

(1) σu, P, M represents uVLP PEAK/SPECT and models σ̂2 as the product of the expectation
of all σ(IPD,i)

2
/I2

PD,i and I2
PD,i. (2) σu, Pd, M is the model derived for uVLP P-Pd that describes

σ̂2 via 10σ̄ · (M · Pt,i · RP(0))
2 with σ̄ the result of evaluating a power law fit, a · db

i + c of

log10

(
σ(IPD,i)

2
/(M · Pt,i · RP(0))

2
)

in function of the LED-PD distance di, at the grid point’s di. (3) σV, S, M

power law fits log10

(
σ(IPD,i)

2
/I2

PD,i

)
to characterise VLP’s σ(IPD,i). It should be noted that σV, S, M

by virtue of modelling σ̂2 in terms of di will still underestimate the LED interference contribution.
The power law fits are obtained via the MATLAB® curve fitting tool cftool.

These experimental noise models are compared to the standard case in which σ̂2 equals the
expectation (i.e., spatial average) of σ(IPD,i)

2: σu, P, G, σu, Pd, G and σV, S, G. The models presume a
dominant Gaussian input-referred rms current noise (i.e., corresponding to the receiver chain being
the dominant noise contribution). However, it needs to be remarked that assuming the (dominant
contribution to the) sample variance σ(IPD,i)

2 following a (location-independent) scaled chi-squared
distribution is not a valid hypothesis (see Section 3.3.3). The noise model names will also be used to
describe the overarching simulation configuration.

4.1. Feasibility of (U)VLP in the Presence of Higher Ceilings

An important application domain for indoor localisation is found in the industrial or mobile
warehouse environment [22], characterised by larger LED-receiver plane distances or heights. In this
first study, the impact of the LED plane’s height on the (u)VLP rMSE is determined.

Figure 15 shows the (a) p50 and (b) p90 for the noise models previously introduced in conjunction
with MBFB-based positioning. The curves of the other positioning algorithms display the same
trends. Figure 15 demonstrates that the location-independent noise models (σu, P, G, σu, Pd, G and σV, S, G)
provide a lower bound for their location-dependent counterparts (σu, P, M, σu, Pd, M and σV, S, M).
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100
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Figure 15. Influence of the perpendicular LED PD distance on (u)VLPs (a) p50 and (b) p90 rMSE for
various noise models.
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The p50/p90 values at a height equal to 2.25 m allow comparing the simulation results with
the experiments’ from Section 3. The black crosses in Figure 15 represent in order of blackness the
p50/p90 of VLP, uVLP P-Pd, uVLP PEAK and uVLP SPECT. Concerning the two uVLP PEAK/SPECT
configurations, σu, P, G and σu, P, M, it can easily be remarked that they correspond well to uVLP SPECT
rather than PEAK. As also visualised in Figure 12, PEAK’s rMSE and variance decrease more rapidly
for AVG = 10 than with AVG (compared to AVG = 1). Hence, even σu, P, G, an underestimating
σ(IPD,i)-model, still overvalues PEAK’s p50/p90. uVLP’s P-Pd configurations better match the reality
(and each other). The models both predict a less accurate p50 and a more accurate p90. σu, Pd, M’s p90

totals to 9.8 cm, a mere 8.6 mm off the mark.
The p50/p90 − Height curves appertaining to uVLP are not monotonically increasing. uVLP’s p90

reaches its minimal value at 2 m, while for its p50 it is found at 2.25 m (except for σu, Pd, G located at
2.25 m). The p50/p90 at 1.5 m is hindered by its higher irradiance angles inducing lower SNR’s further
away from the LEDs.

For standalone uVLP, it is difficult to attain the p90 ≤ 10 cm bound often required in navigation
(of robotics) in industrial or warehouse-like environments, where ceiling heights are typically larger.
In the σu, Pd, M configuration, p90 ≤ 10 cm is only reached within the range 1.9 m to 2.4 m. p50 ≤ 10 cm
is more easily obtainable. A height of about 3.3 m can be covered. uVLP is able to achieve p90 ≤ 30 cm,
another typical, but more lenient bound, up to 4.8 m. The penultimate Section 5 of this manuscript
translates these bounds into potential applications.

In VLP, applying either of the noise models leads to an underestimation of the real-life p50/p90.
Not assuming M · Pt,i · RP(0) to be known, and effectuating the Pt,i calibration (of Section 2.6) in the
presence of σV, S, M (i.e., LED interference), results in the curves designated by σV, S, M, Pt. σV, S, M, Pt
manages at least to bridge part of the gap to reality, by exhibiting a comparable (but still 4 mm lower)
p50 whilst grossly underestimating the p90 (compared to Figure 10). The disparity in p90 originates from
not sufficiently modelling the LED interference and other performance degrading factors (Section 3.3.3)
present in the lab setup. For the other simulation configurations, calibration does not instil such a large
accuracy decrease.

VLP’s p90 ≤ 10 cm crash depth is found at a perpendicular LED-PD distance of 4.2 m. However,
VLP is able to provide p90 ≤ 30 cm accurate positioning across the considered LED-PD range.
Furthermore, the p50/p90 − Height relations of σV, S M and σV, S M, Pt are monotonically increasing
with enlarging height.

4.2. (U)VLP and Cost-Savings

The introduction stated that a prime pull factor of (u)VLP is its cost-effectiveness arising from
reusing the existing illumination infrastructure. VLP-enabling the lighting, however, not only requires
a costly retrofit but also (approximately) halves the illuminance. The latter in turn requires the VLP
roll-out to feature additional LED luminaries to account for the same maintained illuminance Ēm.
In uVLP, the infrastructure is left ‘as is’.

This part illustrates uVLP’s cost-savings by visualising Ēm found in the virtual lab setup during
(uVLP) operation in Figure 16. Hereto, first the luminous flux Imax of the LEDs’ during uVLP is
computed, and rounded to 2 significant digits, to be 6000 lm. Imax is taken as the average of (1) the Imax

computed from VLP’s Pt,i [36] using the LEDs’ C0-C90 photometric diagram [21], Sharpe’s luminosity
function [37] and the tabulated typical DC flux and (2) the Imax that arise from translating the tabulated
typical DC flux to the correct 1.2 A LED current. Intuitively, Imax during VLP would be half of Imax

exhibited in uVLP. However, due to the luminous flux—LED current relation being different during
stable DC operation and pulse operation, VLP’s Imax is larger (here 0.55 of uVLP’s Imax).
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Figure 16. Illuminance distribution in the virtualised lab setup (a) during uVLP operation, (b) during
VLP with 6 LEDs on 2 rails and (c) during VLP with 8 LEDs where an additional LED is placed 5 cm
north from each of the original LEDs.

Figure 16a shows the spatial illuminance distribution during uVLP. Ēm = 549.4 lx and the
uniformity U0 equals 0.66. In VLP operation, Ēm becomes 302.2 lx and U0 remains equal to 0.66.
Figure 16b shows that suspending two additional (VLP) LEDs midway the lighting rails is not enough
to restore Ēm (see also the Zonal-Cavity Method [38]): Ēm = 505.3 lx and U0 = 0.53. The 8 LED
configuration of Figure 16c with Ēm = 604.3 lx and U0 = 0.65 does satisfy the minimum Ēm requirement.

5. (U)VLP and Potential Applications

Section 3 demonstrated uVLP’s capability in achieving a decimetre-like p90 = 10.6 cm rMSE,
albeit at a limited scale. Section 4 extended the experimental analysis to larger LED-PD distances,
such as those found in a typical industrial or mobile warehouse hall. It also considered the roll-out’s
illuminance, and highlighted the cost saving effect of not modulating the illumination LEDs (compared
to VLP). The fact that uVLP does not necessitate a dedicated infrastructure, a lighting infrastructure
that is furthermore omnipresent, also leads to a substantial cost-reduction with respect to the other
indoor positioning systems on the market. Certainly, as only the to be tracked object needs to be
equipped with a VLP-enabled receiver, which in itself is not of large cost. Table 1 lists some of the main
conclusions and the benefits of rolling-out uVLP.

Table 1. Comparison of uVLP and ‘regular’ VLP.

Description uVLP VLP

Principle
Frequency range 30–90 kHz up to MHz
Modulation index 0% 50%
Average LED current 100% 50%
Luminous flux per LED 100% 55%

Accuracy
Experimental p50 5.0 cm 3.5 cm at 2.25 m
Projected p50 in industry >46.7 cm >27.8 cm at 6 m

Cost
Retrofitting effort None VLP-enabled LED driver
Transmitter-side cost None LED driver + new lamps for illuminance

Receiver-side cost Equal Equal

This Section 5 investigates the applicability of uVLP and VLP for several envisioned indoor
localisation use cases. Indoor navigation of fast-moving automated guided vehicles (AGVs) or drones
requires subdecimetre positioning estimates delivered with a low latency, effectively ruling uVLP
systems out (see Figure 13). Compared to current (e.g., laser-based) navigation solutions, VLP may
provide a cost-effective alternative when the LED-object suspension height does not exceed some 4 m.
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uVLP, potentially supplemented with location tracking/filtering techniques [34], is not precluded from
robot tracking however. Several tracking solutions employ laser-based positioning (with low refresh
rates) to correct the inertial navigation (with encoders) of vehicles. Depending on the pre-existing LED
deployment, uVLP is able to yield a p90 ≤ 10 cm tracking on a limited scale, e.g., of a 1 m tall AGV in
an environment with a 3 m ceiling height.

Other envisioned applications of uVLP entail, but are not limited to: (asset) tracking of,
e.g., hospital beds, navigation with or to a car in a parking garage, and virtual and augmented
reality. These applications generally only require a p90 ∼ 30 cm, which is certainly accomplishable for
uVLP. However, uVLP systems will first need to evaluate a trade-off in latency (see Figure 12) and
roll-out height (up to 4.8 m). Luckily, with ample roll-out height and a minimal per-object roll-out cost,
uVLP has a large market potential.

6. Conclusion and Future Work

This manuscript provided an in-depth study on the localisation performance, illuminance and
applicability of (unmodulated) visible light positioning. It demonstrated that all tested constant
current LED drivers exhibit a distinctive characteristic frequency (CF), which can serve as a LED
demultiplexing feature in photodiode (PD)-based received signal strength (RSS) uVLP. Significantly
reducing the cost, FFT-based uVLP only worsens the MBFB p50 rMSE from VLP’s 3.5 cm to 5.0 cm,
in the presence of 4 point source-like LEDs in the 4 m × 4 m room under consideration. Meanwhile,
VLP ameliorates uVLP’s p90 just from 10.6 cm to 6.8 cm. This allows to conclude that uVLP is able
to ensure accurate localisation, albeit at the limited scale of 2.25 m, without needing to retrofit the
illumination infrastructure. While the measurements and ensuing simulation results did demonstrate
uVLP’s limitations for low-latency industrial tracking applications, Section 5 discussed several exciting
applications for uVLP-based localisation systems.

This paper did not cover all potential demodulation and filtering techniques. To boost uVLP’s
positioning accuracy even more, it might be imperative to look at other methods. Accuracy
improvements should also be searched in the location tracking, external sensor fusion (e.g., with wheel
encoders) or machine learning domain. Other future work consists of studying uVLP’s positioning
performance with non-point-source-like LEDs and comparing it with fluorescent uVLP. Subsequently,
uVLP’s aptitude in industrial settings should also be experimentally investigated. There, dead
reckoning and/or sensor fusion methods may be needed. The proneness of the CF to LED ageing is
also work that remains.
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Abbreviations

The following abbreviations and parameters are used in this manuscript:

Acronym Description
3D Tril 3D extension algorithm of trilateration (Tril) [30]
AGV Automated Guided Vehicle
AR Autoregressive Yule-Walker PSD estimation-based (u)VLP
AVG The number of segments VPD(t) is subdivided in, prior to demodulation, to average VPD,i/IPD,i
BLE Bluetooth Low Energy
CDF Cumulative Distribution Function
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CF Characteristic Frequency
C-F Sliding-window correlation over frequency
C-FPh Sliding correlation over frequency and phase
CMD Cayley-Menger Determinant localisation [31]
DALI Digital Addressable Lighting Interface
di Distance between the receiver and LED i
Ēm Maintained Illuminance
f0 Ground harmonic frequency of VLP (=500 Hz)
fc,i LED i’s frequency: modulation frequency (VLP) or CF (uVLP)
FDMA Frequency Division Multiplexing Access
FFT Fast Fourier Transform
fS Sampling frequency (=256 kHz)
fstep, 2∆ f Frequency step, range during sliding correlation
Imax Luminous flux
IPD,i Photocurrent-based RSS value, obtained via demodulation and converted in PR,i
IPD,i (t) LEDs’ individual photocurrent contribution
K, K ≤ N (Sub)set of LEDs used in the positioning algorithm (selected in order of descending PR,i/Pt,i)
KNN (K-) Nearest Neighbours positioning
LED Light-Emitting Diode
LSOOP Light Signals of Opportunity
MBF Model-Based Fingerprinting [22]

MBF-AVG
Positioning algorithm that takes the mean of the location estimates of N MBF runs on K = N − 1
(see Section 2.5.3)

MBFB
Extension of MBFB, where the location estimate is taken to be the mean of all grid coordinates for
which the cost function is smaller than the pth percentile of that cost function (p is a parameter)

M · Pt,i · RP(0) LED-PD gain: 0.04 A (uVLP) and 5 A (VLP)
MUSIC MUltiple SIgnal Classification
N Number of LEDs (=4)
Na Segment length of each of the AVG segments i.e., Na = Ns/AVG

Ns Total number of samples collected during 1 s of VPD(t) (=256 kS)
O( ) Order of Complexity
O(Pk(L)) Complexity of the Peak Detect operation
p50/p75/p90 Median/75th/90th percentile positioning rMSE
p50,err/p90,err 50th and 90th percentile of the standard deviation over AVG segments, on the rMSE during MBFB
PD Photodiode
-Pd Suffix denoting the zero padding procedure that doubles the photovoltage signal’s length

-PdF
Suffix denoting the zero padding procedure, which obtains a per LED FFT length that is a multiple
of fc,i i.e., to try to ensure coherent sampling.

PEAK or P-
Name or Prefix of the demodulation method that AVG times averages a peak detected VPD,i/IPD,i
value per location update

PR,i Received radiant power of LED i
PSD Power Spectral Density
Pt,i Radiant flux of LED i
PWM Pulse-Width Modulation
RSS Received Signal Strength
rMSE root-Mean-Square Error
σ̂2 Variance of the additive Gaussian noise contribution, used in the simulation Section 4
σ
(

IPD,i
)

Spatial standard deviation on the measured IPD,i
σu, P, G uVLP Peak noise model where σ̂2 equals the expectation of σ

(
IPD,i

)2

σu, P, M uVLP Peak noise model dictating σ̂2 as the product of the expectation of all σ(IPD,i)
2/I2

PD,i and I2
PD,i

σu, Pd, G uVLP P-Pd noise model where σ̂2 equals the expectation of σ
(

IPD,i
)2

σu, Pd, M uVLP P-Pd noise model dictating σ̂2 via 10σ̄ ·
(

M · Pt,i · RP(0)
)2

σV, S, G VLP SPECT noise model where σ̂2 equals the expectation of σ
(

IPD,i
)2
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σV, S, M VLP SPECT noise model characterised by a power law fit of log10

(
σ(IPD,i)

2/I2
PD,i

)
σV, S, M, Pt σV, S, M with Pt,i calibration
SNR Signal-to-Noise-Ratio
SPAO Simultaneous Positioning and Orientating [32]

SPECT or S-
Name or Prefix of the demodulation method that AVG times averages the FFT-spectrum before
peak detecting VPD,i/IPD,i per location update

SQ Angular acceptance model of [21]
θ Phase angle during sliding window correlation
θstep/2∆θ Phase Step/Range during sliding window correlation
Tril basic Trilateration Algorithm [28]

Tril-AVG
Positioning algorithm that takes the mean of the location estimates of N Tril operations on
K = N − 1 (see Section 2.5.1)

U0 Illuminance Uniformity
uVLP Unmodulated Visible Light Positioning
UWB Ultra-wideband
VLP Visible Light Positioning
VPD,i Photovoltage-based RSS value, obtained via demodulation and converted in PR,i
VPD,i(t) Individual photovoltage contribution of LED i
VPD(t) Total photovoltage time domain signal
WLS Weighted Linear Squares trilateration based on singular value decomposition [29]
(xS,i , yS,i , zS,i) LED i’s coordinates
(xu, yu, zu) Unknown receiver position
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