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Abstract: The trend towards socialization, personalization and servitization in smart manufacturing
has attracted the attention of researchers, practitioners and governments. Social manufacturing is a
novel manufacturing paradigm responding to this trend. However, the current cyber–physical system
(CPS) merges only cyber and physical space; social space is missing. A cyber–physical–social system
(CPSS)-based smart manufacturing is in demand, which incorporates cyber space, physical space and
social space. With the development of the Internet of Things and social networks, a large volume
of data is generated. A data-driven view is necessary to link tri-space. However, there is a lack of
systematical investigation on the integration of CPSS and the data-driven view in the context of social
manufacturing. This article proposes a seven-layered framework for a data-driven CPSS (D-CPSS)
along the data–information–knowledge–wisdom (DIKW) pyramid under a social manufacturing
environment. The evolution, components, general model and framework of D-CPSS are illustrated.
An illustrative example is provided to explain the proposed framework. Detailed discussion and
future perspectives on implementation are also presented.
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1. Introduction

In recent years, there is a trend of socialization, personalization and servitization in the
manufacturing industry [1]. A new manufacturing paradigm, termed social manufacturing, has
sprung up, which is concerned by collaborative, service-oriented, crowdsourcing and customer-centric
industries [2]. Social issues in smart manufacturing have attracted the attention of researchers,
practitioners and governments. In 2016, Japan launched the Society 5.0 initiative to solve social issues
through a cyber–physical System (CPS) in the 5th Science and Technology Basic Plan [3].

CPS has gained intensive attention in recent years. The term CPS was firstly coined at American
National Science Foundation (NSF) from an engineering perspective, in 2006, to describe the tight
collaboration between the cyber world and physical world [4]. It demonstrates the integration
between computation, communication and control. CPS was widely applied in the field of smart
manufacturing, emergency response, air transportation, intelligent transportation, etc. [5]; however,
most CPS applications failed to take the human factor into consideration as an internal element [6].
To this end, the cyber–physical–social system (CPSS) emerged [7], which was generally viewed as an
extension of CPS, and seamlessly integrated cyber space, physical space and social space.

With the development of the Internet of Things and social networks, a large volume of data is
generated from tri-space. How to handle heterogeneous data to support social manufacturing is a
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greatly challenging question. Existing studies on CPSS focused on either a generic model or specific
application. Frameworks for D-CPSS were few, but did exist. Despite that [8] proposed a layered
architecture for D-CPSS from a data centric perspective, the interactions among tri-space were not
investigated. Social issues in the context of social manufacturing lacked exploration. Furthermore,
a D-CPSS which integrates the interaction among tri-spaces for social manufacturing along the
data–information–knowledge–wisdom (DIKW) pyramid has not yet been researched systematically.
Lee and Bagheri [9] proposed a 5C (i.e. connection, conversion, cyber, cognition, and configuration)
framework for CPS in the context of Industry 4.0, but social space was missing from this and it was
not sufficient to support social manufacturing. Motivated by this, this paper aims to propose a 7C
(i.e. connection, conversion, communication, computing, cognition, configuration, and collective
intelligence) framework for better understanding D-CPSS under the social manufacturing environment.

The remainder of the paper is organized as follows: an overview of the literature on the evolution
from CPS to CPSS, CPSS and social manufacturing are provided in Section 2. After presenting the
change from 5C for CPS to 7C for CPSS and the description of D-CPSS, a 7C framework for D-CPSS in
the social manufacturing context is proposed in Section 3. Section 4 provides an illustrative example to
present the application of the proposed framework. Section 5 discusses the theoretical and practical
implications, limitations and technical challenges of this paper. Section 6 concludes the article with
proposed future research directions.

2. Related Work

This section reviews the related works on evolution from CPS to CPSS, CPSS and social
manufacturing. A summary of the research gap is given.

2.1. From CPS to CPSS

Figure 1 depicts the origin and development of CPSS. From the perspectives of intelligence and data
volume, the evolution of CPSS can be divided into three stages, namely CPS, human–cyber–physical
systems (HCPS) or human-in-the-loop cyber–physical systems (HiTLCPS), and CPSS.

Figure 1. Evolution of the cyber–physical–social system (CPSS).

On the first stage, CPS integrates computing, communication, and control by considering cyber
space and physical space. CPS provides support for smart manufacturing. On the second stage, HCPS
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involves human factors. It contains three spaces, namely, human space, cyber space and physical space.
The interactions among three spaces are supported by three systems, namely, the human–cyber system,
CPS and human–physical system. On the third stage, based on HCPS, CPSS goes one step further by
taking social factors into account. CPSS-based manufacturing aims to support social manufacturing.
In these three stages, different spaces are connected via a network. From an evolution perspective, the
detailed evolution path is introduced below.

(1) From CPS to HCPS.

The role of humans has changed from passive information receivers to information or knowledge
generators [10]. Human tended to interact with enterprise throughout the product lifecycle. Previously,
when interacting with CPS, humans played the role of passive recipients or passive consumers. To
support social manufacturing, there was a need to involve human factors in the CPS architecture.
Therefore, CPS evolved to HCPS. Zhou and Li [11] introduced the human–cyber–physical system
(HCPS). Nunes and Zhang [6] conducted a survey on human-in-the-loop cyber–physical systems
(HiTLCPS). Taking human interaction into consideration, [11] introduced HCPS and new-generation
intelligent manufacturing, which was the integration of advanced manufacturing technology,
new-generation artificial intelligence (AI) and social–technical systems.

(2) From HCPS to CPSS.

In previous literature, humans were limited to being individual actors, such as an operator
in a manufacturing cell [12]. The power of the crowd was emphasized by researchers, including
such topics as crowdsourcing, collaboration and collective intelligence. Social factors played more
and more important roles in product development, manufacturing and services. CPSS-based social
manufacturing was in demand, which extended human factors to social factors; HCPS moved to CPSS.

2.2. CPSS

Wang [13] first proposed the concept of CPSS and classified it into physical space, cyber space,
the physical world, the mental world and the artificial world. Some researchers believed that
CPSS was developed on the basis of CPS and the cyber–social system (CSS) [14–16]. Considering
CPSS, researchers proposed different concepts, such as the cyber–physical–social system (CPSS), the
social–cyber–physical system (SCPS), and the human–cyber–physical system (HCPS), as shown in
Table 1. CPSS was typically used in energy, power grid, smart home, emergency management, smart
vehicles, intelligent transportation system, intelligent manufacturing, and smart city, etc. [7].

Table 1. Definition and research on the cyber–physical–social system (CPSS).

Concept Literature Definition

Socio–cyber–physical systems
(SCPS) [14,15] The extension of CPS by adding social space.

Cyber–physical–social systems
(CPSS) [8,13,16,17]

A complex system involving the cyber,
physical and social space by integrating CPS

with human and social characteristics.

Human–cyber–physical systems
(HCPS) [11,12]

The evolution of the manufacturing system,
which is described as

human–physical–system (HPS), by adding
cyber systems.

Human-in-the-loop
cyber–physical systems (HiL-CPS) [6] CPSs include humans as an integral part in

the control loop.

Cyber–physical–social–thinking
systems (CPST) [18]

A hyperspace created by merging thinking
space with the cyber space, physical space

and social space.
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Numerous scholars have investigated CPSS, which is commonly viewed as a system of systems
integrating cyber, physical and social systems. For example, Bereket Abera and Yannick et al [4] reviewed
the existing works on personalization in CPSS and defined CPSS as a system being composed of CPS,
social systems, virtual space and physical space. Zeng and Yang [17] defined CPSS as the integration
of CPS and the cyber–social system (CSS). Amit and Pramod [19] proposed physical–cyber–social
(PCS) computing.

The existing literature on CPSS is mainly presented from the perspective of definition and concept,
design, architecture and applications, as shown in Table 2.

Table 2. Literature on CPSS.

Dimensions Examples of
Literatures Contribution Methods

Definition and concept [4]
Definition of CPSS as a system of systems,

including CPS, social systems, virtual space
and physical space.

Review

[20]
Systematic review on CPSS, including
concepts, characteristics, process and

applications.

Systematic mapping
study

[18] Cyber–physical–social–thinking (CPST)
hyperspace architecture. Conceptual framework

[21] Socio–cyber–physical system (SCPS)-based
manufacturing. Conceptual framework

Architecture [8] Data-centric framework for CPSS. Conceptual framework

[14] An architecture of social–CPS (SCPS)-based
manufacturing. Conceptual framework

[22,23]
A three-layer CPSS platform framework

under the social manufacturing
environment.

Conceptual framework

Design [17] A survey on design methodology for CPSS. Survey

[24] Petri net-based extended model for CPSS. Petri net

[25] Data fusion in CPSS. Tensor based methods

Applications [15] Social–CPS (SCPS) application in
production networks. Review

[16] CPSS with parallel learning for distributed
energy management (DEM) of a microgrid.

Parallel learning
methodology

[26] CPSS-based intelligent transportation
system (ITS).

Artificial societies,
computational

experiments and parallel
execution (ACP)

methodology

[7] ACP-based CPSS applications in
transportation, energy, manufacturing, etc. Survey

Ning and Liu [18] proposed a novel concept—Cybermatics—and put forward a
cyber–physical–social–thinking (CPST) hyperspace architecture integrating cyber services, physical
objects, social people and human thinking. Marta and Angelink [20] employed a systematic mapping
study to review the existing research of CPSS, including the definition, main characteristics and
processes, architectural approaches to designing and describing CPSS, current research focuses and
typical application scenarios. Yao and Lin [21] discussed the development of manufacturing paradigms
and proposed socio–cyber–physical system (SCPS)-based manufacturing from the perspective of
organizational semiotics. Wisdom manufacturing and social manufacturing were illustrated as two
modes for SCPS-based manufacturing. CPS-based manufacturing was viewed as smart manufacturing,
while SCPS-based manufacturing was viewed as wisdom manufacturing in some research [14].
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As for the design of CPSS, Zeng and Yang [17] conducted a survey of system-level design
methodologies and introduced the latest research advancement on design methodology for CPSS. Zeng
and Yang [24] proposed a Petri net-based extended model for CPSS to meet the needs of the social
scenario of multiple users. Jiang and Ding [1] proposed a CPSS framework based on CPS by adding
the social aspect for a socialized production network (SPN). Yao and Zhou [14] presented a holistic
survey of CPS, proposed the architecture of CPS-based smart manufacturing extended CPS-based
manufacturing to social–CPS (SCPS)-based manufacturing, which was called wisdom manufacturing.
However, these works ignored the important role of data flow throughout the cyber space, physical
space, and social space.

As for the data-driven approaches and application in CPSS, Bin and Zhiwen [8] proposed a
four-layered framework for data-centric cyber physical social systems (D-CPSS). De and Zhou [27]
introduced the background and development of cyber–physical–social systems, including mechatronic
systems, embedded systems, cyber–physical systems, cyber physical systems with human-in-the-loop,
the Internet of Things and cyber–physical–social systems. A conceptual framework of CPSS was
proposed from a data-centric perspective. The work [22,23] proposed a three-layer CPSS platform
framework and incorporated social sensors and CPS nodes into the CPSS platform to address
collaborative and personalized production under the social manufacturing environment. Wang and
Yang [25] clarified the data fusion in CPSS and proposed tensor-based methods and a framework for
CPSS. However, this research focused on the data-centric perspective and seldom investigated the
interaction of tri-spaces.

As for the applications of CPSS, Frazzon and Hartmann [15] reviewed the social aspects of CPS
and introduced social–CPS (SCPS) application in production networks. Three context-dependent
behavioral aspects were identified, including the individual, organizational and contextual backgrounds.
Zhang and Yu [16] presented a CPSS with parallel learning for the distributed energy management
(DEM) of a microgrid. Dao and Pongpaichet [28] proposed a real-time complex event discovery
platform for CPSS. Gang and Fenghua [26] introduced ACP methodology (i.e. artificial societies,
computational experiments and parallel execution), proposed by Wang, and discussed a CPSS-based
intelligent transportation system (ITS). Zhang and Wang [7] discussed the state-of-the-art of ACP-based
CPSSs in China with application in transportation, energy, manufacturing, etc. and five grids,
including transportation grid, energy grid, information grid, the Internet of Things and the Internet
of Minds. Zhong and Dong et al [29] proposed a CPSS for command and control, and described the
self-synchronization and operational mechanism. Leng and Jiang [30] introduced the social Internet of
Things (SIoT) strategy to reduce the complexity of contextual computing in the cyber–physical–social
connected space. However, these were regarding specific applications in a certain field; few applications
leveraged the data-driven methodologies.

2.3. Social Manufacturing

The manufacturing paradigm evolved from craft manufacturing to mass production, to mass
customization and now to social manufacturing [2]. Jiang [31] introduced the concepts, architecture
and key enabling technologies of the social manufacturing paradigm. Social manufacturing was first
proposed by The Economist in 2012. Jiang and Leng [32] introduced the concepts and characteristics
of social manufacturing. Social manufacturing has three characteristics, namely, social-oriented
interconnection, service-oriented transformation, and IoT-oriented production structure [33]. Social
manufacturing was viewed as cyber–physical–social connected and service-oriented. Ding and
Jiang [34] proposed social sensors for social manufacturing systems (SMS) to address the production
interactions among stakeholders in SMS, covering the concept, components, classification, operational
logics, formalization and social sensor-cloud platform. However, social sensors mainly focused
on data sensing and information exchange; the process of data analysis was missing. Jiang and
Ding [35] introduced the definition and organizational logic of social manufacturing. In that work,
three core aspects of social manufacturing were illustrated from the perspectives of configuration,
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Industry 4.0-based production control and business collaboration. However, the interactions among
the cyber space, social space and physical space were not explored. Zheng and Xu [36] proposed a
data-driven cyber–physical approach for personalized smart, connected product (SCP) co-development
in a cloud-based environment. However, their research focused on the user–designer interaction based
on data-driven cyber–physical systems. As the social manufacturing paradigm is still in its early
stage of development, most existing literature concentrates on the concepts, architecture, enabling
technologies, social networks and social collaboration based on cyber–physical systems. However,
there were few works investigating the interaction between social space and CPS in the context of
social manufacturing. There are few works on CPSS supporting social manufacturing.

2.4. Research Gap

The existing literature shows that D-CPSS is still in its infancy; few existing works focused on
the interaction among tri-space. Although a data-centric framework for CPSS was proposed, the
framework was conceptual and the interactions among the tri-space were missing. Most existing
works focused on CPSS supporting smart manufacturing or wisdom manufacturing; however, few
literatures discussed CPSS in the context of social manufacturing. Social manufacturing is named as
such for its inclusion of the interaction and interdependence of social space, physical space and cyber
space. In most research works, the social space in CPSS referred to humans as individuals, not in social
networks. The social space component and collective intelligence were seldom investigated under the
social manufacturing environment.

A large volume of data is generated from social space, cyber space and physical space.
To this end, a data-centric view is necessary to link the tri-space. However, in terms of the
data-driven approach, there is a lack of systematical investigation on the integration of CPSS
and the data–information–knowledge–wisdom (DIKW) in the context of social manufacturing,
although a data-centric framework for CPSS and data processing along the DIKW pyramid
already existed. To address the interaction issues among the tri-space, this paper proposed
a 7C framework for D-CPSS in the social manufacturing context from the perspective of the
data–information–knowledge–wisdom pyramid.

3. A 7C Level Framework for D-CPSS

3.1. 7C Model for CPSS

Inspired by Lee, Bagheri and Kao 2015 [8], who proposed a 5C level structure for CPS, a 7C
model for CPSS was put forward in this paper, including connection, conversion, computation,
cognition, configuration and collective intelligence. Following the philosophy of the DIKW
(data–information–knowledge–wisdom) pyramid, a schematic representation of the relationships
among 5C model for CPS, DIKW and 7C model for CPSS is shown in Figure 2.

Presented above are three pyramids. In the middle lies the DIKW pyramid, which consists of seven
levels, namely, the data level, data-to-information level, information level, information-to-knowledge
level, knowledge level, knowledge-to-wisdom level and wisdom level. The data level is responsible for
gathering data from different space. For example, sensors sense the context in the usage stage of the user
and transmit product data and environmental data to information systems. The data-to-information
level is responsible for convert that data into useful information. For example, data analysis tools
are used to figure out the hidden information of user habits or the relationships of different data.
The information level is responsible for information sharing between different spaces to facilitate
communication so that user behaviors can be understood. The information-to-knowledge level deals
with the generation of knowledge. For example, useful user information is often computed to form
knowledge. The knowledge level is responsible for shaping of cognition. For example, user knowledge
sharing on the web deepens users’ understanding of products and services. The knowledge-to-wisdom
level is responsible for intelligence generation. For example, the interaction between smart products
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and users makes it possible for the product to make decisions via learning and training. The wisdom
level means the ability to collect, process and share knowledge to generate solutions. For example,
different cognitions enable the smart product to self-adapt to the change of context.

Figure 2. 7C level model for CPSS.

The connection relationship between 5C, DIKW and 7C is as follows: Both connection levels
in the 5C and 7C frameworks mean data acquisition. Both conversion levels in the 5C and 7C
frameworks correspond to the data-to-information level in the DIKW pyramid. The cyber level in
the 5C framework and the communication level in the 7C framework correspond to the information
level in the DIKW pyramid. The cyber level in the 5C framework and the computation level in 7C
correspond to the information-to-knowledge level in the DIKW pyramid. Both cognition levels in the
5C and 7C frameworks correspond to the knowledge level in the DIKW pyramid. Both configuration
levels in the 5C and 7C frameworks correspond to the knowledge-to-wisdom level in the DIKW
pyramid. The collective intelligence level in the 7C framework corresponds to the wisdom level in the
DIKW pyramid.

Figure 2 shows that the seven levels in the DIKW pyramid correspond to the seven levels in the 7C
model one by one. From this perspective, the 7C model can be seen as a data-driven model. A detailed
description of the 7C model is presented in the following subsections.

A comparison between the 5C model for CPS and the 7C model for CPSS is shown in Table 3.
The results show that the cyber space in the 5C model is divided into communication and computation
in the 7C model. More importantly, the 7C model emphasizes collective intelligence, which is the top
level of the 7C model. Compared with the 5C model for CPS, the 7C model is designed for CPSS; the
elements of the 7C model consider the social space. For example, the connection level collects data
via social sensors and physical sensors. The conversion level converts social data into meaningful
information. The communication level contains social networks. The computation level computes
social information. The cognition level generates more social knowledge. The configuration level
generates feedback from the cyber space to the social space and feedback from the physical space to
the social space. The collective intelligence level emphasizes the synergy effect of intelligence.
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Table 3. Comparison of components between the proposed 7C for CPSS and the existing 5C for CPS.

Components of 5C
for CPS Description Components of 7C

for CPSS Description Role

Level 1:
Connection

Data acquisition
from machines or

sensors.

Level 1:
Connection

Data acquisition
form social sensors

and physical
sensors.

Data flow

Level 2:
Conversion

converting data to
information,

Level 2:
Conversion

Converting data to
information Data to information

Level 3: Cyber Analytics for
insight

Level 3:
Communication Network Information flow

Level 4: Cognition knowledge
generation

Level 4:
Computation Cloud Computing Information to

knowledge

Level 5:
Configuration

feedback and
control, decision Level 5: Cognition knowledge

discovery Knowledge flow

Level 6:
Configuration

Feedback and
Control

Knowledge to
insight

Level 7: Collective
intelligence

co-creation, the
output of crowding

Insight for decision
making

3.1.1. Connection

This level refers to connection of human or things in D-CPSS to support data acquisition from the
perspective of the Internet of Everything (IoE), such as the Internet of People (IoP), Internet of Things
(IoT), Internet of Content (IoCon), Internet of Computing (IoCom), Internet of Service (IoS), Internet
of Thinking (IoTk) and Internet of Minds (IoM). Data are the raw materials for a data-driven CPSS.
As opposed to CPS, the data source of CPSS comes from three sources: social space, physical space and
cyber space. Each space exhibits interconnected features. In the social space, the connection of people
forms social networks. In the physical space, the connection of things forms networks, such as sensor
networks and machine networks. In the cyber space, the connection of computing forms computing
networks. Data can be acquired via social sensors, physical sensors and information systems databases.

3.1.2. Conversion

This level deals with converting data into information, aiming to discover correlation and a hidden
pattern from the heterogeneous data to extract useful information. Data are gathered and stored in
different databases depending on different purposes. Heterogeneous data from social sensors and
physical sensors can be sorted into three types, namely, structured data, semi-structured data and
unstructured data. A distributed database system (DDBS) is responsible for managing and storing the
structured data and a Hadoop distributed file system (HDFS) or not only structured query language
(NoSQL) are used to store unstructured data, while semi-structured data are unified into a standardized
format by extensible markup language (XML) and stored in DDBS or relational database management
system (RDBMS). Distributed data resources need to be collected to discover useful and correlative
information and converted into actionable information.

The main tools and methodologies of this level concern data mining. Data mining techniques
(DMTs) are used to search for hidden information in a large volume of data in the data mining processes.
Data mining methods include clustering, association, classification and regression. For example, deep
learning, Bayesian learning and clustering are the most common algorithms at this level.

3.1.3. Communication

This level relates to information exchange and sharing for bridging the social space and the
cyber space and physical space. From the viewpoint of interaction objects, communication can be
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divided into three types, including human-to-human, human-to-machine, and machine-to-machine.
In the social space, the communication relationship is human-to-human via social networking or
social media to support communication among customers, users, engineers, designers and suppliers.
In the physical space, the communication relationship is machine-to-machine. Between the social
space and physical space, the communication relationship is human-to-machine via human–machine
interface. Algorithms such as communication protocols, human-in-the-loop learning and human-agent
interaction play important roles at this level.

3.1.4. Computation

The computation level is the core of this framework. Computation refers to a series of processes
to convert information to knowledge and gain insights. Cloud computing and data analytics play
significant roles in this level. Storm computing frameworks are used for processing real-time data
and a Hadoop computing framework is used to process non-real-time data. Data analytics are used to
describe what happened, diagnose why it happened and predict what will happen.

3.1.5. Cognition

The cognition level is responsible for knowledge sharing. After generating knowledge in the
computation level, the knowledge flows into the social space and physical space. As for social space,
certain knowledge, such as expert knowledge or crowdsourcing, is used for generating insights. In the
physical space, knowledge automation enables smart devices to have the capabilities of self-awareness,
self-adaption, self-learning and self-decision making. In both the social and physical space, the
cognition level plays the role of the Internet of Thinking (IoTk). Algorithms such as social cognition
and interaction, structural learning and knowledge capture play important roles at this level.

3.1.6. Configuration

Similar to the configuration level in 5C for CPS, this level is the feedback and control from the
cyber space to the social space and physical space. The main objective of this level is to convert
knowledge to insight for decisions to be taken, including descriptive insights, diagnostic insights,
predictive insights and prescriptive insights.

3.1.7. Collective Intelligence

This level refers to social collective intelligence in the social space and machine intelligence in
the physical space. After data processing in computation level, the data from the tri-space will be
fused for collective intelligence. Decisions are made in a co-creation mechanism. In the social space,
decisions are made based on social collective intelligence via the Internet of Wisdom (IoW). In the
physical space, decisions are made according to machine intelligence via the Internet of Intelligence
(IoI). Machine learning algorithms play important roles at this level, including evolutionary learning,
transfer learning, adaptation learning and multi-task learning.

3.2. D-CPSS

This subsection gives an introduction of D-CPSS and a general model for D-CPSS.

3.2.1. The Components of D-CPSS

Similar to the ubiquitous CPSS, as shown in Figure 1, the components of the D-CPSS include the
social space, physical space, and cyber space. The overlapped sections are the cyber–social system
(CSS), cyber–physical system (CPS) and social–physical system (SPS). The components are shown in
Table 4.
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Table 4. The components of D-CPSS.

Space/System Elements Data Internet of X

Cyber space
Data center, information system,
software, cloud computing, big

data
IoT big data Internet of Computing,

Internet of Services

Physical space

Physical entity (equipment,
devices, tools),

physical sensors, actuators,
controllers

State of devices
(temperature, humidity,

electricity, time, location),
environment

Internet of Things, Internet
of Content, Internet of
Thinking, Internet of
Machine Intelligence

Social space

Social entity (customers, users,
designers, developers),

social network (social media),
social sensors (smartphones,

smart mobile device),
crowdsourcing

Social data (demands,
satisfaction, advice,
feelings, comments,

behaviors)

Internet of People, Internet
of Content, Internet of
Thinking, Internet of

knowledge, Internet of
Minds, Internet of Human

Intelligence

Cyber–social system
(CSS) Social sensor network Social data Human-to-human

interaction

Cyber–physical system
(CPS) Physical sensor network Physical data

Internet of Things,
machine-to-machine

interaction

Social–physical system
(SPS)

Product service system,
human–computer interaction Social data, physical data Human-to-machine

interaction

Cyber space. Cyber space is the Internet of Service (IoS). It provides data sensing, resource
management and computing service. Big data processing is a key element in this space. Data processing
in computation aims at conversion, including data-to-information, information-to-knowledge
and knowledge-to-wisdom.

Physical space: Physical space means the real world to be monitored or controlled. It is made up
of physical entity (such as equipment, devices, etc.) and interface device (such as sensors, actuators
and controllers) to support interaction with cyber space and social space.

Social space: Social space refers to human society full of thinking, cognition, knowledge and
collective intelligence. The social network or social media platform integrates stakeholders such as
customers, users and designers to conduct social communication and social collaboration.

Cyber–social system (CSS): CSS connects the cyber space and social space via social sensors
network. Social computing is used to analyze the social data.

Cyber–physical system (CPS): CPS connects the cyber space and physical space. A physical
sensors network provides data for computing, monitoring and control of the physical devices.

Social–physical system (SPS): SPS connects the social space, or the Internet of People (IoP), and the
physical space, or the Internet of Things (IoT), to facilitate the interaction between human and machine.

3.2.2. A General Model for D-CPSS

A general model of D-CPSS from the perspective of the data chain is presented in Figure 3. As the
input of D-CPSS, heterogeneous data sources initially form the social space, physical space and cyber
space. The output of the D-CPSS is data applications. D-CPSS has three core functions, including data
collection, data processing and data analytics. These processes will be elaborated in details as follows.
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Figure 3. A general model of D-CPSS from the perspective of data chain.

(1) Data collection from tri-space

The data are collected from three spaces (i.e., social space, cyber space and physical space) via
four ways, namely social sensors, physical sensors, social network and sensor network.

Social sensor: Social sensors are responsible for measuring human social data, such as psychological
data, emotional data, behaviors and comments.

Physical sensor: Physical sensors detect the data from physical devices (i.e., sensor, actuators and
processors) and information systems. The whole lifecycle data are monitored and captured based on
the configurations of data sensing devices (e.g., smart sensors, embedded devices, tags, RFID readers
and external devices) through the whole lifecycle.

Social networks: Social networks are the Internet of People, or Social IoT, which connects people,
data and collective intelligence.

Sensor networks: Sensors are interconnected via the Internet of Things (IoT), forming a sensor
network, including a physical sensor network and a social sensor network. Distributed data resources
are gathered together. They are multi-source heterogeneous big data, including equipment data,
production data, products data, user data, supply chain data and so forth.

The collected data are stored both in the cloud datastore and edge database. The collaboration of
cloud computing and edge computing makes it possible to solve such a large dataset with a particular
focus on the application requirements. For low-latency application requirements, the data are stored
and computed on the edge. For other application requirements, the data are managed in the cloud.

(2) Data processing

Among the captured data, there are large amounts of redundant, misleading, duplicate and
noisy data which need to be removed before data analysis. Data processing refers to the process of
converting data into information, which includes data cleansing, data integration, data reduction and
data transformation.

• Data cleaning: This aims to identify and pad missing data, remove noisy data, wipe out isolated
points and rectify data inconsistencies in order to enhance the quality of data.

• Data integration: This aims to store all the distributed data in a database or data warehouse to
form a complete data set via removing redundant data.

• Data reduction: This aims to remove the attributes that cannot represent the key features of the
system to reduce the data volume by ensuring that the reduced reflection of the data set are close
to the original one, achieving the same or similar analysis results.

• Data transformation: This aims to transform the original data to the required format to satisfy the
data mining requirement, for instance, by limiting the data value to a specific span. Common data
transformation strategies include smoothing, aggression, normalization and discretization.

(3) Data analysis
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Big data analytics can be divided into four types, namely, descriptive analysis, diagnostic analysis,
predictive analysis and prescriptive analysis.

• Descriptive analysis is responsible for describing what happened.
• Diagnostic analysis is used to figure out why it happened when the performance degenerates or a

failure occurs.
• Predictive analysis is used to predict what will happen in the future and the likelihood of a

situation occurring by utilizing models with real time data or historical data.
• Prescriptive analysis is about suggesting what action to take and for decision-making to solve

the problem.

3.3. A 7C Level Framework for D-CPSS towards Social Manufacturing

By combining the general model for D-CPSS (see Figure 3) and 7C level model for CPSS (see
Figure 2), Figure 4 depicts the 7C framework for D-CPSS under social manufacturing environment.

Figure 4. The 7C framework for D-CPSS towards social manufacturing.

Each level in the 7C model for CPSS is combined with three spaces, i.e., the social space, cyber
space and physical space. The connection level (level 1), communication level (level 3), cognition level
(level 5) and collective intelligence level (level 7) are distributed in both the social space and physical
space. The conversion level (level 2), computation level (level 4) and configuration level (level 6) are
located in the cyber space.

Correspondingly, data flow, information flow and knowledge flow run in the social space and
physical space. The conversion of data to information, information to knowledge, and knowledge to
wisdom (insight) are accomplished in cyber space.

The data lifecycle consists of data source, data collection, data processing, data analytics and data
application. The cyber–social system (CSS) supports the interaction between the social space and cyber
space along the 7C level from connection to collective intelligence. Similarly, the cyber–physical system
(CPS) supports the interaction between the cyber space and physical space along the 7C level from
connection to collective intelligence. The social–physical system (SPS) supports the integration of the
social space and physical space, focusing on communication and configuration.
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4. Illustrative Example

4.1. Example Description

Company X is a smartphone manufacturer in China. It offers high-quality hardware and
continuous software updates for users via open innovation or co-innovation. Customers and users are
deeply involved in all stages of value co-creation, including design, development, testing and delivery.
A large volume of data were generated from the social space and physical space during the usage
of smart phones and complementary smart products. Facing the personalized needs of customers,
Company X adopted social manufacturing by taking advantage of collective intelligence from the users,
partners and designers. Artificial intelligence (AI) and the Internet of Things (IoT) were employed to
enable an AI with IoT (AIoT) platform supporting the interaction of cyber space, physical space, and
social space.

4.2. Application of 7C Framework for D-CPSS in Smart Product Development

Figure 5 depicts the application scenario of D-CPSS in the value co-creation of smart products.

Figure 5. The application scenario of 7C framework for D-CPSS.

The loop in the center stands for the product development process, surrounded by the cyber
space, physical space and social space. The product development process can be classified into
four stages, namely, design, development, testing and delivery. The cyber space is responsible for
conversion, computation and configuration. The physical space and social space deal with connection,
communication, cognition and collective intelligence. The physical space is made up of smart and
connected products, such as smartphones, wristbands, sweeping robots, temperature and humidity
sensors, etc. The social space consists of users, designers, third-party developers, etc. The cyber–social
system bridges the cyber space and social space, providing convenience for the exchange of data,
information, knowledge and insight. Similarly, the cyber–physical system links the cyber space and
physical space for the transfer of data, information, knowledge and insight. Social–physical space
connects social space with physical space.

Connection: in the social space, the users, designers and third-party developers are interconnected
via social media platform, such as online forum and micro blog. The connection is of high efficiency
and low cost by taking advantage of the internet. Correspondingly, in the physical space, the smart
devices are connected via the Internet of Things.

At the first stage, users communicate with the designers via a social media platform in social
space. Key customers engage in the testing of software and offer feedback on the functioning of the



Sensors 2020, 20, 5319 14 of 19

version. User requirements data are transferred to the big data platform in the cyber space. Statistically,
the users’ requirements for the product function show a long tail distribution, which means there is a
high proportion of “head” user requirements. Although the proportion of long tail is low, there exists
valuable information on user requirements, such as customization and personalization.

Conversion: Big data analytics are used to convert the requirement data in the social space to
information on the product function and filter useful information from the massive user feedback.
Then, the information on the functioning is transferred from the cyber space to the social space for the
next stage of development. On the other hand, product data in the physical space are converted into
product working status information. The information on product performance is transferred from the
cyber space to physical space for assessing working status.

At the second stage, Company X focuses on the development of core functions and outsources
the development of non-core functions to third-party developers or customers. This is based on the
communication in the social space among the designers in Company X, users and third-party developers.

Communication: The designers and the users communicate closely and repeatedly to confirm the
product function details in social space. If the function development is out of the capability scope of
Company X, the designers will communicate closely with the third-party developers and outsource
development tasks to third parties. In the physical space, the smart devices in use can send messages
and information to the smartphone via the Internet of Things by machine-to-machine communication.

At the third stage, after the function is developed, Company X selects a large number of users for
prototype testing. Users provide comments and suggestions for improvement after using the product
in social space. Both the good and bad feedback on user experience information are transferred to the
cyber space for computation.

Computation: All the problems that appeared during the testing period are investigated via data
mining or machine learning algorithms in cyber space to figure out the root cause. Based on users’
good feedback, the development experience and approaches are summarized to form development
knowledge for designers to share. The abnormal information (e.g., defect and faults) is sent to the
cyber space for analyzing. The failure mode is generated by modeling and added to the knowledge
library or model library.

Cognition: The knowledge on the development is shared in the social space, while the knowledge
on the product is shared in the physical space. As for the social space, each participant updates their
cognition, including the designers, third-party developers and users. Designers gain new design
thinking from third-party developers. Third-party developers learn the development model and skills
from designers, such as software development thinking for hardware development. As for the physical
space, taking the sweeping robot as an example, it automatically plans routes based on the location of
the trash after the self-learning and self-adaption.

Configuration: The cyber space provides feedback and control for the social space and physical
space. As for the social space, this converts social cognition into insight on the market, supporting
decision-making about when to launch the product. As for the physical space, this converts cognition
into machine intelligence for self-decision-making.

Collective intelligence: In the social space, crowds make the decision on which function will be
equipped on the final product to be launched to the market. In the physical space, taking smart home
devices as an example, the temperature and humidity sensor sensing the indoor environment, the air
conditioning automatically adjusts the temperature according to a sensor.

At the last stage, the product is released on to the market. The users realize their ideas by engaging
in the whole process of development and witness their personal requirements coming into fruition.
With social participation and the interaction with the physical and cyber space, the data in the tri-space
is utilized to generate value.
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4.3. Results

The data-driven thinking integrated the social space, physical space and cyber space.
The information, knowledge and wisdom (i.e., collective intelligence) were exchanged in an accelerating
flow. The CPS, CSS and SPS facilitated the data processing and data analysis for decision-making.
After the implementation of the 7C level framework for D-CPSS, the direct effects were a shorter cycle
time of smart product development, more precise and appealing functions to meet personalized needs,
reduced cost of the development and higher interaction frequency among social space, cyber space
and physical space. The indirect effects were embodied in three aspects, including the users’ viscosity
to the products, more partners providing complementary products or components for the platform
and more users’ involvement in the co-creation process.

5. Discussion

This section discusses theoretical implications, practical implications, limitations and
technical challenges.

5.1. The Theoretical Implications

The proposed framework in this paper has some advantages in comparison with other previous
frameworks, as shown in Table 5.

Table 5. The comparison of the proposed framework with other framework.

Literature [9] [8] This Paper

Framework 5C framework for CPS Six-layered framework
for D-CPSS

7C framework for
D-CPSS

Data centric N/A
√ √

CPS
√ √ √

CPSS N/A
√ √

D-CPSS N/A
√ √

Interaction among social,
physical, cyber space N/A N/A

√

D-I-K-W Data flow, information
flow N/A

√

Smart manufacturing
√ √ √

Social manufacturing N/A
√ √

Collective intelligence N/A N/A
√

A seven-layered framework for D-CPSS is presented from a data-driven perspective. This paper
provides theoretical basis for future research on data-centric CPSS. The theoretical implications of this
paper are as follows:

(1) The proposed 7C model for CPSS contributes to the field of CPSS by extending the scope of the 5C
level framework for CPS. The specific meaning of each level is different from that of 5C, because
social space is considered in each level. The proposed framework deepens the understanding of
data-driven CPSS by presenting the process from data to collective intelligence. It provides new
directions for the future research on D-CPSS. For example, the AI model selection in each level
will affect the efficiency and effectiveness of each level and the final results of D-CPSS.

(2) The data–information–knowledge–wisdom logic can be used in other fields concerning about
data-centric or data-driven complex systems. The DIKW pyramid can be adopted in the
development and implementation of smart systems that have machine intelligence.
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(3) The combination of 7C level model, general data-driven model and CPSS contributed to the
generation of the proposed 7C level framework for D-CPSS, which is a system of systems.
Collective intelligence, as the top level of 7C, emphasizes the power of the crowd. More
social value will be generated based on the interactions among the tri-space. Social factors are
increasingly important.

5.2. The Practical Implications

The proposed framework can be used in practice under the environment of social manufacturing,
which is service-oriented and user-centric. The practical implications are as follows:

(1) The proposed framework can offer references for the transformation from CPS-based smart
manufacturing to CPSS-based social manufacturing. It can be applied to guide the development
of other smart products, such as smart household electrical appliances and smart vehicles.

(2) Humans on a societal level will benefit from the 7C solution. For example, the Internet of Thinking,
Internet of Wisdom and Internet of Communication facilitate the sharing, fusion and generation
of knowledge. Compared with previous approaches, the top level of the 7C model (i.e., collective
intelligence) will generate new social values in the use stage of users, such as new collaborative
information generating from the interaction between human and machine for decision-making.
The proposed framework can provide references for human–machine interaction and collective
intelligence of machine.

5.3. Limitations and Technical Challenges

The D-CPSS can be seen as a system of systems, as it contains CPS, CSS and SPS. The limitation
of this paper is that the interactions among these systems themselves were not investigated.
The implementation of the framework relies on big data analysis and AI models. How to choose
suitable analysis tools and algorithms for each level is a technical challenge that requires further
exploration throughout the process of transformation from data to collective intelligence. Especially,
the collective machine intelligence in physical space depends on a large number of algorithms.

6. Conclusions and Future Perspective

In this paper, we proposed a 7C framework for D-CPSS from a systematic perspective,
including connection, conversion, communication, computation, cognition, configuration and collective
intelligence. Originating from CPS, the evolution and components of CPSS were introduced. We
combined the 7C model with CPSS from a data-centric view and presented the integrated framework
of 7C level D-CPSS for social manufacturing. A general model of D-CPSS from the perspective of the
data chain was proposed. An illustrative example of Company X for product co-creation was given to
examine the framework.

The main contributions of this paper to the field of CPSS can be summarized as follows:

(1) A 7C model for data-driven CPSS along the data–information–knowledge–wisdom (DIKW)
pyramid was proposed, inspired by the perspective of data lifecycle: data source, data collection,
data processing, data analysis and data applications. On the one hand, with connection,
communication, cognition and collective intelligence distributed in both the social space and
physical space, and conversion, computation and configuration located in the cyber space, the
7C model integrated the tri-space of CPSS. On the other hand, corresponding to the seven
levels in the DIKW pyramid, (i.e., data level, data-to-information level, information level,
information-to-knowledge level, knowledge level, knowledge-to-wisdom level and wisdom
level), the 7C model was data-driven. Therefore, the combination of these two aspects supported
the 7C model for data-driven CPSS.

(2) A general model for D-CPSS was proposed, including input, output and processing.
The processing ranged from data collection to data processing and data analytics. From the
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perspective of system engineering, D-CPSS was seen as the processing block. To support social
manufacturing, a large volume of data-based applications was generated via D-CPSS. Data from
cyber space, physical space and social space were the data source of D-CPSS.

(3) We proposed a 7C framework for D-CPSS under a social manufacturing context. Interactions
among the social space, cyber space, and physical space were detailed. Compared with CPS and
traditional CPSS, D-CPSS under social manufacturing emphasized the importance of social factors
and being data-driven. Level 1, level 3, level 5 and level 7 in the 7C model are distributed in both
the social space and physical space; level 2, level 4 and level 6 in the 7C model are located in the
cyber space. The interactions among the tri-space of D-CPSS were along the DIKW pyramid.

As D-CPSS is promising and has great potential in social manufacturing, there are challenges that
need to be addressed in the future research as follows.

(1) Privacy and security of D-CPSS is a big challenge, including, for example, data protection for user
authentication [37]. With the development of the Internet of Things (IoT), an increasing amount
of devices and humans are involved in the CPSS; the privacy protection and cyber security of
users is a future research direction. Blockchain-based mobile-edge computing is promising to
address this challenge [38].

(2) D-CPSS is still in its infancy stage; especially, machine intelligence requires much more research
work. With the development of Artificial Intelligence technologies, the devices will be much more
intelligent and autonomous. The interaction and interoperability between the physical space and
social space is a direction for future research.

(3) The CPSS can be viewed as an ecosystem, consisting of social space, physical space and cyber space.
The actors in the CPSS are heterogeneous. The manufacturing resource sharing mechanisms,
such as the knowledge sharing mechanism in D-CPSS, call for deeper investigation to guide the
operation of CPSS.

Author Contributions: Conceptualization, D.Y.; Data curation, X.Z.; Formal analysis, X.Z.; Funding acquisition,
X.M.; Investigation, X.M.; Methodology, D.Y.; Project administration, X.M.; Software, X.Z.; Supervision, X.M.;
Validation, D.Y.; Writing—original draft, D.Y.; Writing—review and editing, D.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number [71632008],
and the National Science and Technology Major Project, grant number [2017-I-0007-0008] and [2017-I-0011-0012].
The APC was funded by the National Natural Science Foundation of China, grant number [71632008], the National
Science and Technology Major Project, grant number [2017-I-0007-0008] and [2017-I-0011-0012].

Acknowledgments: The authors would like to thank the SJTU Innovation Center of Producer Service Development,
the Shanghai Research Center for industrial Informatics, for their support of this research. The authors would also
like to thank the reviewers and editors for their helpful and kind suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, P.; Ding, K. Analysis of personalized production organizing and operating mechanism in a social
manufacturing environment. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 232, 2670–2676. [CrossRef]

2. Shang, X.; Shen, Z.; Xiong, G.; Wang, F.-Y.; Liu, S.; Nyberg, T.R.; Wu, H.; Guo, C. Moving from mass
customization to social manufacturing: A footwear industry case study. Int. J. Comput. Integr. Manuf. 2018,
32, 194–205. [CrossRef]

3. Shiroishi, Y.; Uchiyama, K.; Suzuki, N. Society 5.0: For Human Security and Well-Being. Computer 2018, 51,
91–95. [CrossRef]

4. Bereket Abera, Y.; Yannick, N.; Hervé, P. Introduction to Personalisation in Cyber-Physical-Social Systems.
In Proceedings of the On the Move to Meaningful Internet Systems, OTM 2018 Workshops, Valletta, Malta,
22–26 October 2018; pp. 25–35.

5. Gunes, V.; Peter, S.; Givargis, T.; Vahid, F. A survey on concepts, applications, and challenges in cyber-physical
systems. Trans. Internet Inf. Syst. 2014, 8, 4242–4268.

http://dx.doi.org/10.1177/0954405417699016
http://dx.doi.org/10.1080/0951192X.2018.1550675
http://dx.doi.org/10.1109/MC.2018.3011041


Sensors 2020, 20, 5319 18 of 19

6. Nunes, D.S.; Zhang, P.; Silva, J.S. A Survey on Human-in-the-Loop Applications Towards an Internet of All.
IEEE Commun. Surv. Tutor. 2015, 17, 944–965. [CrossRef]

7. Zhang, J.J.; Wang, F.Y.; Wang, X.; Xiong, G.; Zhu, F.; Lv, Y.; Hou, J.; Han, S.; Yuan, Y.; Lu, Q.; et al.
Cyber-physical-social systems: The state of the art and perspectives. IEEE Trans. Comput. Soc. Syst. 2018, 5,
829–840. [CrossRef]

8. Bin, G.; Zhiwen, Y.; Xingshe, Z. A Data-Centric Framework for Cyber- Physical-Social Systems. IEEE Intell.
Syst. 2015, 17, 4–7.

9. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing
systems. Manuf. Lett. 2015, 3, 18–23. [CrossRef]

10. Krugh, M.; Mears, L. A complementary Cyber-Human Systems framework for Industry 4.0 Cyber-Physical
Systems. Manuf. Lett. 2018, 15, 89–92. [CrossRef]

11. Zhou, J.; Li, P.; Zhou, Y.; Wang, B.; Zang, J.; Meng, L. Toward New-Generation Intelligent Manufacturing.
Engineering 2018, 4, 11–20. [CrossRef]

12. Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards
intelligent manufacturing. Int. J. Prod. Res. 2019. [CrossRef]

13. Wang, F.Y. The Emergence of Intelligent Enterprises: From CPS to CPSS. IEEE Intell. Syst. 2010, 25, 85–88.
[CrossRef]

14. Wang, P.; Yang, L.T.; Li, J.; Chen, J.; Hu, S. Data fusion in cyber-physical-social systems: State-of-the-art and
perspectives. Inf. Fusion 2019, 51, 42–57. [CrossRef]

15. De, S.; Zhou, Y.; Larizgoitia Abad, I.; Moessner, K. Cyber-physical-social frameworks for urban big data
systems: A survey. Appl. Sci. 2017, 7, 1017. [CrossRef]

16. Amit, S.; Pramod, A.; Cory, H. Physical-Cyber-Social Computing: An Early 21st Century Approach. IEEE
Intell. Syst. 2013, 28, 78–82.

17. Yao, X.; Zhou, J.; Lin, Y.; Li, Y.; Yu, H.; Liu, Y. Smart manufacturing based on cyber-physical systems and
beyond. J. Intell. Manuf. 2017, 1–13. [CrossRef]

18. Frazzon, E.M.; Hartmann, J.; Makuschewitz, T.; Scholz-Reiter, B. Towards socio-cyber-physical systems in
production networks. Procedia Cirp 2013, 7, 49–54. [CrossRef]

19. Zhang, X.; Yu, T.; Xu, Z.; Fan, Z. A cyber-physical-social system with parallel learning for distributed energy
management of a microgrid. Energy 2018, 165, 205–221. [CrossRef]

20. Zeng, J.; Yang, L.T.; Lin, M.; Ning, H.; Ma, J. A survey: Cyber-physical-social systems and their system-level
design methodology. Future Gener. Comput. Syst. 2016. [CrossRef]

21. Ning, H.; Liu, H.; Ma, J.; Yang, L.T.; Huang, R. Cybermatics: Cyber–physical–social–thinking hyperspace
based science and technology. Future Gener. Comput. Syst. 2016, 56, 504–522. [CrossRef]

22. Marta, S.; Angelink, M.; Juergen, M.; Biffl, S.; Tu, W. Collective Intelligence Aspects of Cyber-Physical
Social Systems: Results of a Systematic Mapping Study. In Proceedings of the ACM Collective Intelligence
Conference, Zurich, Switzerland, 7–8 July 2018; pp. 1–4.

23. Yao, X.; Lin, Y. Emerging manufacturing paradigm shifts for the incoming industrial revolution. Int. J. Adv.
Manuf. Technol. 2016, 85, 1665–1676. [CrossRef]

24. Ding, K.; Jiang, P. Incorporating Social Sensors and CPS Nodes for Personalized Production under Social
Manufacturing Environment. Procedia CIRP 2016, 56, 366–371. [CrossRef]

25. Ding, K.; Jiang, P. Incorporating social sensors, cyber-physical system nodes, and smart products for
personalized production in a social manufacturing environment. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
2017, 232, 2323–2338. [CrossRef]

26. Zeng, J.; Yang, L.T.; Ma, J. A System-Level Modeling and Design for Cyber-Physical-Social Systems. Acm
Trans. Embed. Comput. Syst. 2016, 15, 1–26. [CrossRef]

27. Gang, X.; Fenghua, Z.; Xiwei, L.; Xisong, D.; Wuling, H.; Songhang, C.; Kai, Z. Cyber-physical-social System
in Intelligent Transportation. IEEE CAA J. Autom. Sin. 2015, 2, 320–333. [CrossRef]

28. Dao, M.S.; Pongpaichet, S.; Jalali, L.; Kim, K.; Jain, R.; Zettsu, K. A real-time complex event discovery
platform for cyber-physical-social systems. In Proceedings of the ICMR 2014, ACM International Conference
on Multimedia Retrieval, Glasgow, Scotland, 1–4 April 2014; pp. 201–208.

29. Zhong, L.; Dong Sheng, Y.; Ding, W.; Wei Ming, Z. Cyber-Physical-Social Systems for Command and Control.
IEEE Intell. Syst. 2011, 26, 92–96.

http://dx.doi.org/10.1109/COMST.2015.2398816
http://dx.doi.org/10.1109/TCSS.2018.2861224
http://dx.doi.org/10.1016/j.mfglet.2014.12.001
http://dx.doi.org/10.1016/j.mfglet.2018.01.003
http://dx.doi.org/10.1016/j.eng.2018.01.002
http://dx.doi.org/10.1080/00207543.2019.1607978
http://dx.doi.org/10.1109/MIS.2010.104
http://dx.doi.org/10.1016/j.inffus.2018.11.002
http://dx.doi.org/10.3390/app7101017
http://dx.doi.org/10.1007/s10845-017-1384-5
http://dx.doi.org/10.1016/j.procir.2013.05.009
http://dx.doi.org/10.1016/j.energy.2018.09.069
http://dx.doi.org/10.1016/j.future.2016.06.034
http://dx.doi.org/10.1016/j.future.2015.07.012
http://dx.doi.org/10.1007/s00170-015-8076-0
http://dx.doi.org/10.1016/j.procir.2016.10.057
http://dx.doi.org/10.1177/0954405417716728
http://dx.doi.org/10.1145/2834119
http://dx.doi.org/10.1109/JAS.7152667


Sensors 2020, 20, 5319 19 of 19

30. Leng, J.; Jiang, P.; Liu, C.; Wang, C. Contextual self-organizing of manufacturing process for mass
individualization: A cyber-physical-social system approach. Enterp. Inf. Syst. 2018, 1–26. [CrossRef]

31. Jiang, P. Social Manufacturing Paradigm: Concepts, Architecture and Key Enabled Technologies. In Social
Manufacturing: Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2019;
pp. 13–50.

32. Jiang, P.; Leng, J.; Ding, K.; Gu, P.; Koren, Y. Social manufacturing as a sustainable paradigm for mass
individualization. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 1961–1968. [CrossRef]

33. Xue, X.; Wang, S.; Zhang, L.-j.; Feng, Z.-y. Evaluating of dynamic service matching strategy for social
manufacturing in cloud environment. Future Gener. Comput. Syst. 2019, 91, 311–326. [CrossRef]

34. Ding, K.; Jiang, P.Y. Social Sensors (S2ensors): A Kind of Hardware-Software-Integrated Mediators for Social
Manufacturing Systems Under Mass Individualization. Chin. J. Mech. Eng. 2017, 30, 1150–1161. [CrossRef]

35. Jiang, P.; Ding, K.; Leng, J. Towards a cyber-physical-social-connected and service-oriented manufacturing
paradigm: Social Manufacturing. Manuf. Lett. 2016, 7, 15–21. [CrossRef]

36. Zheng, P.; Xu, X.; Chen, C.-H. A data-driven cyber-physical approach for personalised smart, connected
product co-development in a cloud-based environment. J. Intell. Manuf. 2018. [CrossRef]

37. Lee, K.; Esposito, C.; Lee, S. Vulnerability Analysis Challenges of the Mouse Data Based on Machine Learning
for Image-Based User Authentication. IEEE Access 2019, 7, 177241–177253. [CrossRef]

38. Zhang, S.; Lee, J. A Group Signature and Authentication Scheme for Blockchain-Based Mobile-Edge
Computing. IEEE Internet Things J. 2020, 7, 4557–4565. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/17517575.2018.1470259
http://dx.doi.org/10.1177/0954405416666903
http://dx.doi.org/10.1016/j.future.2018.08.028
http://dx.doi.org/10.1007/s10033-017-0167-4
http://dx.doi.org/10.1016/j.mfglet.2015.12.002
http://dx.doi.org/10.1007/s10845-018-1430-y
http://dx.doi.org/10.1109/ACCESS.2019.2956819
http://dx.doi.org/10.1109/JIOT.2019.2960027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	From CPS to CPSS 
	CPSS 
	Social Manufacturing 
	Research Gap 

	A 7C Level Framework for D-CPSS 
	7C Model for CPSS 
	Connection 
	Conversion 
	Communication 
	Computation 
	Cognition 
	Configuration 
	Collective Intelligence 

	D-CPSS 
	The Components of D-CPSS 
	A General Model for D-CPSS 

	A 7C Level Framework for D-CPSS towards Social Manufacturing 

	Illustrative Example 
	Example Description 
	Application of 7C Framework for D-CPSS in Smart Product Development 
	Results 

	Discussion 
	The Theoretical Implications 
	The Practical Implications 
	Limitations and Technical Challenges 

	Conclusions and Future Perspective 
	References

