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ksavci@ieee.org

* Correspondence: gabriele.pavan@uniroma2.it

Received: 31 July 2020; Accepted: 7 September 2020; Published: 11 September 2020
����������
�������

Abstract: In the system-level design for both conventional radars and noise radars, a fundamental
element is the use of waveforms suited to the particular application. In the military arena,
low probability of intercept (LPI) and of exploitation (LPE) by the enemy are required, while in the
civil context, the spectrum occupancy is a more and more important requirement, because of the
growing request by non-radar applications; hence, a plurality of nearby radars may be obliged to
transmit in the same band. All these requirements are satisfied by noise radar technology. After an
overview of the main noise radar features and design problems, this paper summarizes recent
developments in “tailoring” pseudo-random sequences plus a novel tailoring method aiming for
an increase of detection performance whilst enabling to produce a (virtually) unlimited number of
noise-like waveforms usable in different applications.

Keywords: noise radar technology; noise waveforms; peak sidelobe level; ambiguity function;
waveform design; peak-to-average-power-ratio

1. Introduction

Noise radar technology (NRT) is based on the transmission of random waveforms as opposed to
the classical, often sophisticated, deterministic radar signals [1,2]. Both NRT and “deterministic radar”
technology use the “matched filter”, or an approximation of it, to maximize the signal-to-noise ratio
(SNR). In a conventional radar, a single waveform (or a finite set of waveforms), is used for transmission
and reception with matched filtering. Conversely, NRT is able to transmit a—virtually unlimited—set
of realizations (i.e., “sample functions”) of a random process, with the pertaining matched filter set up
in real time to implement the well-known “correlation receiver”. NRT was conceived long ago [3],
but its practical interest revamped around the 2000s with the advancements in digital acquisition,
processing, and generation of signals plus, in the military sector, with the increasing need for low
probability of intercept (LPI) radars. The main advantages of NRT are recalled here.

• Hard, if not impossible, exploitation of the transmitted signals by an enemy party aimed to
intercept, classify, identify (and possibly jam) the radar. The low probability of intercept, i.e.,
the reduced visibility of radar signals by ESM (electronic support measures) and ELINT (electronic
intelligence) systems [4] is significantly enhanced by the random nature of NRT signals. The low
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probability of intercept and low probability of exploitation by a hostile counterpart will be
analysed in more detail in a companion paper to be submitted on the counter-interception and
counter-exploitation features of NRT.

• Limitation of the mutual interferences to/from many radars located in a crowded environment
and operating in a limited frequency band. In fact, using NRT the interfered radar perceives and
treats the interference as a kind of noise [5,6]. This feature will be more and more important in
the developments of marine radars, due to their use of solid-state transmitters, having much
greater “duty cycle” (longer pulses) than the legacy magnetron [7], as well as in automotive
applications, [8] because of the more and increasing number of used automotive radars, causing a
high spatial density of these particular radar sets.

• Favourable shape of the “ambiguity function”. The ambiguity function [1,2] of a radar waveform
defines its “selectivity” both in distance, i.e., in radar range (proportional to the time delay) and
in radial velocity (proportional to the frequency shift due to the Doppler effect). The ambiguity
function of a conceptual waveform made up by an infinitely long realization of “white noise”
(i.e., with duration T and bandwidth B both going to infinity) tends to a Dirac’s “delta-shape”
function with an ambiguity level going to zero. However, in all real applications both B and
T are limited, and the peak side lobe ratio (PSLR) of the ambiguity function has a mean value
close to the “processing gain” B·T (hereafter, BT). Both bandwidth and duration are practically
limited. The limitations on B come from many factors, including the constraints on the usable
portion of the electromagnetic spectrum [9]. Those on T depend (i) on the dynamic behaviour
(“decorrelation time”, TC) of the radar cross section of most targets and (ii) on the dwell time, TD,
and the pertaining type of radar processing. Echoes from moving targets (vehicles) have some
typical decorrelation time TC (related to the signal fluctuation) of the rough order of hundreds of
milliseconds. Doppler effect may pose a further limitation on the coherent signal integration time
T, imposed to be smaller than both TC and TD, and typically in the order of tens or hundreds of
milliseconds. With an exemplary bandwidth of 50 MHz and an exemplary value of T = 20 ms,
the processing gain of a continuous-emission (CE) noise radar is of the order of one million.
The resulting average PSLR is about 60 dB, which is acceptable in many radar applications,
when the “fourth power of distance” term does not affect too much the needed dynamic range.

A comparison between the ambiguity function of a typical application of the NRT (Figure 1a) and of
two deterministic radar signals (non-linear frequency modulation (NLFM), Figure 1b, and 13-elements
Barker code [2], Figure 1c) are shown in Figure 1.

Concerning practical radar implementations, the disadvantages of NRT are mainly due to the
use of a real-time correlation receiver/processor, with a burden, for computation and analog-to-digital
conversion, significantly greater than a classical frequency modulated, continuous wave (FM-CW) radar.

The sampling rate of digital correlation in NRT needs to cover the full frequency band, e.g.,
50 MHz when a resolution of 3 m is required. On the other side, FM-CW signals are treated by the
de-ramping (or homodyne) receiver principle [10], where the correlation is performed by “de-chirping”,
followed by a bank of video filters. This operation is based on beating the received signal with a
replica of the transmitted one (a frequency ramp), extracting the baseband spectrum via analog filtering
and finally obtaining the correlation; hence, the “Range” of targets, via fast Fourier transform (FFT).
This procedure permits the usage of analog-to-digital converters (ADCs) with low sampling rates
and high dynamic range, as not the full RF bandwidth but a much narrower base-band converted
signal [11] has to be sampled, with a relatively low maximum frequency related to the maximum
target distance.
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Figure 1. Ambiguity function (values in dB for (a,b) and in linear scale for (c)): (a) Noise waveform 
(BT = 100); (b) non-linear frequency modulated (NLFM) “chirp” signal (BT = 100), and (c) 13-elements 
Barker code. The low and impractical BT values are here chosen for the clarity of display. 
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international regulations on the electromagnetic spectrum) and ௠ܶ௔௫ (ܴ௠௔௫) by the application, an 
increase of ߚ ; hence, of T for the prescribed ௠ܶ௔௫ , implies a reduction of the slope ܤ/ܶ  of the 
frequency-vs-time law. The resulting increase of the unwanted Range–Doppler coupling makes the 
FM-CW radar less flexible in terms of choice of T than a continuous emission (CE) noise radar. 

For a range resolution of 3 m, i.e., a height of the ramp ܤ = 50 MHz and a duration ܶ = 1 ms 
(compatible with a maximum range ܴ௠௔௫ = 30 km, i.e., ߚ = 5), the beat frequencies, in the FM-CW 
case, are between 0 and 10 MHz, i.e., the sampling rate is five times less than the NRT, with and a 
much cheaper processing than a full correlation. This example clarifies that noise radar technology 
can be preferred (for example, over the simple FM-CW solution) when there are precise requirements 
concerning either a high resolution in Range and in Doppler (calling for a “thumbtack-like” 
ambiguity function of the pseudorandom signals), or the radiation of many “nearly-orthogonal” 
signals with minimal “cross-correlation” and LPI/LPE features. 

Having defined the main signal parameters (duration, bandwidth, …), another remaining 
flexibility in the system design of a noise radar is the possibility to select the peak-to-average power 
ratio (PAPR) of each radiated waveform ݃(ݐ), here defined by its samples ݃[݇] with ݇ = 1, 2, … , ܰ, 
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The FM-CW signals and the other deterministic waveforms (e.g., chirp, Barker, Polyphase codes, 
etc. [1,2]) generally have ܴܲܲܣ = 1, i.e., exhibit phase/frequency only modulation. Because of their 
unitary modulus, they can be named “unimodular”. Of course, an arbitrary, or noise, waveform 
(unless hard-limited, i.e., amplitude saturated) has a ܴܲܲܣ greater than the unity, which depends 

Figure 1. Ambiguity function (values in dB for (a,b) and in linear scale for (c)): (a) Noise waveform
(BT = 100); (b) non-linear frequency modulated (NLFM) “chirp” signal (BT = 100), and (c) 13-elements
Barker code. The low and impractical BT values are here chosen for the clarity of display.

In most FM-CW radars the duration T of the ramp is related to the maximum delay Tmax = 2Rmax/c
(compatible with the maximum range Rmax) by Tmax ≤ T/β with β > 1. The related energy loss at
Rmax is equal to L = 10·log10(1− 1/β). To limit L below one dB, β must be not less than five (for β = 5,
L � 0.97 dB; for β = 6, L � 0.8 dB). However, once fixed both B (by the international regulations on
the electromagnetic spectrum) and Tmax (Rmax) by the application, an increase of β; hence, of T for
the prescribed Tmax, implies a reduction of the slope B/T of the frequency-vs-time law. The resulting
increase of the unwanted Range–Doppler coupling makes the FM-CW radar less flexible in terms of
choice of T than a continuous emission (CE) noise radar.

For a range resolution of 3 m, i.e., a height of the ramp B = 50 MHz and a duration T = 1 ms
(compatible with a maximum range Rmax = 30 km, i.e., β = 5), the beat frequencies, in the FM-CW
case, are between 0 and 10 MHz, i.e., the sampling rate is five times less than the NRT, with and a
much cheaper processing than a full correlation. This example clarifies that noise radar technology
can be preferred (for example, over the simple FM-CW solution) when there are precise requirements
concerning either a high resolution in Range and in Doppler (calling for a “thumbtack-like” ambiguity
function of the pseudorandom signals), or the radiation of many “nearly-orthogonal” signals with
minimal “cross-correlation” and LPI/LPE features.

Having defined the main signal parameters (duration, bandwidth, . . . ), another remaining
flexibility in the system design of a noise radar is the possibility to select the peak-to-average power
ratio (PAPR) of each radiated waveform g(t), here defined by its samples g[k] with k = 1, 2, . . . , N,
being fs the sampling frequency and N = fs·T:

PAPR =

max
k

∣∣∣g[k]∣∣∣2
1
N

∑N
k=1

∣∣∣g[k]∣∣∣2 (1)



Sensors 2020, 20, 5187 4 of 26

The FM-CW signals and the other deterministic waveforms (e.g., chirp, Barker, Polyphase codes,
etc. [1,2]) generally have PAPR = 1, i.e., exhibit phase/frequency only modulation. Because of their
unitary modulus, they can be named “unimodular”. Of course, an arbitrary, or noise, waveform
(unless hard-limited, i.e., amplitude saturated) has a PAPR greater than the unity, which depends
on its statistics. Amplitude saturation upstream the matched filter reduces the signal energy; hence,
causing a detection loss: Table 1 shows the signal-to-noise ratio (SNR) losses as related to the PAPR, i.e.:
Loss[dB] = −10·log10(PAPR). Amplitude saturation losses are not present when using a unimodular
noise waveform, i.e., when saturation/hard limiting is applied in the waveform generation (i.e.,
choosing a “phase-only modulation”). However, a unimodular waveform has a reduced number of
degrees of freedom, i.e., a number BT of phase values in place of 2BT “real” degrees of freedom, i.e.,
amplitude and phase pairs, or equivalently, I and Q (in-phase and quadrature) pairs.

Table 1. Signal-to-noise ratio (SNR) loss (dB) versus peak-to-average power ratio (PAPR).

PAPR Loss (dB)

1.0 0.0
1.25 0.97
1.5 1.76
1.75 2.43
2.0 3.01
3.0 4.77
5.0 6.99
7.0 8.45
10.0 10.0

An effective noise radar operation requires a large enough BT granting: (i) the radiated signals
to appear “noise-like”, i.e., random to any hostile counterpart, (ii) high range resolution, and (iii)
detectability of small targets in the presence of the Range (and possibly, Doppler) sidelobes of the
response of stronger targets at different ranges. These “interfering” targets may have not only a
large radar cross section, but also shorter ranges with respect to the wanted targets, causing very
strong disturbing returns. Hence, spectrum and time resources have to be fully exploited, leading to a
continuous emission (CE) [12] preferred architecture, as shown in Figure 2a,b. Note that in Figure 2 the
unavoidable leakage due to antenna coupling has been shown.

The architecture shown in Figure 2b circumvents the problem of the non-ideal transmitting
channel but implies the cost of a wideband reference channel and of an additional fast analog to digital
convertor (ADC). A final consideration is that continuous emission is needed to best exploit the LPE
feature: the absence of the edges of pulses (as well as the random modulation) makes it difficult to
extract the signal features. This relevant topic, beyond the scope of this introductory paper, will be
treated in an ensuing work.

As anticipated, the “leakage” from the transmitting to the receiving path due to the antenna
coupling (Figure 2) is a critical problem with CE operation. This effect is someway similar to a strong
target very close to the radar and depends on the antenna system and the RF connections. Coupling
affects the radar operation at close or medium distance due to the sidelobes of the autocorrelation
function of the radiated waveform. In addition to a careful antenna design, an effective way to
counteract this damaging phenomenon is to transmit waveforms with low Range sidelobes.
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Figure 2. Basic Block Diagram. (a) The reference is the digital record of the transmitted code; (b) the 
reference is the record of the transmitted signal at the antenna port; ADC = Analog-to-Digital-
Converter; DAC = Digital-to-Analog-Converter. 
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In principle, noise from physical phenomena (e.g., “thermal noise” in amplifiers or Zener diodes) 
can be used as a random source. However, ordinary analogue noise generators suffer from important 
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on the unpredictability of the signals, in principle this feature would be compromised if pseudo-
random sequences should be used instead of “pure noise”. However, nowadays it is easy to generate 
pseudo-random signals of such complexity, and with a repetition period [13,14], so long as to make 
signal analysis and reproduction practically unfeasible. 
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Figure 2. Basic Block Diagram. (a) The reference is the digital record of the transmitted code; (b) the
reference is the record of the transmitted signal at the antenna port; ADC = Analog-to-Digital-Converter;
DAC = Digital-to-Analog-Converter.

2. Noise Waveforms Properties

2.1. Deterministic Waveforms and Noise Waveforms

Concerning the properties of the NRT waveforms, it is useful to clarify the significance of
“randomness” in this context. Of course, if randomness is used in its meaning of “unpredictability”,
only “pseudorandom” signals may be generated and transmitted. A pseudorandom sequence [13] is
defined (in cryptology, for example), as one which passes some statistical tests suited to the particular
application. In the military field, such a signal is unknown to the enemy and unpredictable by it.

In principle, noise from physical phenomena (e.g., “thermal noise” in amplifiers or Zener
diodes) can be used as a random source. However, ordinary analogue noise generators suffer from
important limitations in accuracy/resolution and dynamic range, often making their use impractical
and generally not complying with most applications. Hence, as it happens in most cryptographic
applications, the preferred implementation of the NRT waveforms is the “digital” one, i.e., using a
pseudo-random-number-generator (PRNG) [13]. As the desirable LPI/LPE capabilities of NRT rely on
the unpredictability of the signals, in principle this feature would be compromised if pseudo-random
sequences should be used instead of “pure noise”. However, nowadays it is easy to generate
pseudo-random signals of such complexity, and with a repetition period [13,14], so long as to make
signal analysis and reproduction practically unfeasible.

However, a “pure digital noise”, e.g., a Gaussian noise sequence with some suitable spectral
density in the radar band, is not always a good choice for NRT systems because of two main problems.
First, a “PAPR problem”: most radar transmitters operate in saturation, i.e., emit with constant
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envelope; the penalty in the radar power budget for transmitting noise waveforms with a relatively
large PAPR is shown Table 1 and may be too large for many applications. Secondly, in noise radar the
correlation processing of echoes of duration T and bandwidth B generates the well-known “random
fluctuations” of the sidelobes as described in the following. In any ordinary radar using a “deterministic”
waveform g(t) the peak sidelobe ratio (PSLR) is defined as the ratio between the highest sidelobe of
the autocorrelation function (ACF) of g(t) and the maximum value of the ACF. In noise radar, due to
the “stochastic” nature of the sidelobes (Section 2.2), we have to define a (statistical) Peak Sidelobe
Level PSL, which is not exceeded with a given probability. Such a PSL depend on the particular type
of noise waveform and, for the reasons explained in the following, can be estimated as

PSLdB = −10·log10(BT) + K (2)

with K being a constant value, depending on the chosen probability and generally in the range 10–12
dB. The statistics of PSL are analysed in Section 2.2.

Nowadays, interest is growing in “tailored” pseudorandom waveforms able to suppress the
range sidelobes of the autocorrelation function in a particular delay interval. Powerful algorithms,
in particular those said CAN (cyclic algorithm new), are analysed in [15]. Their main limitations
are mostly related to the bandwidth constraints often associated to each operating environment.
To mitigate these limitations a novel algorithm, named band limited algorithm for sidelobes attenuation
(BLASA), has been presented in [16]. A much simpler technique to suppress the sidelobes in a range
interval of interest will be described in Section 3 with some results. Its main advantage over CAN and
BLASA is their low computational burden, especially for high BT values.

2.2. Statistical Properties of Autocorrelation Function, Sidelobes, and Power Spectrum

Let g(t) = X(t) + jY(t) be the complex envelope of a realization of an ergodic, stationary,
and band-limited random process. The autocorrelation function (ACF) of g(t) is defined as

R(τ) =

+∞∫
−∞

g∗(t)g(τ+ t)dt (3)

The power spectral density (PSD) of the complex envelope, i.e., the Fourier transform of R(τ),
is supposed as symmetrical around f = 0, with bilateral band B, i.e., from −B

2 to +B
2 . Hence, the real

part X(t) and the imaginary part Y(t) of g(t) give an equal (50%) contribution to R(τ), which is a
real function. After a maximum delay T/2 we may suppose that R(τ) practically vanishes, being T
the “coherent processing interval”, whose value is related to the “time on target” (depending on the
antenna rotation rate, and/or on the target velocity) and to the echo decorrelation. In practice T is
much greater than the delay of the farthest target Tmax, which defines the maximum range of interest
Rmax = cTmax

2 .

We consider a sampled version of the ACF, i.e., R(kTs)
def
= R[k] obtained by sampling g(t) at

frequency Fs = kF
1
Ts

= kFB where kF is the oversampling factor. In practical applications it is set kF > 1,
but for the sake of simplicity, we consider here the ideal case kF = 1. Hence, each waveform at hand is

described by a number NF
def
= int(B·T)� 1 of (theoretically) uncorrelated samples. These NF samples

barely contain the information embedded in the random process g(t), i.e., its PSD S( f ) and the related
Fourier transform R(τ) in the interval −T

2 < τ < +T
2 .

The sampled version of R(τ) is

R[k] =
+NF/2∑

i=−NF/2

g∗i ·gi+k −
NF

2
≤ k ≤ +

NF

2
(4)
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with max
k

{
R[k]

}
= R[0]. Let us consider the ratio:

ρk
def
=

R[k]
R[0]

=

∑NF/2
i=−NF/2 g∗i ·gi+k∑NF/2

i=−NF/2

∣∣∣gi
∣∣∣2 (5)

which of course represents the sample correlation coefficient of the process. For a real process, ρk is
real with values in the range −1 ≤ ρk ≤ +1; the statistical distribution of ρk has been studied by
Fisher [17], who showed that when NF � 1, ρk is approximately Gaussian-distributed with expected
value ηρk � ρTrue (i.e., the true correlation coefficient of the generating random process; we do not
mention its dependence on k for the sake of simplicity) and variance σ2

ρk
� 1

NF−3 . Note that ρTrue is the
“true value” of the correlation coefficient, while ρk is the “sample” correlation coefficient.

Defining the absolute value r =
∣∣∣ρk

∣∣∣, when considering the case of interest in which ρTrue � 1, i.e.,
the sidelobes region of the autocorrelation function, simple computations show that, for a real signal,

the random variable r has an expected value of ηr =
√

2
π ·

1
NF

.

For a complex process g(t), when
∣∣∣ρTrue

∣∣∣ � 1, it results Im[ρk] � 0 having supposed the PSD
symmetrical around f = 0 and NF � 1. Decreasing

∣∣∣ρTrue
∣∣∣, Im[ρk] increases and when

∣∣∣ρTrue
∣∣∣ � 0

(sidelobes region of the ACF) the real and the imaginary part of ρk give a nearly equal contribution to
∣∣∣ρk

∣∣∣,
being both, approximately, Gaussian-distributed with zero mean value (ρTrue � 0) and same variance
σ2

Re[ρk]
= σ2

Im[ρk]
� 1

2NF
. Hence, for

∣∣∣ρTrue
∣∣∣ � 0, the sidelobes have a random behaviour and the output of

the correlation filter (we assume that matched filtering is used) is a complex signal similar to receiver
noise, i.e., the aforementioned normalized sidelobe level r =

∣∣∣ρk
∣∣∣ becomes a Rayleigh-distributed

random variable with the well-known “probability density function” (PDF) f (r) and the “cumulative
distribution function” (CDF) F(r):

f (r) =
r

a2
Ray

exp

− r2

2a2
Ray

U(r) (6)

F(r) =

1− exp

− r2

2a2
Ray


U(r) (7)

where U(·) is the unitary step and a2
Ray

def
= 1

2NF
. In the following, we substitute NF with the more

significant product BT; hence, the mean value and the standard deviation of r result:

ηr =

√
π

4BT
σr =

√
1

2BT

(
2−

π
2

)
= ηr

√
4
π
− 1 (8)

Now, we may rewrite the CDF of r, or its complement Q(r) = 1 − F(r), as a function of the
parameter K (in dB) introduced in Equation (2) and rewritten here:

rK(dB) = −10·log10(BT) + K (9)

Equation (9) in linear scale becomes

rK = 10
rK(dB)

20 =
1
√

BT
·100.05·K (10)

and the resulting probability P{r > rK} = Q(rK) is

Q(rK) = e
−

r2
k

2a2
Ray = e−r2

k ·BT = e−100.1·K
(11)
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For K = 0 dB, it results P
{
r(dB) > −10·log10(BT)

}
= e−1 � 0.3679. Varying K from 0 dB up to 14 dB,

Equation (11) is drawn as in Figure 3.Sensors 2020, 20, x FOR PEER REVIEW 8 of 25 
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From Equation (11), the Rayleigh CDF of r results:

F(rK) = 1− e−100.1·K
(12)

Hereafter we will assume BT � 1 and in the sidelobes region (i.e., for
∣∣∣ρTrue

∣∣∣ � 0) the PSL, i.e.,

rp
def
= max{rK}, can be defined as the one having a prescribed probability (hereafter named 1− δ) of not

being exceeded in the whole sidelobe region of the ACF (with about NF � BT sidelobes). Outside the
main lobe region, the CDF of the maximum sidelobe rp, Equation (12), becomes

Fp(rK) = [F(rK)]
Np =

[
1− e−100.1·K ]Np

(13)

where NP = int
{

BT
2 − 1

}
.

For K = 0, Fp(r0) =
[
1− e−1

]Np
� 0 being Np � 1 (BT � 1) and the probability that rp exceeds

−10·log10(BT) is very close to the unit.
Posing Fp(rK) = 1− δ and solving Equation (13), the corresponding value of K (in dB) is

K = 10·log10
[
−ln

(
1−

Np√1− δ
)]

(14)

Figure 4 shows Equation (14) varying BT from 103 to 106 and δ from 10−3 to 0.9. Probability values
δ in the order of 0.05 to 0.2 justify in Equation (2) the values of K in the range 10–12 dB to estimate the
PSL for the, usually large, values of BT (order of 104–106).

The sidelobes structure depends on the power spectral density of the generating noise. In the
following it will be analyzed first in the exemplary case of uniform spectrum, then in the case of
spectral shaping.
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2.2.1. Noise Waveforms with Uniform Power Spectrum

First, we consider a noise with bandwidth B and “uniform” power spectrum between
[
−

B
2 ,+B

2

]
:

S0( f ) =
1
B

rect
(

f −
B
2

)
(15)

The variance (mean square frequency value) of S0( f ) is B2

12 and the corresponding ACF, equal to
the correlation coefficient, is

ρ0(τ) =
sin(πBτ)
πBτ

(16)

A “transition delay” τ∗ may be defined equating the sidelobes envelope, given by the denominator
of Equation (16), to the average random sidelobes level given by Equation (8):

ηr =

√
π

4BT
.
=

1
πBτ∗

(17)

corresponding to τ∗ =
√

4T
π3B . This delay τ∗ divides the time axis in two intervals: the first (0, τ∗) in

which the different realizations of the normalized ACF are very close to each other, in the main lobe and,
possibly, in the first sidelobes; the second: τ > τ∗ (sidelobes region, after the transition zone), where the
estimated mean value of the normalized ACF converges to the theoretical one, i.e.,

√
π

4BT . In fact, for a
single realization of the ACF, the sidelobes fluctuate according to the Rayleigh law, Equation (6).

Some computer simulation, shown in the following, highlight the above considerations. Let us
consider an exemplary transmitted signal with Gaussian statistics, duration T = 100 µs and rectangular
power spectrum with B = 50 MHz (BT = 5000). In the sidelobes region, the theoretical mean value of r
results, from Equation (8), ηr =

√
π

4BT � −38.04 dB and τ∗B � 25.4, i.e., there are 24 sidelobes out of the
main lobe zone in time interval (0, τ∗).

Figure 5 shows the result of a simulation of 1000 trials with a comparison between the correlation
coefficient r of a single realization, the sample mean ηr and the theoretical value of the ACF, Equation (16).
The dashed horizontal line represents the theoretical mean value (−38.04 dB) in the sidelobes region.
In the range 50 < τB ≤ 2500 of a simulated autocorrelation, a sample of 2450 realizations of r has been
recorded. To get a quantitative evaluation of the simulative results, we have applied to this data-set
the “Chi-squared-test” with a significance level α = 0.05.
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the sample mean, and the theoretical value.

The “null” hypothesis:

H0
def
= {the random variable r is Rayleigh-distributed with PDF given by Equation (6)} is not

rejected with a high p-value of 0.9.
In agreement with Equations (6) and (7), the probability density function of the PSL (i.e., of rp) is:

fp(r) = Np·[F(r)]
Np−1
· f (r) = Np·

[
1− e−

r2
4BT

]Np−1 r
2BT

e−
r2

4BT ·U(r) (18)

By simulation on 10,000 trials with Np = 2000, applying the Chi-squared-test with α = 0.05,
the null hypothesis:

H0
def
= {the random variable rp is distributed with PDF given by Equation (18)} is not rejected with

a high p-value of 0.6.

2.2.2. Noise Waveforms with “Shaped” Power Spectrum

In most NRT applications the time delays τ of interest respect the inequality τ � T, and the
“uniform” spectral density S0( f ) in Equation (15) may be made more convenient in the region of
interest using an “m-order convolution” to shape the spectrum in order to reduce the PSL:

SWB
m ( f ) =

{ 1
B

rect
(

f −
B
2

)}
⊗m

{ 1
B

rect
(

f −
B
2

)}
(19)

leading to normalized ACF:

ρWB
m (τ) =

[
sin(πBτ)
πBτ

]m+1

(20)

This generalization, hereafter named “WB” for wideband, assumes an unlimited availability of
spectrum. In fact, with m increasing, the power spectrum tends to a Gaussian shape with an increasing
variance equal to 1

12 (m + 1)B2, i.e., to a wideband noise, corresponding to a narrower and narrower
main lobe of the autocorrelation function.
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Hence, the following evaluations consider a more realistic generalization named “NV”
(normalized-variance) reduces the spectrum variance (back to the “original” value B2

12 ) applying
to the frequency axis the scaling factor:

αm = (m + 1)−1/2 (21)

The resulting spectrum and the corresponding normalized ACF are

SNV
m ( f ) =

1
αm

SWB
m

(
f
αm

)
(22)

ρNV
m (τ) =

[
sin(πBαmτ)

πBαmτ

]m+1

(23)

In Table 2 the normalized bandwidths (wrt B) at −3, −6, −10, −20, and −40 dB are shown for
m = 1, 2, 3, 4, 5, and 10. They are evaluated by applying Equations (19) and (22). We observe that for
m ≥ 2 the bandwidth B−6 � B, highlighted in bold face in Table 2. Figure 6 shows, for m = 1, 2, and 5
by simulation of 1000 trials, the mean values of the spectrum.

Table 2. Normalized bandwidth (−3, −6, −10, −20, and −40 dB) of the spectrum for “NV” waveforms.

“NV” Waveforms

m B−3/B B−6/B B−10/B B−20/B B−40/B

1 0.67 1.06 1.27 1.34 1.41
2 0.73 1.02 1.28 1.42 1.72
3 0.72 1.00 1.26 1.42 1.93
4 0.70 0.98 1.25 1.68 2.06
5 0.71 0.99 1.24 1.41 2.15
10 0.69 0.98 1.25 1.41 2.32
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As one could expect because of the “central limit theorem”, for m equal to (or greater than) some
quite low value (e.g., for m ≥ 5), the spectrum is very similar to the Gaussian one with variance B2

12 .
Figure 7 shows the corresponding mean values of the normalized autocorrelation. We note that

(i) the main lobe width is � 1/B; and

(ii) the mean value of the PSL is ηr �
√

π
4B6T (regardless of m), a value very close to

√
π

4BT corresponding

to m = 0.
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A third generalization of the spectrum considers situations in which the spectral occupancy is
“severely-controlled” (hereafter named “SC”), i.e., the whole PSD has to strictly stay in the

[
−

B
2 , +B

2

]
interval. In this case the scaling factor, corresponding to the one of Equation (21), becomes

βm = (m + 1)−1 (24)

The resulting spectrum and the corresponding normalized ACF are

SSC
m ( f ) =

1
βm

SWB
m

(
f
βm

)
(25)

ρSC
m (τ) =

[
sin(πBβm τ)

πBβm τ

]m+1

(26)

Table 3 reports the normalized bandwidths. Increasing m, the bandwidth is severely reduced
(Figure 8) and the main lobe-width and the mean values of the normalized ACF in the sidelobes region
increase as shown in Figure 9.Sensors 2020, 20, x FOR PEER REVIEW 12 of 25 
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Table 3. Normalized bandwidth (−3, −6, −10, and −20 dB) of the spectrum for “SC” waveforms.

“SC” Waveforms

m B−3/B B−6/B B−10/B B−20/B

1 0.50 0.75 0.90 0.95

2 0.42 0.59 0.74 0.82

3 0.36 0.50 0.63 0.71

5 0.29 0.40 0.51 0.58

10 0.21 0.29 0.38 0.43
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Figure 9. Normalized autocorrelation of “SC” noise waveforms, BT = 5000, m = 1, 2, and 5 (values are
estimated on 1000 trials).

Very preliminary experimental results using noise waveform “NV” with m = 1, 2, and 5 are
published in [18].

A classical approach to strictly control the bandwidth uses spectral windows [19] to suitably shape
the spectrum in order to have a low level of the sidelobes of the related ACF. Figure 10 shows the mean
spectrum (simulated on 1000 trials) of a noise waveform shaped by three different spectral windows:
Rectangular, Hamming, and Blackman-Nuttall.
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Figure 10. Shaped spectrum of a noise spectrum by Rectangular, Hamming, and Blackman-Nuttall
window (values are estimated on 1000 trials).
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Theoretically, the Blackman-Nuttall spectral weighting applied to deterministic waveforms
permits to reach very low sidelobe levels (< −100 dB) in the normalized ACF. However, such an
excellent performance is not achieved with noise waveforms because of the “random fluctuations”
of the sidelobes as discussed above. An example is shown in Figure 11, where the mean normalized
ACF (evaluated with 1000 Monte Carlo trials) is compared with the theoretical one. The constant level
(dashed line in Figure 11) corresponds to the estimated mean value (sample mean) in the sidelobes
region, i.e., η̂r. Inverting Equation (8) we may define an equivalent band: Beq = π

4η̂2
r T
< B for a

noise signal, corresponding to a waveform with uniform spectrum and sidelobe levels of the ACF
Rayleigh-distributed with parameter a2

Ray = 1
2BeqT . By simulation, applying the Chi-squared-test with

α = 0.05, the null hypothesis: H0
def
= {the random variable r is Rayleigh-distributed} is not rejected with

p-value = 0.90 and 0.42 for Hamming and Blackman-Nuttall, respectively. This example shows that
the “random fluctuations” of sidelobes in NRT may lead to prefer “less performing” windows, unless
sidelobes suppression methods “are applied to each generated waveform”, as explained in Section 3.
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Figure 11. Normalized autocorrelation function (ACF): (a) Hamming noise waveform η̂r = 36.69 dB;
(b) Blackman-Nuttall noise waveform η̂r = 35.08 dB. Case (a) grants a better range resolution.

2.2.3. The Range Transition Zone

In the previous analysis, it has been shown that the ACF has two main intervals: one, around zero
delay, in which the deterministic shape, related to the PSD, dominates, and another, at larger delays,
where random sidelobes dominate with a level depending on the BT product. A transition zone is in
between. Considering the cases analysed in Section 2.2.2, for the “NV” case the bandwidth and the
mean PSL show a weak dependence on the parameter m. Hence, similar to Equation (17) it is possible
to define a “transition lag zone” with central value τ∗ and width 1

B (the nominal duration of a sidelobe
of the ACF), after which the peaks of the “nominal” autocorrelation function are embedded in the
random fluctuations.

The value of τ∗ is obtained equating the denominator of Equation (23) with the mean value ηr:( 1
πBαmτ∗

)m+1
=

√
π
4
·

1
B·T

(27)
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Normalizing to the waveform duration T, i.e., using γ = τ∗
T :

γ =
( 2
π

)2√
m + 1

( 4
π

BT
)− 2m+1

2m+2
(28)

In the ordinary condition of BT � 1, from the above formulas and from simulation it results that
the delay interval in which the “true” autocorrelation function dominates is a very small fraction of T.

In the ideal case of a perfectly flat spectrum constrained in the considered bandwidth B (i.e., m = 0),
typical values of the “transition range” R∗ = c

2τ
∗, varying B (20–100 MHz) and T (0.2–20 ms), are of

the order of hundreds of meters with a maximum around 1.6 km (see Figure 12). The corresponding
autocorrelation (see for instance Figure 5) has the highest sidelobes, with a maximum −13.2 dB level
below the main peak.Sensors 2020, 20, x FOR PEER REVIEW 15 of 25 
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In the practical case of lowering these “deterministic” sidelobes by frequency-domain weighting,
i.e., smoothing the spectrum (m ≥ 1), R∗ would be reduced. Some exemplary values of R∗ for m = 1
and m = 5 are shown in Figure 13.

With m = 1, the transition region is of the order of tens of meters, while for m = 5 it is of
the order of meters. Note that these are the typical delay intervals of the above-discussed critical
phenomena, i.e., the antenna leakage (Section 1) and the close-in clutter. To cope with this “short range”
problem, a method to suppress the sidelobes of the autocorrelation function in a limited delay interval
is introduced in the next section.

Summing up, to mitigate the sidelobes when a relatively large BT is needed (order of hundred
of thousand or more) the most practical way seems to act not only on the “random process” (i.e.,
the overall set of waveforms) but also on its “realizations” (i.e., on each waveform), paying the
price of a potential reduction of LPI/LPE. The topic of Range sidelobe attenuation has been widely
published in the literature for both deterministic radar signals [1,2] and noise radar signals [15,16,20–23].
A computationally simple, effective method, suited to CE noise radars, is presented in Section 3.
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3. Range Sidelobes Suppression for the Autocorrelation Function of Noise Waveforms

3.1. The FMeth (Filtering Method) Algorithm: General Description

We consider continuous emission noise radar for the rationales described in the Introduction.
The emission has coherent time intervals with duration T (Figure 14), with T ≤ TD, where TD is equal
to or smaller than the decorrelation time (or the dwell time).
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Figure 14. Coherent intervals in emission.

For each i, gi(t) (i = 1, 2, . . . , L) defines a different realization of a band-limited (within B) random
process. In almost all practical cases, the radar designer sets T � Tmax, defined in term of maximum
range Rmax = cTmax

2 , in order to obtain a large enough processing gain BT.
In the following we use the scheme of Figure 15, creating a periodic signal structure by a single

realization g(t), i.e., a circular convolution in the ACF computation. With T � Tmax and BT � 1 the
approximation of the ACF and of the spectrum of g(t) with their sampled and periodical versions are
quite good. We assume a sampling interval equal to 1

kF·B
with an oversampling factor kF > 1.
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The signal g(t), realization (sample function) of the random noise process, is generated starting

from the design power spectral density (PSD) of the process, i.e., E
[∣∣∣G( f )

∣∣∣2], being G( f ) the Fourier

transform of g(t). The ACF of g(t), i.e., the output of the compression filter (matched filter), is (hereafter
we use the continuous-time non-causal formalism for simplicity):

R(τ) = g(τ) ⊗ g∗(−τ) (29)
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where ⊗ is the convolution operator. The Fourier transform of Equation (29) is

S( f ) = G( f )·G∗( f ) =
∣∣∣G( f )

∣∣∣2 (30)

Let R̃(τ) = R(τ)·q(τ) be the desired autocorrelation obtained by multiplying R(τ) by

q(τ) =
{

0 [−τ2 < τ < −τ1]
⋃
[τ1 < τ < τ2]

1 elsewhere
(31)

in order to suppress the range sidelobes inside the time interval (τ1, τ2), as described in Figure 16.Sensors 2020, 20, x FOR PEER REVIEW 17 of 25 
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The product R(τ)·q(τ) corresponds, in the frequency domain, to the convolution of the spectrum
S( f ) with the Fourier transform of q(τ). Denoting with F {·} the Fourier transform operator, it results in

S̃( f ) = F
{
R̃(τ)

}
= S( f ) ⊗F

{
q(τ)

}
(32)

For how q(τ) is defined, the F
{
q(τ)

}
contains spectral components outside the band (i.e., −B/2

to +B/2) of g(t). Using the FFT to implement the Fourier transform, we should then “accept” the
harmful effects introduced by the folding of the spectral components outside the band B, as shown in
the ensuing results.

Let H( f ) be the frequency response of a filter such that

S̃( f ) =
∣∣∣H( f )

∣∣∣2·S( f ) (33)

Hence, from Equations (30) and (33), the frequency response of this sidelobes suppression filter is

H( f ) =

√
S̃( f )∣∣∣G( f )

∣∣∣ (34)

This approach, here named FMeth and based on the concept of “inverse filtering”, is well known
in literature (see, for instance, [20]). The systematic description of the noise waveforms generation
with sidelobes suppression by FMeth is shown in Figure 17a.
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3.1.1. PRNG and Spectral Shaping

Starting from a pseudo-random number generator (PRNG), a sequence of independent and
identically distributed (i.i.d.) Gaussian complex samples with assigned power spectrum (spectral
shaping) of a band-limited B, is generated by filtering, see Section 2.2.2.

3.1.2. PAPR Setting by Alternating Projection

After spectral shaping, the PAPR of the waveform is around 10− 12 or greater (see the Introduction).
To reduce the loss due to high PAPR (Table 1), the PAPR can be forced to a lower value (e.g., 1.5− 2.0)
using the “alternating projection” algorithm [24], which is a powerful and computationally efficient
way to design waveforms with a given structural properties (e.g., prescribed norm, PAPR, etc. . . . ).
More specifically, the alternating projection method efficiently applies to the huge class of Inverse
Eigenvalues Problems (IEP) aimed at creating a structured waveform or a structured “tight frame”.
A tight frame is a generalization of an orthogonal system [25] and, according to [24], is described by its
spectrum. Because of the spectral characterization of a tight frame, IEP is the most suitable solution
for seeking the structured frame with prescribed spectral properties. The idea behind the alternating
projection algorithm is to search for a point of intersection between a matrix that satisfies a given
spectral constraint and a matrix that satisfies a given structural constraint. In our case, the spectral
constraint (matrix Z) is determined by the spectral occupancy of the generated waveform and the
structural constraint (matrix Y) is the desired PAPR. Hereafter we refer to a matrix (and not to a single
waveform vector) since the IEP, of which alternating projection algorithm is an efficient solver, operates
on tight frame [25]. Figure 17b depicts the alternating projection method in which two sets of matrixes
Z (e.g., spectral constraint) and Y (e.g., structural constraint) are iteratively projected onto each other
in order to find the intersection matrix X that satisfies both constraints. The subscript “ j” represents
the number of iterations and the initial matrix X0 represents the starting noisy band-limited sequence.
The algorithm details can be found in Appendix B.
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3.1.3. FMeth Sidelobes Suppression

The functional block diagram of the FMeth algorithm is shown in Figure 17c. The step-by-step
description is summarized as follows.

i. The sample autocorrelation R(τ) of the PAPR-regulated sequence is computed.
ii. Zeroing the points of R(τ) between τ1 and τ2 by multiplication with q(τ), Equation (31),

the desired autocorrelation R̃(τ) = R(τ)·q(τ) is determined.
iii. The spectrum S̃( f ) and the Fourier transform G( f ) of g(t) are estimated by FFT, and,

from Equation (34), the frequency response H( f ) is evaluated.
iv. The random signal ĝ(t), whose autocorrelation function shows attenuated sidelobes inside the

time interval (τ1, τ2), is generated by the following procedure:

ĝ(t) = F −1
{
Ĝ( f )

}
= F −1{H( f )·G( f )

}
(35)

Due to the detrimental effects related to the use of the FFT, i.e., the folding of the spectral
components of q(t) into (−B/2, +B/2), the output ĝ(t) has to be iteratively processed by the FMeth
algorithm for a suitable number of times (niter) to improve the suppression sidelobes, as shown in
Figure 17a.

At the end of the suppression procedure, i.e., after a number niter of iterations suited to satisfy
the requirement of the PSL, the “tailored” sequence ĝniter(t) can be used as transmitted waveform.
We underline that a possibly large number of iterations is not a practical problem being this procedure
designed for an offline-preparation of a large number of transmit signals.

3.2. Results for Zero Doppler–Sidelobes Level in the ACF

3.2.1. Sensitivity of the Sidelobe Attenuation to the Number of Iterations

To analyse the effect related to the number of iterations in the FMeth algorithm, some exemplary
results are obtained starting from a noise waveform, i.e., a realization of a complex Gaussian process
with both a Blackman-Nuttall and a Hamming spectrum setting B = 50 MHz, T = 100 µs (BT = 5000),
sampling frequency Fs = 16·B. To analyse the dependence of FMeth on the number of iterations (niter),
no constraint is applied to the PAPR (which “naturally” takes values around 10− 12 or greater) and
the percentage of the suppression zone is set in the interval τ1B = 4, τ2B = 500 (in range R1 = 12 m,
R2 = 1500 m) corresponding approximately to the 20% of the total duration. The results concerning
the sidelobes attenuation are obtained for three values of niter : 1, 5, 100. Figure 18a,b shows the results
for Blackman-Nuttall and Hamming noise waveforms, respectively. The sidelobes suppression is poor
for a single iteration (the improvement is only 12 dB wrt the mean PSL). With five iterations, the PSL
reaches (−80, −78 dB) in mean and, for niter = 100, the PSL decreases up to (−95, −80 dB) for a single
realization and (−105, −93 dB) for the mean.

Figure 19a,b shows the corresponding mean spectrum as compared with the original sequence.
It is interesting to notice that both the distortion introduced by the non-linearity and the folding of the
spectral components outside the band B look acceptable.
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Figure 18. Normalized ACF when the FMeth is used to suppress a sidelobes region (varying the 
number of iterations: niter = 1, 5, 100) for a single realization and averaging 100 trials. The PAPR 
assumes its “naturally” value (10–12). The suppression zone is the 20% of the total. (a) Blackman-
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Figure 18. Normalized ACF when the FMeth is used to suppress a sidelobes region (varying the number
of iterations: niter = 1, 5, 100) for a single realization and averaging 100 trials. The PAPR assumes its
“naturally” value (10–12). The suppression zone is the 20% of the total. (a) Blackman-Nuttall spectrum,
and (b) Hamming spectrum.
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Figure 19. Mean spectrum (FMeth, 100 trials) varying the number of iterations: niter = 1, 5, and 100.
The PAPR assumes its “natural” value in the range 10–12. The suppression zone is the 20% of the total.
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3.2.2. Sensitivity of the Sidelobe Attenuation to the PAPR and to the Width of the Suppression Zone

The results shown in Section 3.2.1 are obtained for a Gaussian noise in the case of a linear system
with full dynamic range (no constraint on the PAPR) and supposing a 20% of suppression zone with
respect to the total range. If the PAPR is varied (i.e., decreased up to one) and the suppression zone is
increased (up to 100%), the effectiveness of the FMeth algorithm is significantly reduced.

To quantify these effects, for BT = 5000 and niter = 100, we have set different PAPR values
(9.0, 5.0, 2.0, 1.5, 1.0) and percentages of the suppression zone (20, 40, 60, 80, 95, and 100 per cent).

The “natural” PAPR of the starting noise waveform, i.e., g1(t) in Figure 17a, can be forced to
a different (lower) value (see Figure 17b). Being the FMeth generation based on a “mild” filtering,
which suppresses spectral components whose energy (residing in the sidelobes of the ACF) is a small
fraction of total energy (mainly allocated in the main lobe of the ACF), one could guess that this
sidelobes suppression does not significantly modify the PAPR as initially imposed, even when the
suppression zone increases. Simulations have confirmed this hypothesis.

Table 4 (for the Blackman-Nuttall spectrum) and Table 5 (for the Hamming spectrum) define
a matrix whose columns (for a given PAPR set) report the mean PSL varying the percentage of the
suppression zone, while the rows (for a percentage set) show the mean PSL varying the PAPR.
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Table 4. Mean peak side lobe (PSL) (dB) on 100 trials using FMeth varying the PAPR and the percentage
of the suppression zone. Noise waveforms with Blackman-Nuttall spectrum.

Blackman-Nuttall: B = 50 MHz, T = 100 µs, BT = 5000

Suppression
Zone [%]

PAPR
9.0

PAPR
5.0

PAPR
2.0

PAPR
1.5

PAPR
1.0

20 −103.9 −100.8 −89.3 −75.9 −57.9
40 −104.3 −101.1 −79.6 −66.3 −54.5
60 −102.5 −95.2 −71.1 −60.7 −52.3
80 −99.7 −88.6 −63.0 −56.9 −51.5
95 −89.1 −78.3 −58.8 −55.1 −50.6

100 −83.1 −69.5 −56.5 −53.8 −49.9

Table 5. Mean PSL (dB) on 100 trials using FMeth varying the PAPR and the percentage of the
suppression zone. Noise waveforms with Hamming spectrum.

Hamming: B = 50 MHz, T = 100 µs, BT = 5000

Suppression
Zone [%]

PAPR
9.0

PAPR
5.0

PAPR
2.0

PAPR
1.5

PAPR
1.0

20 −92.3 −93.6 −89.9 −76.8 −59.3
40 −90.7 −93.3 −80.3 −67.5 −56.0
60 −88.4 −89.1 −71.7 −61.9 −54.0
80 −84.0 −82.9 −64.3 −58.3 −52.9
95 −79.2 −74.9 −60.2 −56.4 −52.2

100 −73.1 −68.3 −58.2 −55.0 −51.4

These values can be explained by the following considerations. First, decreasing the PAPR the
number of degrees of freedom is reduced (the amplitude variation is constrained). Second, a larger
suppression zone, maintaining fixed the number of degrees of freedom, makes the suppression
algorithm less efficient, being applied over a wider range. From the results, we can conclude that a
good trade-off can be reached with, the Hamming spectrum, a suppression zone of the 20%, and a
PAPR equal to 1.5, whose loss is still acceptable (see for the loss Table 1).

3.3. Doppler Sensitivity and Sidelobes Suppression for the Ambiguity Function

In the presence of moving targets, the Doppler effect causes the well-known mismatching in the
compression filter. The frequency shift produces two effects: (i) loss on the peak at the output of the
matched filter (i.e., loss in SNR); and (ii) reduced effectiveness of the sidelobes suppression algorithm.

At X-band (λ = 0.032 m) for noise waveforms generated starting from the Blackman-Nuttall
spectrum (B = 50 MHz, BT = 5000), we have considered three values of the Doppler velocity:
vD = 3, 10, 50 m/s. In Figure 20, the normalized ACFs are shown varying vD and compared with the
zero Doppler case. No constraint is imposed on the PAPR and the suppression zone is set to 20% of
the total duration. By simulation, for vD ≤ 20 m/s the loss in SNR is negligible (<0.1 dB), increasing vD

up to 50 m/s the loss is still acceptable, i.e., −0.59 dB. The suppression algorithm was applied imposing
100 iterations.
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Figure 20. Normalized ACF with suppression sidelobes varying the Doppler velocity 3, 10, and 50 m/s.
BT = 5000, niter = 100. Mean on 100 trials.

The range sidelobes suppression algorithm here introduced, as shown, is fairly sensitive to the
Doppler shift. Hence, two solutions are possible. The first, and “classical”, one tries to “tailor” noise
waveforms to yield low sidelobes of their “ambiguity function”, i.e., both in “range” (time) and
in “Doppler” (frequency). Methods to resolve this problem are described in [21,22]. The second,
novel solution, most effective from the application point of view, uses the “Range filters bank” (RFB) as
described in [26,27]. This solution has a “fast time” processing of sequences of duration Tr, which is
very slightly affected by the Doppler thanks to the choice of Tr, being Tr � T, with a downstream
“slow time” processing generating a bank of Doppler filters to cover the whole velocity interval of
interest, in a way similar to the well-known moving target detector (MTD) [28,29].

4. Comments, Conclusions, and Short Reference to Future Experimental Work

By definition, the transmitted waveforms form the key element of the NRT and the driver of its
main advantages as described in this introductory paper. These advantages are best exploited in the
continuous emission configuration, which is the one considered here.

However, the simultaneous transmission and reception of a CE radar puts demanding requirements
both to the radar hardware, mainly in terms of the leakage from the transmitting antennas to the
receiving one, and to the radar waveforms. The latter have very demanding requirements on Range
and Doppler sidelobes, on energetic effectiveness (PAPR) and on compatibility with the regulation for
the use of the electromagnetic spectrum (see Appendix A). For military radars, more requirements
add in terms of robustness against “interception” and “exploitation” of the radiated signals by an
adversary part.

Hence, a novel design procedure for CE noise radar waveforms has been discussed with the
related analytical and simulative results.

Ensuing papers of this special issue will tackle other facets of the NRT waveforms and present
more results. In particular, a second paper will be submitted by the same team to treat in more practical
way the results of the waveforms design as checked by trials in different operating environments with
the pertaining lessons learnt, while a third planned paper will deal with the counter-interception and
counter-exploitation features and the related analysis methods based on the information theory.

Author Contributions: G.G. defined the main content, including synthesis methods, and the overall organization
of the paper. G.P. developed the waveform analysis tools and obtained the related results. F.D.P. studied
and implemented the “Alternating Projection” method to control the PAPR. K.S. and C.W. studied, checked,
and critically reviewed the waveform generation methods in view of their use in future trials to operationally test
the results of this paper. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Band Occupancy in NRT Applications

The m-order convolution, defined by Equation (19), and the “frequency-scaling” factor of Equation
(22), allow to dispose of a very simple mathematical closed-form model for the spectrum of noise
signals, with a good approximation of the Gaussian PSD when m is above the order of a very few
units. Increasing m, the −40 dB bandwidth increases (see Table 2) and for m = 4 the bandwidth
B−40 � 2B. For radar applications, ITU-R recommendations [9] on the unwanted emissions in the
“out-of-band” (OoB) domain (i.e., the adjacent frequency region employed by other applications) define
the limits of the mask for the allocated band, the OoB and the spurious emission. The most recent
and tight recommendations assert that radar systems should be designed to meet the requirement of
the mask-roll-off at 40 dB per decade from the B−40 dB bandwidth to the spurious level (Figure A1),
as shown in Figure 18.

Sensors 2020, 20, x FOR PEER REVIEW 23 of 25 

 

Funding: This research received no external funding.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Band Occupancy in NRT Applications 

The m-order convolution, defined by Equation (19), and the “frequency-scaling” factor of 
Equation (22), allow to dispose of a very simple mathematical closed-form model for the spectrum of 
noise signals, with a good approximation of the Gaussian PSD when ݉ is above the order of a very 
few units. Increasing ݉, the −40 dB bandwidth increases (see Table 2) and for ݉ = 4 the bandwidth ିܤସ଴ ≅  For radar applications, ITU-R recommendations [9] on the unwanted emissions in the .ܤ2
“out-of-band” (OoB) domain (i.e., the adjacent frequency region employed by other applications) 
define the limits of the mask for the allocated band, the OoB and the spurious emission. The most 
recent and tight recommendations assert that radar systems should be designed to meet the 
requirement of the mask-roll-off at 40 dB per decade from the ିܤସ଴ dB bandwidth to the spurious 
level (Figure A1), as shown in Figure 18. 

 
Figure A1. Design objective for radar systems. 

Appendix B. The “Alternating Projection” Algorithm 

The idea behind the alternating projection algorithm is to search for a point of intersection 
between a matrix describing a spectral constraint and a matrix describing a structural constraint. In 
our case, the spectral constraint is determined by the spectral occupancy of the generated waveform 
and the structural constraint is the desired PAPR. 

In [24], the alternating projection algorithm is well described. Here we report the main steps for 
the sake of simplicity. 

Let us suppose we have two set of matrices ܻ and ܼ of the same dimension, with the former 
implementing spectral constraint and the latter implementing the structural constraint. The 
alternating projection algorithm is described as follows: 

INPUT 

• An (arbitrary) initial matrix ࢅ଴ 
• The number of the iteration, ܬ 

OUTPUT 

• A matrix ࢅഥ in ܻ and a matrix ࢆഥ in ܼ 

PROCEDURE 

(1) Initialize ݆ = 0 
(2) Find a matrix ࢆ௝ in ܼ such that ࢐ࢆ ∈ ࢆ௓ฮ	∋	ࢆmin݃ݎܽ −   ௝ฮிࢅ

Figure A1. Design objective for radar systems.

Appendix B. The “Alternating Projection” Algorithm

The idea behind the alternating projection algorithm is to search for a point of intersection between
a matrix describing a spectral constraint and a matrix describing a structural constraint. In our case,
the spectral constraint is determined by the spectral occupancy of the generated waveform and the
structural constraint is the desired PAPR.

In [24], the alternating projection algorithm is well described. Here we report the main steps for
the sake of simplicity.

Let us suppose we have two set of matrices Y and Z of the same dimension, with the former
implementing spectral constraint and the latter implementing the structural constraint. The alternating
projection algorithm is described as follows:

INPUT

• An (arbitrary) initial matrix Y0

• The number of the iteration, J

OUTPUT

• A matrix Y in Y and a matrix Z in Z

PROCEDURE

(1) Initialize j = 0
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(2) Find a matrix Z j in Z such that
Z j ∈ argmin

Z ∈ Z
‖ Z− Y j ‖ F

being ‖ · ‖F operator the Frobenius norm.
(3) Find a matrix Y j+1 in Y such that

Y j+1 ∈ argmin
Y ∈ Y

‖ Y−Z j ‖ F

(4) Increment j by one.
(5) Repeat steps 2–4 until j = J

(6) Let Y = YJ and Z = ZJ−1

To solve minimization in step 2 and step 3 for the PAPR structural constraint, the “matrix nearness
problems” [30] is used, whose algorithm is detailed in [24] (p. 198).

To summarize the framework in which alternating projection algorithm operates is shown in the
ensuing diagram, Figure A2.
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