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Abstract: This article focuses on an underwater acoustic target recognition method based on target
radiated noise. The difficulty of underwater acoustic target recognition is mainly the extraction of
effective classification features and pattern classification. Traditional feature extraction methods
based on Low Frequency Analysis Recording (LOFAR), Mel-Frequency Cepstral Coefficients (MFCC),
Gammatone-Frequency Cepstral Coefficients (GFCC), etc. essentially compress data according to
a certain pre-set model, artificially discarding part of the information in the data, and often losing
information helpful for classification. This paper presents a target recognition method based on
feature auto-encoding. This method takes the normalized frequency spectrum of the signal as
input, uses a restricted Boltzmann machine to perform unsupervised automatic encoding of the data,
extracts the deep data structure layer by layer, and classifies the acquired features through the BP
neural network. This method was tested using actual ship radiated noise database, and the results
show that proposed classification system has better recognition accuracy and adaptability than the
hand-crafted feature extraction based method.

Keywords: restricted Boltzmann machine; GFCC; auto-encoding; underwater acoustic; ATR

1. Introduction

Underwater acoustic target recognition is the technique of identifying the type of target
through the analysis of underwater acoustic signal. The hardware basis of underwater acoustic
target recognition is sonar equipment, which converts underwater acoustic wave into digital signal
through hydrophones, and obtains underwater target information through various signal processing
methods [1]. Underwater acoustic target recognition has become one of the main functions of sonar
systems [2]. Feature extraction and pattern recognition are the key steps of an underwater acoustic
target recognition algorithm. Feature extraction is the process of obtaining features from the original
signal. Commonly used algorithms include traditional time-frequency graph methods [3], auditory
perception methods [4,5], and multi-dimensional feature fusion methods [6]. Pattern recognition
algorithm is to divide the samples into certain categories according to the characteristics of the samples.
Traditional pattern recognition algorithms include linear discriminant analysis (LDA), support vector
machine (SVM) [7], Gaussian mixture model (GMM) [8], etc. In recent years, the neural network
method has also been widely used in underwater acoustic signal pattern recognition [9–12].

The digital signals recorded by sonar through analog-to-digital conversion contain a lot of
information about underwater acoustic targets [13–16]. What we need is information (features) that is
helpful for target recognition. Feature extraction is a method and process of extracting characteristic
information from a large number of data. The traditional feature extraction methods are mainly
hand-crafted feature extraction [17]. These methods are based on a kind of physical or statistical
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characteristics of underwater acoustic target signal and select specific signal components as the feature
of target recognition through signal processing.

Because of the short-time stationary characteristic of underwater acoustic signal, LOFAR spectrum
is an effective representation of signal. LOFAR is a typical method of passive sonar signal processing.
It is based on the short-time Fourier transform (STFT) to obtain the time-frequency spectrum of the
signal and uses the time accumulation of the low-frequency line spectrum to detect the line spectrum.
Each row of data in LOFAR spectrum corresponds to the original power spectrum of a frame of
underwater acoustic signal data. The original power spectrum can be directly used as the input of a
recognition system for pattern recognition. However, the amount of original power spectrum data is
very large, which brings great pressure to the training and work of recognition system. To reduce the
complexity of classification, a lot of work has been carried out to further reduce the data dimension.
Common methods are KL transformation [18] and principal component analysis (PCA) [19].

Human auditory system also has a good ability to identify ship radiated noise. To simulate the
human ear hearing, people have deeply studied the human ear hearing system. The processing of
sound by auditory system mainly includes the decomposition of acoustic signal by cochlea of inner
ear, energy conversion from sound wave to nerve by hair cell vibration, and analysis of acoustic
spectrum characteristics by inhibition side network. [20]. In the processing of simulated human
hearing, Mel band-pass filter bank is used to simulate the decomposition of the acoustic signal of the
cochlea; the DCT transform is used to simulate the energy conversion caused by the vibration of the
hair cell; and the pattern recognition method is used to complete the analysis of the acoustic spectrum
characteristics. Speech recognition is ahead in the field of human ear hearing for acoustic signal
recognition, forming a routine process of preprocessing, framing, MFCC/GFCC feature extraction,
and Hidden Markov Model (HMM) pattern matching. Using auditory features for underwater acoustic
target recognition can obtain a better recognition rate than the Autoregressive model (AR) model [21].

From the perspective of information theory, hand-crafted feature extraction is actually a
process of subjective screening of original information to reduce the amount of information [22].
When the characteristics of the data are inconsistent with the subjective assumptions, the classification
performance of hand-crafted features will be greatly reduced. In addition, traditional unsupervised
clustering methods such as K-means and Gaussian mixture models have more limitations in practical
applications. First, the number of clusters must be given when clustering, which is difficult to achieve
in practical applications. Second, assuming that the sample characteristics follow a specific distribution,
GMM requires that the samples conform to a Gaussian mixture distribution, but real samples are often
difficult to fit with a Gaussian distribution, which will result in a distribution mismatch and reduce the
clustering effect [23].

Under the noise of the marine environment, the SNR of the underwater acoustic signal is
relatively low. An important flaw in the realization of underwater acoustic target recognition through
hand-crafted features is that it is difficult to adaptively adjust the feature extraction scale when the
SNR is low. The clustering model needs to be modified according to the actual environment to obtain
good classification effect. In addition, because the actual underwater acoustic signal samples are
extremely diverse and difficult to obtain, the generalization ability of the hand-crafted features is poor,
and it is difficult to achieve a consistent effect on various signals [24]. Feature extraction based on
various neural network methods can adaptively extract the key information of the acoustic signal
according to the probabilistic characteristics of the data, and it will have a better effect in the problem
of multi-class division.

The recent development of deep neural networks (DNN) has given a better method than traditional
hand-crafted feature extraction for extracting deep structures of complex data. Using DNN to extract
features is widely used in various fields [25]. There are many specific forms of feature extraction using
DNN, such as auto-encoder method [9,26], convolutional neural network method [10], deep Boltzmann
machine method (DBM) [11], etc. Among them, the Boltzmann machine is very suitable for acoustic
feature extraction because of its characteristics: (1) The Boltzmann machine is a neural network that
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generates a probability model based on data and can be trained unsupervised. (2) DBM extracts the
deep structure of the input data set and obtains the features by auto-encoding. Research shows that
this feature has stronger performance than hand-crafted features [27]. The experiments presented in
this paper also prove this.

The deep Boltzmann machine is an undirected graph-based depth generation algorithm proposed
by Hinton [11], which is modified from the deep confidence network [28]. The basic unit of DBM is a
restricted Boltzmann machine (RBM) with a two-layer bidirectional structure. This structure optimizes
the network parameters by minimizing the energy function based on the probability distribution of the
data. The DBM model is widely used in human voice, image recognition, and other fields [29]. DBM is
composed of multi-layer RBM stack. This kind of network has the characteristics of self-supervised
training, which is suitable for the scene of underwater acoustic target recognition which lacks labeled
data and can supplement the generalization ability of unknown signals for traditional feature extraction
methods [30].

In this paper, an auto-encoder based on Boltzmann machine is constructed to perform adaptive
feature extraction on the input signal. After layer-by-layer greedily pre-training, the overall optimization
is performed by Markov chain Monte Carlo. The result of feature extraction can be used to classify and
recognize signals through neural network after dimensionality reduction. It can obtain recognition
performance better than hand-crafted features for ordinary noise signals. Experiments show that
the system is also suitable for underwater acoustic signals. The important symbols involved in the
description of the algorithm principle are shown in Table 1.

Table 1. Symbol Description.

Symbol Explanation

x(i)j jth neurons in ith epoch

p(h|v) Conditional probability of hidden unit under visible unit

Ev[x] The expectation of x when the state of the visible unit is determined

h ∼ sigm(W′v + c) The probability distribution of h obeys sigm(W′v + c)

|x| Modulus of complex x or vector x

Si Gibbs operator

ln(x) natural logarithm of x(
n
m

)
Number of combinations selecting m elements from n elements
without repetition

The remaining content of the article is structured as follows. Section 2 introduces the detailed
information and learning algorithm of the feature extraction of acoustic signal. Section 3 introduces
the detailed principle of the target recognition system. Section 4 gives the experimental results based
on two databases. Section 5 is the conclusion of the article.

2. Feature Extraction of Underwater Acoustic Signal

The generation mechanism of ship radiated noise is very complicated. The sources of these
noises including propellers, rotating and reciprocating machinery, various pumps, etc. According to
different noise sources, noise can be divided into several components, including mechanical noise,
propeller noise, and hydrodynamics noise etc. [31].

Ship radiated noise is approximately stable in a short time, thus it can be described by power
spectrum. The power spectrum of the signal contains the characteristics of the ship and reflects its
sailing status. Radiated noise power spectrum and pictures of ships [32] are shown in Figures 1 and 2.
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Figure 1. Radiated noise power spectrum (left) and picture (right) of a passenger ship. 

  

Figure 2. Radiated noise power spectrum (left) and picture (right) of an ocean liner. 

Figures 1 and 2 show the difference in the power spectrum of the radiation noise of different 

ships. Most of the features used for target recognition are constructed based on the power spectrum, 

including LOFAR, MFCC, GFCC, etc. However, these features are extracted based on a preset model, 

which is poor in robustness in practical applications. 

This section mainly introduces the principles of hand-crafted underwater acoustic feature 

extraction methods, including GFCC and LOFAR, and proposes an auto-encoding feature extraction 

method based on improved deep Boltzmann machine. 

2.1. Hand-Crafted Feature Extraction 

The information removal process of hand-crafted feature extraction methods such as GFCC and 

LOFAR are based on the information extraction process judged by experts. 

The LOFAR spectrogram is a classic time-frequency analysis method, which is widely used in 

underwater acoustic target recognition. Because the noise has short-term stability characteristics, the 

signal is sampled by the short-window function sliding method, and the power spectrum estimation 

of the signal at different moments can be obtained through the short-time Fourier transform. The 

three-dimensional graph of time, frequency, and power can be drawn, that is, the LOFAR spectrum. 

The LOFAR spectrum contains two-dimensional information of time and frequency, and the 

information is redundant. Classification using the original LOFAR spectrum will put a lot of pressure 

on the recognition system. Therefore, reduction of the amount of information is necessary. Common 

methods are KL transformation and principal component analysis. The main features that help target 

recognition in LOFAR spectrogram include line spectrum frequency, power spectrum shape, and 

frequency line trajectory. Figure 3 describes the implementation process of the LOFAR feature 

extraction method. 
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Figure 2. Radiated noise power spectrum (left) and picture (right) of an ocean liner.

Figures 1 and 2 show the difference in the power spectrum of the radiation noise of different
ships. Most of the features used for target recognition are constructed based on the power spectrum,
including LOFAR, MFCC, GFCC, etc. However, these features are extracted based on a preset model,
which is poor in robustness in practical applications.

This section mainly introduces the principles of hand-crafted underwater acoustic feature
extraction methods, including GFCC and LOFAR, and proposes an auto-encoding feature extraction
method based on improved deep Boltzmann machine.

2.1. Hand-Crafted Feature Extraction

The information removal process of hand-crafted feature extraction methods such as GFCC and
LOFAR are based on the information extraction process judged by experts.

The LOFAR spectrogram is a classic time-frequency analysis method, which is widely used in
underwater acoustic target recognition. Because the noise has short-term stability characteristics,
the signal is sampled by the short-window function sliding method, and the power spectrum
estimation of the signal at different moments can be obtained through the short-time Fourier transform.
The three-dimensional graph of time, frequency, and power can be drawn, that is, the LOFAR spectrum.
The LOFAR spectrum contains two-dimensional information of time and frequency, and the information
is redundant. Classification using the original LOFAR spectrum will put a lot of pressure on the
recognition system. Therefore, reduction of the amount of information is necessary. Common methods
are KL transformation and principal component analysis. The main features that help target recognition
in LOFAR spectrogram include line spectrum frequency, power spectrum shape, and frequency line
trajectory. Figure 3 describes the implementation process of the LOFAR feature extraction method.
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Figure 3. Schematic diagram of the LOFAR method.

Line spectrum information and line spectrum track are the reflection of narrow band components
in target signal, which are vulnerable to multi-target interference. The shape of power spectrum is
also vulnerable to the interference of environmental noise and multi-target. Therefore, it is difficult to
obtain satisfactory results by using the features alone. The LOFAR spectrogram retains the original
information of the underwater acoustic signal to a great extent, but it ignores sonarist’s hearing in
recognition. Therefore, many scholars try to study the underwater acoustic target recognition algorithm
based on auditory perception.

GFCC uses Gammatone filters to divide the acoustic signal over a period of time into different
frequency band components. The Gammatone power spectrum is taken as a logarithm. Finally, the GFCC
features are extracted by discrete cosine transforms (DCT). The Gammatone power spectrum is taken
as a logarithm. It is a signal processing structure that imitates the human cochlea, and its performance
will be close to the best sonarist’s resolution effect theoretically, but frequency components outside the
hearing range will be discarded. Figure 4 describes the implementation process of the GFCC feature
extraction method. The detailed implementation process of the GFCC is shown in Table 2.
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Figure 4. GFCC algorithm flow chart.

The hand-crafted feature is actually an expert system. GFCC is a method based on human auditory
model, which has a good theoretical basis and is easy to implement. This method has good performance
for speech signal. However, the hand-crafted features subjectively discard some features that help
identify the target. Therefore, GFCC method is often not effective in real marine environments.
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Table 2. Detailed principle of GFCC algorithm.

Step Process Equation

1 Signal segmentation and
windowing

W(n) ={
0.54− 0.46× cos

(
2πn
N−1

)
n = 0, 1, . . . , N − 1

0 otherwise
Sw(n) = y(n) ×w(n)

2 Power spectrum calculation
x(k) =

N−1∑
t=0

x(t)e−2π jtk/N , k ∈ [0, N]

where N is the number of FFT points and x(t) is the
input signal after windowing.

3 Gammatone filter bank
parameters calculation

gi(k) = kn−1e−2πBik cos(2π fi + ϕi)u(k), i ∈ [1, Q]
where n is the filter order, Bi is the filter attenuation
coefficient, fi is the center frequency, and Q is the
number of filters in the filter bank.

4 Human hearing simulation

ERB( fi) = 24.7×
(

4.37 fi
1000 + 1

)
bi = 1.091ERB( fi)
where ERB( fi) is critical frequency band of human
hearing and bi is the bandwidth of the ith subband of
the filter bank.

5 Logarithmic compression of signal
energy spectrum Es(i) = ln

[
N−1∑
n=0

∣∣∣X(k)
∣∣∣2Gi(k)

]
, i ∈ [1, Q]

6 DCT transformation GFCC(i) =
√

2
N

Q∑
j=1

Es( j) cos
[
πi
Q ( j− 0.5)

]
, i ∈ [1, Q]

2.2. Probability Model of the Deep Boltzmann Machine

Deep Boltzmann machine transforms low-level input data into high-level features through
unsupervised layer-by-layer training. These high-level features represent the complex dependencies
implied in the data. The deep Boltzmann machine can be decomposed into a deep neural
network formed by stacking multiple restricted Boltzmann machines (RBM). Each RBM implements
auto-encoding, and each auto-encoding can extract features that are more abstract. The basic structure
of RBM is shown in Figure 5. It is an undirected bipartite graph. It constructs a fully connected
structure between the visible layer and the hidden layer to perform auto-encoding and reconstruction.
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The learning process of Boltzmann machine is to reduce the energy function of the whole system
in the simulated annealing process, so that the system tends to be ideal. The energy function of the
binary RBM system is:

E(v, h) = −b′v− c′h− h′Wv (1)

where W is the connection weight of RBM. b and c are the offset of the visible layer and the hidden
layer, respectively.
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To correspond the low energy to the ideal system state, the energy-based joint probability
distribution of the visible layer and the hidden layer is defined as:

P(x) =
∑

h

p(x, h) =
∑

h

e−E(x,h)

Z
(2)

where Z =
∑
x

e−F(x) is the partition function and F(x) = −log
∑
h

e−E(x,h) is the free energy.

Based on the structure of RBM, there is no connection between the units of each layer, and their
distributions are independent of each other, thus the distribution of visible units and hidden units in
RBM can be summarized by the following formula.

p(h|v) =
∏

i
p(hi|v)

p(v|h) =
∏

j
p
(
v j

∣∣∣h) (3)

Substituting the system energy function and probability distribution function into the above
formula, the simplification yields:

p(hi = 1|v) = sigm(ci + Wiv)

p
(
v j = 1

∣∣∣h) = sigm
(
b j + W′

j h
) (4)

where sigm(x) is sigmoid function, the probability distribution of each neuron in any state can be
obtained using Equation (4). Then the probability distribution of the whole system can be obtained.

Substituting Equations (1)–(4) into the random gradient, the log-likelihood gradient of the binary
RBM is obtained.

−
∂ log p(v)
∂Wi j

= Ev
[
p(hi|v).v j

]
− v(i)j .sigm

(
Wi.v(i) + ci

)
−
∂ log p(v)

∂ci
= Ev[p(hi|v)] − sigm

(
Wi.v(i)

)
−
∂ log p(v)
∂b j

= Ev
[
p
(
v j

∣∣∣h)]− v(i)j

(5)

Gibbs sampling is usually used to reduce the computational complexity of sample estimation.
The Gibbs sampler of N variables S = (S1, . . . , SN) is completed by N sampling subsequences in the
form of Si ∼ p(Si

∣∣∣S−i) , where S−i contains all variables in S except Si.
In RBM, S includes all visible and hidden units. Given a fixed value of hidden units, visible cells

can be sampled. Similarly, hidden units are sampled when the value of the visible units is determined.
Therefore, the steps in the Markov chain are as follows:

h(n+1)
∼ sigm

(
W′v(n) + c

)
v(n+1)

∼ sigm
(
Wh(n+1) + b

) (6)

where h(n) represents all hidden units in the nth step of the Markov chain and v(n) represents all visible
units in the nth step of the Markov chain. The result of each sampling is a set of binary random
variables subject to the above distribution. The schematic diagram of Gibbs sampling is shown in
Figure 6. The Gibbs sampling is performed until the Markov chain converges, and the Gibbs sampling
value is the estimated value expectation in Equation (5).
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Although Gibbs sampling is an effective method to solve approximate expectation and update
RBM weights through Markov chain Monte Carlo method, it needs continuous computation until the
Markov chain is stable. The contrast divergence (CD) algorithm proposed by Hinton [33] can effectively
accelerate the learning of RBM while maintaining the accuracy of the algorithm. CD algorithm measures
the distance between the estimated probability distribution and the real probability distribution and
takes it as the measurement criterion. Using a small part of all training samples to build mini-batch
and run n-step Gibbs sampling can get the expectation of all samples. This expectation is used to
update RBM parameters by stochastic gradient method:

∆W ≈ ε
(
EPdata

[
vhT

]
− EPn

[
vhT

])
(7)

where Pn is the probability distribution obtained by n-step Gibbs sampling. Generally, a good result
can be achieved by taking n as 1.

Although CD algorithm is widely used, it is found that CD algorithm only performs well in
the early training period. In the late training period, the computational efficiency of CD algorithm
decreases because the ergodicity of Markov chain decreases. The persistent contrast divergence (PCD)
algorithm proposed by Tieleman [34] has better RBM learning ability and improves the defect that CD
algorithm cannot maximize the likelihood function. PCD algorithm parameter update rule is:

∆W ≈ ε
(
E
[
vh0

T
]
− E

[
vt+kht+k

T
])

(8)

where (vt+k, ht+k) is the sample obtained by running k steps of Gibbs sampling from vt starts. The
difference between PCD algorithm and CD algorithm is that the new unit values in Markov chain are
used for sampling. After parameter updating, only k-step Gibbs sampling is needed to extract new
samples without computing new Markov chain. The advantage of this improvement is that Markov
chain can better describe the current state of the model.

In the design of underwater acoustic target recognition system, the convergence speed and
recognition performance of the algorithm are important, which requires the algorithm to make a
trade-off between high precision and low delay. In this paper, cd-k algorithm is used to train RBM
auto-encoder, and the convergence speed and performance of the model are adjusted by variable
learning rate.

2.3. RBM Auto-Encoder

The main application of RBM in neural network algorithm is pretraining. Each layer of the
network is trained by greedily training, and the parameters are copied into the neural network as
initial values. Training from these initial parameters can make the network converge quickly.
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The RBM described in Section 2.2 actually acts as an automatic encoder in the system. The core
purpose of RBM is to compress high-dimensional raw data into low-dimensional features from the
perspective of data probability distribution and provide more effective input for classification system.
In this process, the data dimension is compressed, which is called an incomplete auto-encoder. The most
commonly used auto-encoder is Principal Component Analysis (PCA), which uses a linear activation
function to project data onto the hyperplane closest to the Euclidean distance, thereby obtaining
low-dimensional features with minimal loss of information. In particular, RBM is a generation model.
According to its probability model, this model can generate random data in accordance with the
original data probability model.

To extract features that are more abstract, we stack the auto-encoders to obtain the auto-encoder
shown in Figure 7, which is consistent with the multi-hidden layer structure of the neural network.
The output of the previous layer is used as the input and self-supervised objective function at the
same time, and the RBM auto-encoder is greedily trained layer by layer to obtain the final multi-layer
structure. In the auto-encoder, each layer of auto-encoder is to obtain the data probability model of
the previous-level encoder to accurately reconstruct it. This structure can significantly reduce the
computational complexity of abstract feature extraction.
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The multi-layer RBM used in the RBM feature extraction system in this paper is actually a
stack-type auto-encoder. The two-layer structure of each layer of RBM takes the previous layer as an
input, obtains its probability model, and uses the Gibbs sampler for greedily training to reach the final
refactor accurately.

When RBM auto-encoder model is used in actual signal processing, a noticeable problem is that
the signal needs to be matched with the model through preprocessing. The energy of underwater
acoustic signal is mainly concentrated in low frequency, and high frequency signal is often submerged
in background and interference signal. Through the observation of data, the first 8 kHz of signal is
used in underwater acoustic signal processing. At the same time, the underwater acoustic signal has
a longer time stability than the voice signal, thus this paper adopts the data frame length of 100 ms,
which is more than the tens of milliseconds in speech signal analysis, and uses 50% sliding framing.

On the other hand, the hyperparameters of the model need to be manually set to adapt to the
actual underwater acoustic signal. The number of units in the visible layer should be consistent with
the number of sampling points of the normalized spectrum after the effective frequency is intercepted.
The number of units in each hidden layer needs to be set decrementally layer by layer on the basis
of the visible layer until it reaches a low dimension. Other hyperparameters such as learning rate,
minibatch size, and number of model layers need to be found through experiments to find suitable
values for performance and convergence speed.

The function of the RBM auto-encoder is to extract the probability characteristics of the
data distribution through layer-by-layer unsupervised training. The Boltzmann energy equation
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(Equation (1)) based on the undirected graph can evaluate the energy function of the current state of
the network. The energy function reflects the probability of occurrence of the current network state
through the probability-energy equation (Equation (2)). Conditional probability equation (Equation (4))
uses the current network parameters and input unit state to calculate the state of the hidden layer unit,
and reconstructs the state of the input unit through the state of the hidden layer unit, which is the basis
for the realization of the Gibbs sampler. Gibbs sampling (Equation (6)) is used to solve the Markov
chain to obtain the mathematical expectation including all input and hidden layer unit required by the
stochastic gradient parameter update formula (Equation (5)). The detailed implementation process of
the RBM auto-encoder is shown in Algorithm 1.

Algorithm 1 RBM Auto-encoder

1: Configure the input, adjust the input dimension of RBMs and input structure
2: Randomly initialize the entire system parameters, including connection weights and offsets
3: Preprocess the acoustical signal get Spectrum
4: for i = 1:layer
5: for j = 1:epoch[i]
6: for batch = 1:batch_num
7: Complete the forward process according to Equation (6), and calculate the hidden unit state
8: Complete the reconstruction process according to Equation (6), and calculate the state of the visible
cell for reconstruction
9: Update model parameters according to Equation (5)
10: end
11: end
12: end

3. Target Recognition System

The clustering model mainly includes two components, a L-layer RBM auto-encoder and a BP
neural network classifier, and the output node of the Boltzmann machine is used as the input of the
neural network. The structure of the entire deep clustering system is shown in Figure 8. The two
subsystems are cascaded. The auto-encoder uses a CD-k sampler to perform unsupervised training
layer by layer.
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The input to the system is the normalized spectrum of the acoustic signal. The deep Boltzmann
machine acts as an auto-encoder in the clustering system to extract deep data features from the original
input. With the increase of the levels of deep Boltzmann machines, the output features become
more abstract. Abstract features with certain dimensions are conducive to the subsequent neural
network clustering.
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BP neural network is the most commonly used neural network classifier. BP neural network with
many hidden layers is also called multi-layer perceptron or deep neural network. The data flow of BP
neural network always flows from the input layer through the hidden layer to the output layer.

The learning algorithm of BP neural network is the process of learning the network parameters
under the supervision of data and labels. The network parameters include the connection weight
matrix W and the neuron threshold θ of each layer of the network. The learning algorithm can be
divided into two processes, forward propagation and back propagation. When forward propagation,
the multi-layer structure uses the neuron of the previous layer as input, and calculates the value of the
neuron of the current layer with the current network parameters.

x(p+1)
j = f

n−1∑
i=0

Wi j
(p)x(p)i − θ j

(p)

, j ∈ [0, n− 1] (9)

where x(p)i is the ith neuron in the pth layer. Wi j
(p) is the connection weight of the corresponding

neuron in the current layer, θ j is the threshold of the corresponding neuron, and f (x) is the activation
function. The more popular activation functions now include.

sigmoid(x) = 1
1+e−x

ReLU(x) = max(0, x)
(10)

The sigmoid function maps the input to [0, 1] and the ReLU function maps the input to [0, x],
which needs to be selected according to the needs of the application. The above formula can be written
in matrix form for easy calculation.

→

x(p+1) = f (W(p).
→

x(p) − θ(p)) (11)

Calculate the value of each neuron layer by layer according to the above formula to complete
the forward propagation, which is also the process of classifying a new, unlabeled data input during
the test.

The back propagation process is the process of modifying the model according to the difference
between the forward propagation and the actual label. For this reason, we must design a reasonable
optimization algorithm to make the model converge as quickly as possible and improve its performance
on the training set and test set. At present, there is no theoretical hyperparameter setting method.
Most training algorithms are based on the least squares optimization of the loss function E(W,θ),

E(W,θ) =
∑
iεD

(ti − yi)
2 (12)

where D is the training set, ti is the label of the data, and yi is the forward propagation output.
The parameter update needs to calculate the partial derivative of each parameter to the loss

function. Since the commonly used models generally have a larger number of parameters, to simplify
the derivation process, use chain derivation:

∂E(W,θ)
∂W =

∂E(W,θ)
∂zl

∂zl

∂W
∂E(W,θ)
∂θ =

∂E(W,θ)
∂zl

∂zl

∂θ

(13)

where the calculation of zl = W(l).
→

x(l) − θ(l), ∂E(W,θ)
∂zl depends on activation function form. In summary,

the BP neural network can complete the classification problem in a supervised manner. It is a general
method to solve the classification of large numbers of samples. It has an accuracy and flexibility that
traditional clustering algorithms such as GMM and K-means cannot match and can effectively use
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large data samples. This improves the modeling performance, but there are also shortcomings such as
slow learning speed, poor selection of hyper-parameters, local minimum, and unreasonable network
structure planning. A BP neural network with five layers is used to complete target classification in
proposed system. The flow chart of BP neural network algorithm used in this system is shown in
Figure 9.Sensors 2020, 20, x FOR PROOF 12 of 18 
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The advantage of BP neural network is that it can perform non-linear mapping for a large number
of samples, which has a good effect on underwater acoustic data with a larger sample size. In addition,
the BP neural network has self-learning and generalization capabilities, and can effectively process
samples that are quite different from the training data. The disadvantage of BP neural network is
that the gradient descent algorithm converges slowly to samples with higher dimensions. When the
network scale is large, the convergence speed of the BP neural network is unacceptable. In addition,
the training of BP network highly depends on the number of labeled samples. When the number of
samples is small, it is difficult for the BP neural network to achieve better training results.

In summary, the RBM auto-encoder-BP classifier proposed in this paper mainly has the following
advantages. BP neural network can effectively complete the nonlinear mapping problem and has a
good effect in the clustering of RBM auto-encoders. The RBM auto-encoder can effectively compress
the data and extract its abstract features, which is beneficial to speed up the convergence of the BP
neural network. The generalization ability of BP neural network supplements the defect that RBM
auto-encoder is difficult to effectively reconstruct untrained labels. Both BP neural network and RBM
auto-encoder are self-learning algorithms, which can complete underwater acoustic target recognition
tasks without manual intervention in practical applications. The data generation capability of the RBM
auto-encoder can create identically distributed samples by modeling the probability distribution of the
original data. When the number of samples is insufficient, the data generation capability of the RBM
auto-encoder can be used to supplement the samples to complete the training of the BP neural network.
Finally, RBM suppresses random noise based on the characteristics of the probability distribution of
the data, which can effectively prevent the BP neural network from overfitting.
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4. Experiment

Two noise databases were used to test the effectiveness of above-mentioned underwater acoustic
target recognition system. Two comparison methods were used to verify the superiority of the proposed
system in aquatic target recognition.

The experiment process was divided into three stages. First, the original audio data were
preprocessed according to the needs of different algorithms, and the original audio data were divided
into parameterized samples of equal length. Then, samples were randomly selected to construct
training set and test set, and the number ratio was 6:1. Finally, the dataset was used to train and test
the underwater acoustic target recognition system to evaluate the performance of different systems.

The number of layers of RBM auto-encoder was set to 4, and the number of units in each layer
was 784, 500, 200, and 50. The learning rate during training was set to 0.001. The value of the weight
matrix was initialized randomly at [−0.001, 0.001], the offset value was initialized to 0, and the number
of iterations for each layer was set to 100. The Boltzmann machine took the normalized spectrum
of the segmented signal as input and completed the feature extraction through the four-layer RBM
auto-encoder. BP neural network obtained the output features of RBM auto-encoder to complete
target recognition.

As the control group, GFCC extracted the features of audio signals after the same preprocessing.
The number of gammatone filters using in GFCC was 64, and the first 24 dimensions were taken as
classification features for BP neural network.

To evaluate the performance of the feature extraction algorithm in reducing the original signal’s
dimensionality and improving the data separability, we set up a comparison algorithm to directly put
the normalized spectrum of the original data into the BP neural network for recognition.

4.1. Acoustic Signal Preprocess

The data samples processed in this study are single channel audio signal. The signal was divided
into 100 ms frames with 50% overlap between frames, and Hanning window was added to the signal
to suppress high frequency interference and energy leakage. After adding Hanning window and FFT,
spectrum samples of a frame data were obtained. The formula is as follows:

X(k) =

∣∣∣∣∣∣∣
N−1∑
n=0

x(n)w(n)e− j 2πnk
N

∣∣∣∣∣∣∣ (14)

where N is the number of sampling points of a frame of data, w(n) is the Hanning window function,
and X(k) is the norm of the spectrum.

The normalized spectrum X̂(k) was taken as the system input. X̂(k) is calculated as follows.

X̂(k) =
X(k) −min(X)

max(X) −min(X)
(15)

At this time, 0 ≤ X̂(k) ≤ 1. X̂(k) meets the requirements of RBM for input data.

4.2. Experiment Result

To evaluate the performance of above-mentioned underwater acoustic target recognition system,
the proposed classification system was used to carry out multiclass classification experiments on two
databases, NOISEX-92 and ShipsEar. After preprocessing each signal, many samples were obtained.
Six of the of the samples were randomly selected as the training set, and the remaining one was used as
the test set. The training set was used to train the RBM auto-encoding BP neural network classification
system, and then the test set was used to count the classification accuracy. To quantitatively describe
the performance of underwater acoustic recognition system, adjusted Rand index (ARI) and Maximum
Value of the Clustering Rate (MVCR) were introduced. ARI was used to evaluate the overall recognition
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performance. MVCR was used to evaluate the recognition performance of a single class. Assuming that
the dataset of N classes is clustered into K clusters, ARI is defined as:

ARI =

∑
i j

(
ni j
2

)
−

2ab
N(N−1)

1
2 (a + b) − 2ab

N(N−1)

(16)

where ni j is defined as the number of samples that should belong to the ith clustered into the jth cluster.
Higher ARI value means better clustering results.

MVCR analyzes the clustering effect of each class, which is defined as:

MVCR(i) =
max

(
ni j, j = 1, 2, . . . , K, j < Θi

)∑
j ni j

(17)

where Θi is the set of label that has been previously selected.
The RBM auto-encoder algorithm was compared with five different clustering systems, including

the two feature extraction methods GFCC and original spectrum. The clustering methods are BP neural
network and GMM. The experimental results of data sets 1 and 2 are summarized in the next two
sections respectively.

4.2.1. Experiment Result on Dataset 1

The NOISEX-92 database was used as Dataset1 to test the performance of the classification system.
NOISEX-92 is a group of noises with obvious category characteristics recorded in the air. We used
NOISEX-92 to test the proposed classification system to ensure that the system can work properly.
The NOISEX-92 database contains 14 types of noise. The data sample is a single channel audio
signal with a duration of about 4 min, recorded with sampling rate of 19.98 kHz and bit depth of
16. The experiment used 10 types of noise in NOISEX-92. The information of each type is in Table 3.
The average clustering accuracy rate, ARI, and the maximum, minimum, and average measures of
MVCR were calculated by averaging 10 independent experiments. At the same time, the standard
deviation of accuracy rate and ARI were calculated in 10 experiments to evaluate the robustness of the
proposed classification system. The experimental results of Dataset 1 is summarized in Table 4.

Table 3. Information of Dataset 1.

Type Sound Level Description

buccaneer1 109 dBA Noise in Buccaneer
buccaneer2 116 dBA Noise in Buccaneer
destroyerengine 101 dBA Noise in Destroyer engine room

destroyerops 70 dBA Noise in Destroyer operations
room

f16 103 dBA Noise in F-16 cockpit
factory1 – Noise in Factory floor
factory2 – Noise in Factory floor
pink – Pink noise
volvo – Noise in Volvo 340
white – White noise
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Table 4. Performance of clustering system on Dataset 1.

Method Correct ± SD Max
MVCRs

Min
MVCRs

Avg
MVCRs ARI ± SD

Spectrum + GMM 65.70 ± 5.43% 100.00% 47.39% 67.29% 52.8 ± 5.2%
Spectrum + BP 67.20 ± 3.96% 99.93% 52.52% 70.99% 49.9 ± 3.9%
GFCC + GMM 63.91 ± 12.77% 100.00% 35.66% 71.35% 56.3 ± 8.5%

GFCC + BP 64.37 ± 10.39% 100.00% 33.16% 67.03% 55.2 ± 7.1%
RBM + GMM 82.54 ± 4.21% 100.00% 72.31% 83.34% 72.5 ± 6.3%

RBM + BP 98.74 ± 0.21% 100.00% 93.34% 98.71% 97.2 ± 0.7%

Bold data are the result of achieving the optimal performance of the test in various methods.

4.2.2. Experiment Result on Dataset 2

The ShipsEar database was used as Dataset 2 to test the performance of the proposed classification
system. ShipsEar database is widely used in underwater acoustic target recognition, ship noise
detection and other research fields. The database contains a large number of ship noise and marine
environmental noise samples, which were recorded in autumn 2012 and summer 2013 in different
parts of the Spanish Atlantic coast in northwest Spain. The schematic diagram of ShipsEar database
acquisition is shown in Figure 10. The hydrophones were bottom-moored and attached to a submerged
buoy to ensure verticality and a surface buoy for recovery. Hydrophones height over the bottom was
selected according to water depth at the mooring point. Whenever possible, three hydrophones at
different depths and with different gains were used to maximize the dynamic range of the recording.
In very shallow areas (depths under 10 m), recordings were made with one or two hydrophones [32].
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Figure 10. ShipsEar data collection diagram.

The amplifier used a 100 Hz high-pass filter to suppress marine background noise, the hydrophone
sampling rate is 52,734 Hz, and the AD converter bit depth is 24 bits.

This experiment used all the files in the ShipsEar database. Similar to the authors of [32],
we manually divided all data into five categories according to the size of the vessel. The categories are
shown in Table 5. The experimental results of Dataset 2 is summarized in Table 6.
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Table 5. Data classification in ShipsEar.

Category Type of Vessel

Class A fishing boats, trawlers, mussel boats, tugboats, and dredgers
Class B motorboats, pilot boats and sailboats
Class C passenger, ferries
Class D ocean liners and ro-ro vessels
Class E background noise recordings.

Table 6. Performance of clustering system on Dataset 2.

Method Correct Max MVCRs Min MVCRs Avg MVCRs ARI

Spectrum + GMM 43.37% 87.34% 30.87% 44.12% 17.23%
Spectrum + BP 45.51% 89.92% 31.88% 46.83% 19.03%
GFCC + GMM 55.12% 90.55% 32.12% 54.42% 25.12%

GFCC + BP 54.09% 91.13% 31.09% 53.22% 24.75%
RBM + GMM 79.21% 92.31% 71.56% 82.31% 65.34%

RBM + BP 93.17% 97.93% 89.66% 93.31% 83.91%

Bold data are the result of achieving the optimal performance of the test in various methods.

Table 4 shows that the proposed classification system on the NOISEX-92 database generally has a
higher accuracy and MVCR than the other methods. It is worth noting that the proposed classification
system also has better performance in terms of ARI and its standard deviation. When testing more critical
actual underwater acoustic data, similar results were obtained, as shown in Table 6. Compared with
the test results of Dataset 1, the performance of the method based on GFCC and original spectrum has
different degrees of degradation in the test results of underwater acoustic data. The performance of
the proposed method is basically consistent with that of Dataset 1, which shows that the proposed
method has strong robustness under different data. The experimental result proves the effectiveness
and robustness of the proposed classification system.

5. Conclusions

In this paper, a depth clustering algorithm combining RBM automatic encoder and BP neural
network is used for underwater acoustic target recognition. This method can extract features and
classify targets without manual intervention. Using a RBM auto-encoder to perform layer-by-layer
self-supervised auto-encoding on the original signal can extract high-level abstract information that
is beneficial to clustering. Two real acoustic databases were used to test the recognition effect of the
proposed system. In two database tests, the proposed system shows better performance than the
classification system based on hand-crafted features, which proves the effectiveness of the proposed
system. The proposed method provides a good technical support for the target classification and
recognition function of sonar system. The feature extraction and target classification of the proposed
method under the condition of small sample size and low SNR is worthy of further study.
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