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Abstract: A novel absolute positioning sensor for high-speed maglev train based on eddy current effect
is studied in this paper. The sensor is designed with photoelectric switch and four groups of unilateral
coplanar code-reading detection coil combination. The photoelectric switch realizes the positioning of
the marker plate, and the four groups of detection coils read the mileage code of the mileage sign plate
to obtain the absolute mileage information of the vehicle, which effectively reduces the quality and
volume of the sensor, and reduces the impact of ice and snow. At the same time, the code-reading
reliability and speed adaptability index are proposed. The code-reading reliability of the sensor is
analyzed and tested under the fluctuation of levitation guidance, and the positioning error under
the speed range of 0–600 km/h is calculated and analyzed. The results show that the novel sensor
has the advantages of simple and compact structure. It still satisfies the system’s requirements for
absolute vehicle mileage information under the conditions of vehicle operating attitude fluctuations
and changes in the full operating speed range.

Keywords: maglev train; absolute positioning sensor; eddy current reflection; position marker plate;
code-reading reliability

1. Introduction

High-speed maglev train is driven by linear synchronous motor and operates without contact
with track by electromagnetic force suspension [1,2]. In order to realize accurate positioning and speed
closed-loop control during driving, the speed measurement and positioning system is necessary to be
installed on the maglev train [3–5]. The existing speed and position measurement for maglev train
include velocity measurement and absolute positioning based on radar [6,7], velocity measurement and
relative positioning based on cross induction loop [8–10], absolute positioning based on query transponder,
absolute positioning based on pulse width coding, absolute positioning based on electromagnetic induction,
velocity measurement, and absolute positioning based on inductive wireless communication [11–14].

At present, the absolute positioning method based on electromagnetic induction is adopted for
high-speed maglev train. Its working principle is to scan the passive position marker plate (hereinafter
referred to as the marker plate) along the track through the onboard absolute positioning sensor, so as
to obtain the position information [15–17]. The position code on the marker plate is realized by special
treatment on the copper coating of the marker plate. Each marker plate has a four-bit binary code,
and the position of the narrow seam relative to the five-bisector of the marker plate indicates that the
bit code is 1 or 0. As shown in Figure 1, the code is 1100.
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Figure 1. The structure of the position marker plate. 

The copper layer of the marker plate can shield the magnetic field. Copper has a high 
conductivity, and the high-frequency magnetic field can be offset by the eddy current reverse 
magnetic field generated by the copper coating [18,19]. As shown in Figure 2, the electromagnetic 
wave (EMW) emitted by transmitter coil passes through the copper coating layer, the copper coating 
layer will absorb part of the electromagnetic wave, and the remaining electromagnetic wave will 
penetrate the shielding layer and be received by receiver coil. As the absolute positioning sensor 
currently used in high-speed maglev train, INK (the sensor was first developed by Germany, so the 
German name INK is still used in the field of maglev, which is the abbreviation of 
INKREFA_Messeinheit in German) uses the transmission detection principle, and adopts 
symmetrical transmitter coil and receiver coil to transmit and detect electromagnetic wave 
respectively. In the narrow seam of the marker plate, the incomplete copper coating leads to more 
electromagnetic wave transmission. Accordingly, the sensor will receive more electromagnetic waves 
at the seam, so as to identify the seam and read the position code of the marker plate [20,21]. 
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Figure 2. Schematic diagram of electromagnetic wave penetrating the position marker plate. 

In this paper, a new type of absolute positioning sensor (Hereinafter referred to as NINK, add 
N before INK to represent the new type) based on eddy current reflection is studied. NINK uses 
photoelectric switch to position, and four groups of coplanar coils arranged in the same plane are 
used to detect the eddy current reverse magnetic field of the shielding layer of the marker plate. 
Therefore, NINK can read the four-bit code of the marker plate at the same time. Compared with 
INK, NINK changes the coil layout, positioning, and code-reading mode, and reduces the number of 
coils, so that the sensor has the advantages of simplified structure, small size, and light weight. In 
addition, it reduces the risk of collision between the sensor and the marker plate. In addition, whether 
NINK can adapt to the running environment of high-speed maglev trains is the focus of this paper. 

Figure 1. The structure of the position marker plate.

The copper layer of the marker plate can shield the magnetic field. Copper has a high conductivity,
and the high-frequency magnetic field can be offset by the eddy current reverse magnetic field generated
by the copper coating [18,19]. As shown in Figure 2, the electromagnetic wave (EMW) emitted by
transmitter coil passes through the copper coating layer, the copper coating layer will absorb part of the
electromagnetic wave, and the remaining electromagnetic wave will penetrate the shielding layer and
be received by receiver coil. As the absolute positioning sensor currently used in high-speed maglev
train, INK (the sensor was first developed by Germany, so the German name INK is still used in the
field of maglev, which is the abbreviation of INKREFA_Messeinheit in German) uses the transmission
detection principle, and adopts symmetrical transmitter coil and receiver coil to transmit and detect
electromagnetic wave respectively. In the narrow seam of the marker plate, the incomplete copper
coating leads to more electromagnetic wave transmission. Accordingly, the sensor will receive more
electromagnetic waves at the seam, so as to identify the seam and read the position code of the marker
plate [20,21].
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used to detect the eddy current reverse magnetic field of the shielding layer of the marker plate. 
Therefore, NINK can read the four-bit code of the marker plate at the same time. Compared with 
INK, NINK changes the coil layout, positioning, and code-reading mode, and reduces the number of 
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Figure 2. Schematic diagram of electromagnetic wave penetrating the position marker plate.

In this paper, a new type of absolute positioning sensor (Hereinafter referred to as NINK, add
N before INK to represent the new type) based on eddy current reflection is studied. NINK uses
photoelectric switch to position, and four groups of coplanar coils arranged in the same plane are
used to detect the eddy current reverse magnetic field of the shielding layer of the marker plate.
Therefore, NINK can read the four-bit code of the marker plate at the same time. Compared with INK,
NINK changes the coil layout, positioning, and code-reading mode, and reduces the number of coils,
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so that the sensor has the advantages of simplified structure, small size, and light weight. In addition,
it reduces the risk of collision between the sensor and the marker plate. In addition, whether NINK
can adapt to the running environment of high-speed maglev trains is the focus of this paper.

The remaining parts of this paper are arranged as follows: Section 2 introduces the structure and
working principle of NINK. In Section 3, the code-reading reliability index and speed adaptability
index are proposed to evaluate the influence of vibration on code-reading result and the influence
of speed on code-reading reliability. In Section 4, the working performance of NINK is tested and
analyzed, which verifies the working performance of NINK under the conditions of vehicle suspension
and guiding fluctuation. In Section 5, the platform is used to test the output of NINK at different
detection distances and attitude angles, and the comparison is made with INK. At last, Section 6
concludes this paper.

2. Working Principle and Realization of NINK

2.1. INK

INK adopts the transmission detection principle, and its structure is U-shaped, as shown in
Figure 3a. In Figure 3b, the transmitter coil and receiver coil of the sensor are arranged symmetrically
on both sides [22,23], with a total of 10 groups. Eight groups of wide coils are used as positioning
coils (1–4 and 7–10 in Figure 3), and two groups of narrow coils (5 and 6 in Figure 3) are code-reading
coils, which are used to read the address code of the marker plate. Positioning error refers to that
the detection coil deviates from the ideal reading position. Constrained by the dynamic response
of the positioning coil, the positioning error is large in high-speed detection, which is easy to lead
to code-reading error. Therefore, the code-reading value is generally determined by comparing the
terminal voltage of two code-reading coils.
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Figure 3. INK and its coil arrangement.

U-shaped structure, coil positioning mode and sequential code-reading mode lead to a large
number of coils, correspondingly large volume, and mass. When INK works, the marker plate passes
through the U-shaped slot, as shown in Figure 4a. The width of u-shaped slot is 66 mm, and the
distance from the bottom to the lower surface of the marker plate is 15 mm. Within this size range,
the marker plate can successfully pass through the U-shaped slot to realize code-reading without being
affected by vehicle vibration and attitude change. However, in extreme bad weather conditions, such
as freezing rain, if the surface of the marker plate has thick ice, especially when the bottom surface
is covered with ice edges, the marker plate may collide with sensor and cause damage. Obviously,
changing the U-shaped structure can reduce the risk of collision. In addition, if the positioning or
reading mode of the sensor can be changed and the number of coils can be reduced, the structure of
the sensor can be simplified, and the volume and mass can be correspondingly reduced.
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2.2. NINK Positioning Sensor Design and Relization

In view of the shortcomings of INK, this paper proposes an absolute positioning sensor NINK
based on eddy current reflection. NINK utilizes the principle of eddy current reflection, and the
detection coil can both receive and emit electromagnetic waves. So only one surface of NINK is the
detection surface, as shown in Figure 4b. Different from the U-shaped structure, NINK has no vertical
motion restriction relative to the marker plate, which can avoid the collision between the sensor and
the marker plate in extreme environments. As shown in Figure 5, the eddy current generated in the
copper coating reduces the equivalent inductance of the coil, while the narrow seam can block the
eddy current. By measuring the change of the coil terminal voltage, whether the detection object is a
narrow seam can be identified. In order to determine the position of the seam relative to the bisector,
a comparison detection coil is needed. By comparing the voltage of the two coils, the relative position
of the seam can be determined, and the code of the positioning marker plate can be read. In order to
read the four-bit code of the marker plate, eight detection coils are arranged in the same plane. Each
two coils are a code bit in a group of corresponding codes, and the inductance value and geometric
size of the two coils in the same group should be consistent as far as possible.
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Photoelectric switch is used to locate, compared with coil positioning, optoelectronic switch has
higher dynamic response characteristics, which can ensure that NINK has a lower response delay; thus,
reducing the positioning deviation. The working state of NINK is shown in Figure 6, photoelectric
switches L1 and L2 are used to determine whether the absolute positioning sensor reaches the intended
reading position. L1 and L2 are arranged on both sides of the detection coil, and the distance between
them is less than the length of the marker plate. When the sensor enters the detection range from the
forward direction, L1 and L2 will be successively placed ON state. If L1 and L2 are on at the same
time, it means that the sensor is facing the marker plate, indicating that NINK is located in the reading
position, and then output the current reading value.
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Figure 6. The working state of NINK.

Since the coils of NINK have the functions of transmitting and receiving electromagnetic waves,
and all coils are arranged in the same plane, only one side of the NINK is the detection surface, so NINK
can avoid contacting with the sign plate vertically, which greatly reduces the risk of collision. NINK
uses photoelectric switch to replace the positioning coil, which reduce positioning deviation caused by
response delay. In addition, NINK can read four-digit code simultaneously with four sets of detection
coils. Compared with INK, the number of coils is reduced from 20 to 8, so its structure is simpler,
and its size and mass are smaller. At present, the length of NINK prototype is about 300 mm and the
mass is about 3 kg, which is significantly lower than INK. With those advantages of compact structure
and small volume and weight, NINK can be installed in pairs on the train to achieve the purpose of
redundancy configuration, which provides a new solution for absolute mileage detection of high-speed
maglev train.

The circuit structure of NINK is shown in Figure 7. The detection coil array of NINK is divided
into 4 groups to detect the coding of the corresponding position of the marker plate, respectively. Each
group of coils has its own excitation and detection circuits to excite the coils to generate high-frequency
vibration and to detect the peak-to-peak voltage of each coil. Figure 8 shows the working flow of the
excitation and detection circuits of a group of coils, the oscillating circuits of the two coils share a crystal
oscillator to ensure that the two coils work synchronously. The detection and filter links can obtain the
peaking value of the coil terminal voltage after removing clutter interference, and feed the two coil
voltage values into the voltage comparator, judge the position of the narrow seam of the marker plate
by comparing the voltage, and output the corresponding voltage signal. Four groups of coil detection
circuits send the voltage comparison results to the FPGA processor for decoding, so as to determine the
marker plate code and analyze the current position. Finally, the sensor sends the decoded information
to the upper computer through RS485 communication circuit, and the position detection is completed
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after confirmation by the upper computer. In addition, the filter capacitor is connected to the input
terminal of the power module of NINK, and the input/output cables are shielded to suppress EMI
interference. The aluminum case also makes the sensor have good electromagnetic compatibility.
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3. Performance Evaluation Index of NINK

The correct address code output by NINK is very important for train operation and control. When
the maglev train is running, the levitation and guidance fluctuation will cause the detection coil of
NINK to deviate from the ideal position when reading code, which may cause wrong code-reading.
Because the output of NINK has only two states: right and wrong, it can be considered that the output
of NINK has no concept of error, so the general performance evaluation index in sensor field cannot be
directly applied to NINK. In this section according to the working principle of NINK, two indexes
are proposed to evaluate the performance of the sensor, which can assist its design and test. First of
all, this section puts forward the code-reading reliability index to evaluate the impact of vehicle body
vibration on the reliability of code-reading results. Then, for the positioning error caused by vehicle
speed change, the speed adaptability index is proposed to quantify the impact of vehicle speed on
code-reading reliability.
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3.1. Code-Reading Reliability Index

By comparing the peak voltage of the two detection coils, NINK can determine the relative
position of the narrow seam; thus, reading the address code of the marker plate. However, due to the
levitation and guidance fluctuation of maglev train during operation, the position of NINK relative
to the marker plate is dislocated up and down, and the detection distance changes; thus, changing
the equivalent inductance of the detection coil. These influencing factors make the detection result
of the sensor uncertain, so the code-reading reliability index crel is proposed to make a quantitative
evaluation of the reliability degree of the detection result.

Let the central line position of coil A be xA, the Central Line position of coil B be xB, the center
distance between the two coils be xA−B, and the voltage difference between coil A and coil B be ∆U:

∆U =
∣∣∣U(xA) −U(xB)

∣∣∣ (1)

The larger the voltage difference ∆U is, the more obvious the feature of the narrow seam is,
indicating the sensor has higher code-reading credibility. It is known from experience that the peak
value of coil terminal voltage is the highest when the coil is facing the narrow seam, and the lowest when
the coil is facing the complete copper coating. As shown in Figure 9, the position of coil A facing the
narrow seam is xAc, and the position of coil B is xBc, then the maximum value of the voltage difference is

∆Umax =
∣∣∣U(xAc) −U(xBc)

∣∣∣ (2)
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In practice, the voltage difference ∆U may be too small due to the influence of external interference
magnetic field, detection circuit error, detection distance or position offset exceeding the limit, etc. If ∆U
fluctuates near zero, the output of the voltage comparator changes frequently, causing the processor to
mistakenly decode. Therefore, NINK uses a voltage comparator with hysteresis characteristics, whose
output signal only jumps when ∆U reaches the voltage threshold of the comparator. Using this kind of
voltage comparator can compare the voltage state of coil A and B more accurately; thus, improving the
reliability of the output results. The reliability index of code-reading is defined as crel:

crel =
∆Umax −VHYST

VHYST
(3)

where VHYST is the hysteresis voltage of the comparator, and the hysteresis voltage in this paper is 80 mV.
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According to Equation (3), crel greater than 0 indicates that the test result is reliable. The larger C
is, the more reliable the reading code is. The larger the crel, the higher the reliability of code-reading.

3.2. Speed Adaptability Index

The impact of train running speed (detection speed) on code-reading reliability must be considered
since NINK is installed on maglev trains. Due to the response time of NINK’s photoelectric switch,
oscillation circuit, detection circuit and filter circuit, the delay in code-reading process is inevitable.
Because the sensor works in motion state, the system delay can be expressed in spatial scale, which is
called geometric delay. The higher detection speed is, the greater the geometric delay will be. Record
the geometric delay as xdelay:

xdelay(v) = v(TS + TF − TL) (4)

where TS, TF, TL are respectively the response time of oscillation circuit, filter circuit, and photoelectric switch.
Geometric delay is manifested as positioning error of NINK, which is the deviation between

the actual reading position and the standard reading position. The standard reading position is the
position when the center line of the detection coil coincides with the center line of the narrow seam,TL

causes the actual read position to be ahead of the standard position, while TF and TS mean that the
actual read position lags behind the standard position, Figure 9 shows the intuitive expression of
the geometric delay. The geometric delay causes the detection coil to deviate from the standard read
position, which in turn causes the equivalent inductance and terminal voltage of the coil to change.
In order to quantify the impact of speed on code-reading reliability, a speed adaptability index, chsa,
is proposed:

chsa =

∣∣∣U(xAc ± xdelay) −U(xBc ± xdelay)
∣∣∣−VHYST

VHYST
(5)

In order to meet the maximum detection speed of 600 km/h, speed adaptability index chsa600 is
specifically defined:

chsa600 =

∣∣∣U(xAc ± xdv600) −U(xBc ± xdv600)
∣∣∣−VHYST

VHYST
(6)

where, xdv600 represents the geometric delay of the system when the detection speed is 600 km/h.
Considering the dynamic response characteristics of photoelectric switch, oscillation circuit, detection
circuit and filter circuit, the total delay of NINK in this paper is about 40 µs, by substituting the total
delay into Equation (4), the geometric delay under 600 km/h can be obtained as follows:

xdv600 = xdelay(167 m/s) = 6.7 mm (7)

When NINK is in the maximum geometric delay, if the ratio of coil voltage difference ∆U to
hysteresis voltage VHYST is large, it indicates that NINK’s code-reading reliability is still high, and it
is considered that the sensor has good high-speed adaptability within the detection speed range of
600 km/h.

4. Performance Analysis of NINK

Since the working performance of NINK is affected by train suspension, guidance fluctuation and
running speed, the code-reading reliability and speed adaptability indexes proposed in Section 3 are
used to evaluate the working performance of the sensor. In order to analyze the working performance
of NINK in the case of vehicle suspension and guidance fluctuation, the equivalent inductance and
terminal voltage change of the detection coil are simulated and tested, and the performance is quantified
based on the code-reading reliability and speed adaptability index. Finally, the code-reading reliability
of NINK under different detection distance and attitude changes is verified by using the test platform.
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In the narrow seam position of the sign board, the detection coil works in an asymmetric working
state because the detection surface is an incomplete copper coating surface. It is complex to solve the
inductance and voltage parameters of the coil by using the analytical method. Therefore, the finite
element simulation and actual measurement are used for simple analysis. This paper first simulated
the equivalent inductance of the detection coil under different longitudinal positions and detection
distances, as shown in Figure 10. Zero millimeters represents the position where the detection coil is
aligned with the narrow seam of the marker plate (the position of coil A in Figure 9, xAc), where the
equivalent inductance of the coil is the largest. The equivalent inductance is larger when the detection
distance is larger, and the equivalent inductance is up to 4.12 µH when the detection distance is 24 mm.
In addition, if the detection distance is increased, the curve of equivalent inductance changes with
longitudinal position becomes flat.
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Figure 10. The equivalent inductance of the detection coil at different longitudinal positions and
detection distances.

In order to show the working performance of NINK more intuitively, the actual measurement
data are used to explain the change of detection coil voltage with positioning error, detection distance
and suspension fluctuation. Figure 11 shows the variation of the terminal voltage of coil A and B along
with the longitudinal position when the detection distance is 10 mm. The two voltage variation curves
are arched, which are consistent with the equivalent inductance variation characteristics. In this figure,
positions 0 mm and 26 mm (blue dotted line) correspond to positions xAc and xBc, respectively, where
coil A and coil B have the maximum terminal voltage. However, the terminal voltage of the two coils
at 13 mm (green dotted line) is nearly equal, and NINK cannot accurately read the code at this position
due to the inability to compare the size of the two voltage.

The voltage variation of coils A and B at different detection distances is shown in Figure 12. Since
coil A is facing the narrow seam and coil B is facing the complete copper coating, the voltage of coil
A is always greater than that of coil B. Large voltage difference is helpful to identify the narrow seam
of the marker plate. When the detection distance is 8 mm, the voltage difference is the largest, so the
characteristics of the narrow seam can be fully confirmed. The greater the detection distance is, the closer
the voltage of the two coils will be, resulting in the decrease of the code-reading reliability index. When
the detection distance is 8 mm, the code-reading reliability is as high as 52, while when the detection
distance is 24 mm, the code-reading reliability is less than 5. Obviously, reducing the detection distance
can increase the voltage difference and thus increase the code-reading reliability. However, the detection
distance should be greater than 8 mm in order to avoid collision between the sensor and the marker plate.
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Affected by the suspension fluctuation of maglev train, the terminal voltage change of NINK’s
detection coils is shown in Figure 13. The voltage of the two coils varies little with the suspension
fluctuation, but the voltage difference is always large. The code-reading reliability is all higher than 30,
which indicates that the sensor is not significantly affected by the suspension fluctuation of the train.

Due to the geometric delay of NINK with the change of speed, different positioning errors are
caused. Figure 14 shows the relationship between the positioning error and the terminal voltage of
the coil A. When the positioning error increases, the terminal voltage decreases, and correspondingly,
the speed adaptability of NINK also decreases at high speed, as shown in Figure 15. Detection distance
has great influence on speed adaptability. At the detection distance of 24 mm, the speed adaptability is
lower than five. In this case, although the code can be read correctly, the reliability is not high. Figure 16
shows the changes of speed adaptability of 600 km/h at different detection distances. The speed
adaptability at detection distance of 24 mm is close to one. Therefore, it is considered that the detection
distance should not exceed 20 mm.
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5. Testing of NINK

It can be seen from the above analysis that the guidance fluctuation has a greater impact on the
code-reading reliability than the suspension fluctuation. In order to test NINK’s performance during
train guided vibration, NINK is fixed on the test platform for simulation test, as shown in Figure 17
(The prototype of NINK is shown in Figure 18). Change the distance between the marker plate and
NINK’s detection surface, test and read the output signal. By comparing with the real code of the
marker plate, the result of the sensor is judged to be accurate. Test results for INK are also listed in the
table to compare with NINK.

The test results of the two sensors at different detection distance are shown in Table 1, which
shows that NINK can read the code accurately within the detection distance of 20 mm. Since the
guidance fluctuation range of the train is ±2 mm, the detection distance of NINK is 10–14 mm
correspondingly. Therefore, NINK can meet the requirements of accurate code-reading under normal
train operation conditions. Through comparison with INK, it is concluded that the performance of
NINK is approximately close to INK.
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Whether it can adapt to the change of train attitude is also an important index to evaluate the
working performance of NINK. Due to the change of train attitude, the angle between NINK’s detection
surface and the marker plate changes, and the detection distance between each coil and the marker
plate also changes; thus, affecting the code-reading reliability. In this paper, the test results of NINK
under different attitude angles are given directly in Table 2. Compared with the roll Angle and pitch
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Angle, the sensor is more affected by the change of yaw Angle. According to the results in the table,
NINK can correctly read the code within a yaw Angle of 1◦ and detection distance of 20 mm. When the
yaw Angle is 2◦ degrees and the detection distance is less than 16 mm, NINK can also read the code
correctly. Compared with INK, NINK is more sensitive to the change of train attitude angle. However,
as the attitude angle of the train is usually less than 2◦, NINK can still work well when the train is in
normal operation.Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 
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Table 1. Results of the test at different detection distance.

Position Marker
Plate Binarie

NAPS INK

Detection Distance Conclusion Lateral Offset Conclusion

1111B

12 mm

OK

0 mm

OK
0101B OK OK
1001B OK OK
0001B OK OK
1111B

16 mm

OK

+4 mm

OK
0101B OK OK
1001B OK OK
0001B OK OK
1111B

20 mm

OK

+8 mm

OK
0101B OK OK
1001B OK OK
0001B OK OK

Table 2. Test results under different attitude angles.

Attitude Angle
Detection Distance

8 mm 12 mm 16 mm 20 mm

NAPS

Yaw
1◦ OK OK OK OK
2◦ OK OK OK ERROR
3◦ OK ERROR ERROR ERROR

Pitch
1◦ OK OK OK OK
2◦ OK OK OK OK
3◦ OK OK OK OK

Roll
1◦ OK OK OK OK
2◦ OK OK OK ERROR
3◦ OK OK ERROR ERROR

INK Yaw 15◦ \ \ \ OK
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6. Conclusions

This paper proposes an absolute positioning sensor based on eddy current reflection. The sensor
uses photoelectric switch to realize the location of the marker plate, and four sets of coils are used
to detect the eddy current reverse magnetic field of the marker plate shielding layer, which can
read the four-bit address code of the marker plate. It has the advantages of simple structure, small
body, and light weight. The complexity of the structure is obviously better than the existing absolute
positioning sensor. In order to evaluate the influence of train suspension and guidance fluctuation
and the working performance of NINK at different speeds, the code-reading reliability and speed
adaptability indexes are proposed, and the performance of the sensor is tested and analyzed by using
these two indexes. The conclusions are as follows:

(1) The guidance fluctuation of the train has a great impact on code-reading reliability. When the
detection distance is 8 mm, the reliability is as high as 51, while the reliability is less than 5 when
the detection distance is 24 mm.

(2) The suspension fluctuation of the train has a small impact on the code-reading reliability, and the
reliability is higher than 30 when the detection distance is 10 mm.

(3) With the increase of speed, the positioning error of NINK increases, reducing the speed adaptability
of the sensor. Especially when the detection distance is large, the speed adaptability is lower.

(4) Through the platform test, it is verified that NINK can accurately read the code when the train’s
attitude changes, and when the guidance fluctuates. Comparing the test results with INK, it shows
that the performance of NINK is approximately equal to INK under normal train operation
conditions, which indicates that NINK can adapt to the operation environment of high-speed
maglev train.
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