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Abstract: Change detection (CD) is critical for natural disaster detection, monitoring and evaluation.
Video satellites, new types of satellites being launched recently, are able to record the motion change
during natural disasters. This raises a new problem for traditional CD methods, as they can only
detect areas with highly changed radiometric and geometric information. Optical flow-based methods
are able to detect the pixel-based motion tracking at fast speed; however, they are difficult to
determine an optimal threshold for separating the changed from the unchanged part for CD problems.
To overcome the above problems, this paper proposed a novel automatic change detection framework:
OFATS (optical flow-based adaptive thresholding segmentation). Combining the characteristics of
optical flow data, a new objective function based on the ratio of maximum between-class variance
and minimum within-class variance has been constructed and two key steps are motion detection
based on optical flow estimation using deep learning (DL) method and changed area segmentation
based on an adaptive threshold selection. Experiments are carried out using two groups of video
sequences, which demonstrated that the proposed method is able to achieve high accuracy with F1
value of 0.98 and 0.94, respectively.

Keywords: change detection; natural disasters; deep learning; threshold selection; optical
flow estimation

1. Introduction

Natural disasters, such as earthquakes, tsunamis, floods and landslides, have shown a dramatically
and globally increasing trend, both in frequency and intensity [1–3]. Accurate determination of changes
on ground features associated with destructive disaster events is crucial to quick disaster response,
post-disaster reconstruction and financial planning [4]. Change detection (CD) using remote sensing
data can effectively capture changes before and after disasters [5–7], which has been widely used in
various fields of natural disasters such as flood monitoring [8], landslide displacement tracking [9,10]
and earthquake damage assessment [11,12], as well as relief priority mapping [13,14].

With the continuing growth of earth observation techniques and computer technology, massive
amounts of remote sensing data for natural disaster with different spectral-spatial-temporal resolution
are available for surveying and assessing changes in natural disaster, which greatly promotes the
development of change detection methodologies. Many change detection approaches for natural
disaster scenes have been proposed and they can be broadly divided into traditional and deep
learning (DL)-based [15]. For traditional CD methods, the simplest approaches are algebra-based
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methods. Hall and Hay [16] firstly segmented two panchromatic SPOT data observed at different
times and then detected changes through an image differencing method. Matsuoka et al. [17], on the
basis of the difference between the backscattering coefficient and correlation coefficient achieved
in an earthquake, applied supervised classification of the pre- and post-event optical images to
present the distribution of damaged areas in Bam. These directly algebraic operations were easy to
be implemented but always generated noisy outputs, such as isolated pixels or holes in the changed
objects; thus, some transformation and models were used in CD researches. Sharma et al. [18] finished
a damage assessment of landslides in a minimum time by pseudo color transformation and extracting
the landslide affected area based on the pre- and post-earthquake Landsat-8 images. Lee et al. [19] first
proposed an optimization algorithm based on Stepwise Weight Assessment Ratio Analysis (SWARA)
model and geographic information system to assess seismic vulnerability. In order to overcome the
limitation of the sole band and improve the identification of change detection, fusing datasets acquired
from various remote sensors and geographical data are paramount to monitoring the environmental
impacts of natural disasters. ElGharbawi et al. [20] estimated the crustal deformation affected by
the 2011 Tohoku earthquake combined with two deformation patterns using Synthetic Aperture
Radar (SAR) and GPS data. With the purpose of determining the changed buildings in forested areas,
Du et al. [21] adopted the graph cuts method taking account of spatial relationships and took grey-scale
similarity from old aerial images and height difference based on Digital Surface Model (DSM) generated
from LiDAR data as two change detection indexes to optimize building detection.

Due to the rapid development of computer technology, the research of traditional change detection
approaches has tuned into integrating deep learning techniques in recent years. Deep learning-based
methods have presented promising potentials based on the extraction of high-level features.
Saha et al. [22] detected collapsed buildings from SAR images and Ji et al. [23] further put them
into a random forest classifier to detect post-seismic destroyed buildings using pre- and post-disaster
remote sensing images. In order to achieve higher accuracy, some new neural networks have been
introduced into disaster monitoring researches. Ci et al. [24] proposed a novel Convolutional Neural
Network (CNN) model in combination with a CNN feature extractor, a new loss function and an
ordinal regression classifier to evaluate the degree of building damage caused by earthquakes using
aerial imagery. Peng et al. [25] utilized an end-to-end CD method named UNet++ to fuse multiple
feature maps from different semantic segmentation levels to generate a final change map with high
accuracy. Yavariabdi et al. [26] proposed a new change detection method based on multiobjective
evolutionary algorithm (MOEA), which is robust to multispectral Landsat images with atmospheric
changes. In this method, the similarity index measure (SSIM) is used to generate the difference image.
After that, MOEA is applied to obtain a set of multiple binary change masks by iteratively minimizing
two objective functions for changed and unchanged regions and the final binary mask is optimally
fused by MRF. With the purpose of improving efficiency, in Ghaffarian et al. [27], extended U-net
based on deep residual (ResUnet) followed a Conditional Random Field (CRF) implementation was
proposed to update the post-disaster buildings from very high resolution imagery. Alizadeh et al. [12]
established a new hybrid framework of Analytic Network Process (ANP) and Artificial Neural Network
(ANN) models for earthquake vulnerability assessment. To avoid labeling a massive number of data
for the training network, transfer learning has received increased attention. Pi et al. [28] employed
transfer learning to train eight CNN models based on You-Only-Look-Once (YOLO), so as to recognize
undamaged building roofs in disaster-affected areas. Transferring learning was used by Kung et al. [29]
to manage disaster by combination of data augmentation, reference model and augmented model.
Li et al. [30] proposed SDPCANet by combining PCANet and saliency detection to make change
detection based on SAR images, which effectively reduced the number of training samples but kept
higher change detection performance.

Recently, the development of commercial video satellites and the spread of mobile devices makes
it possible to thoroughly monitor the changing process in natural disaster. For example, high resolution
video sequences from video satellites, such as SkySat and Jilin_1, can provide valuable data during
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different disaster phases [31,32]. Thus, change detection can now move from pre- and post-image
analysis to almost real-time disaster monitoring using video sequences. Although change detection for
natural disaster has been researched for years in the society of remote sensing, the main studies are
focused on pre- and post-disaster satellite imagery, while the change detection based on video satellite
for natural disaster monitoring has rarely been studied. These video sequences, which capture disaster
motion change, bring a challenge for existing CD methods because the color and texture of objects
usually remain the same while only the positions have been changed.

The aim of this paper is to explore an effective method that detects the motion change in disaster
from video sequences. Optical flow in the field of computer vision, is very likely to detect the pixel
in this video sequence owing to its fast speed and pixel-based motion tracking. However, to fuse the
result of optical flow into the final change detection map is a challenge. The generation of change
detection map required the empirical threshold for optical flow, which may vary from case to case.
Thus, this paper first presents the investigation of the motion detection property of the optical flow
estimation algorithm based on deep learning and then proposes a novel change detection framework,
OFATS, based on a new objective function for video sequence in natural disaster which combines
the optical flow results and an adaptive thresholding segmentation algorithm based on the ratio of
maximum between-class variance and minimum within-class variance.

The rest of this paper is organized as follows: Section 2 briefly reviews the optical flow estimation
methods. The proposed change detection method is then introduced in Section 3. In Section 4,
the effective of the proposed method is tested and compared with some most commonly used CD
methods using two different natural disaster datasets. Finally, the paper is concluded in Section 5.

2. Optical Flow Estimation Methods

Optical flow, which represents change of the pixels’ displacement vectors between image
frames, is most widely used in motion tracking [33]. For example, optical flow has been used
to detect human/animal movements [34,35] and medical organ lesions [36,37], robots or vehicle
navigation [38,39], measure flow motion [40], airfoil deformation and surface strain [41]. With the
assumption of instantaneous pixel value invariance over a short displacement, optical flow can be
separated into two categories: local computation method on the basis of Lucas–Kanade (LK) method
and global computation method based on Horn and Schunck (HS) formulation [42]. LK method
supposes that the adjacent pixels in a sliding window share the same motion and keep locally
constant [43]. However, the size of a sliding window is difficult to be determined and further affect
the final accuracy [33]. HS assumes that the velocity field varies globally smoothly, which is more
fit for real scenes [44]. Horn and Schunck introduced the optical constraint equation based on the
combination of velocity field and gray value to build a basic algorithm of optical flow estimation [45].
However, these traditional optical flow computation methods often provide blurred boundaries and
are hard to be used in real time [46,47]. Convolutional neural networks (CNNs) have a strong ability
of feature extraction and speckle noise suppressing [15,48,49], which has attracted more attention to
numerous computer vision tasks.

FlowNet is the first end-to-end optical flow estimation model with CNN in 2015 and it uses an
encoder-decoder structure making up of convolutional and deconvolutional layer with additional
crosslinks between these contracting and expanding networks [50]. For the encoder module, it is
made up of nine convolutional layers and Rectified Linear Unit (ReLU), and mainly used to compute
abstract features from respective fields of increasing seize, but the latter reestablishes the original
resolution by an expanding upconvolutional architecture using four deconvolutional layers and
ReLU active function layer. It turned out to be an achievable training network and can directly
compute optical flow from two input images, but it is not competitive with fine-tuned traditional
methods at accuracy and the running speed is also slower [51]. On the basis of FlowNet, FlowNet 2.0,
a novel end-to-end optical flow estimation network was proposed in the winter of 2016, which can
effectively solve the above-mentioned problems in close accuracy with the state-of-the-art methods
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while running orders of magnitude faster and be marked as a milestone for optical flow estimation
based on CNN [52]. This success benefits from the following three aspects: new adding training dataset
including tiny motion and real-word data, stacking numerous networks by warping operations and a
novel leaning schedule of multiple datasets fusion. The schematic view of FlowNet 2.0 is shown in
Figure 1. The network is separated into two parts: large displacement and small displacement optical
flow network. For the computation of large displacement optical flow, two FlowNetS is combined
and the warping layers are introduced as a refinement. To cope with small displacements, a smaller
network, FlowNet-SD is added. Then the former stacked network and the small network are fused into
FlowNet 2.0 in an optimal manner, which can achieve optimal performance on arbitrary displacements.
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Optical flow estimation method based on FlowNet 2.0 has achieved considerable progress.
Nevertheless, it has rarely been used to make change detection in natural disasters, as far as we
know. In fact, FlowNet 2.0 based on HS generates a dense velocity field, that is, each pixel has the
corresponding optical flow field [43]. In order to accurately divide pixels into changed and unchanged
part based on the optical flow field, the selection of an appropriate threshold is critical. However,
the threshold selection for image segmentation needs to consider the data characteristics with expert
knowledge. Thus, in this paper, a novel CD framework, OFATS, for disaster detection has been proposed
by combing motion detection based on FlowNet 2.0 and the adaptive threshold determination method
based on a novel objective function.

3. Proposed OFATS Method

In this section, OFATS, the automated CD framework for natural disaster detection from video
sequence is proposed and the workflow is as shown in Figure 2.

It consists of two main steps: motion detection where FlowNet 2.0, the optical flow estimation
method based on deep learning, is introduced to compute the displacement and change boundary
extraction based on an adaptive threshold determination algorithm which takes the ratio of
maximum between-class variance and minimum within-class variance as the new objective function.
Specially, two optimization strategies are proposed: narrowing the searching range of potential
thresholds and dynamic normalization of motion information.
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Figure 2. The workflow of OFATS (optical flow-based adaptive thresholding segmentation).

3.1. Motion Detection

In this paper, the pixel displacements in horizontal and vertical are calculated by FlowNet 2.0,
denoted as u(x, y) and v(x, y), respectively, as shown in Figure 3.
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The displacement can be calculated as follow:

r(x, y) =
√

u(x, y)2 + v(x, y)2 (1)

Figure 4 shows an example of displacements’ distribution based on sequence “RubberWhale” [53].
The sample frame and the corresponding optical flow field visualization result are shown in Figure 4a,b,
respectively. In Figure 4b, the angles of arrows represent directions of each pixel’s displacement r(x, y)
and the lengths show the magnitudes of displacements. Four boxes of different colors in Figure 4a,b
representing various objects with different types of motions. In order to demonstrate the detailed
difference of four boxes in Figure 4b, they are zoomed in Figure 4c–f. Overall, these figures show
that the changed area can be roughly determined by the magnitudes and directions of optical flow.
Given that magnitude changes are more obvious to detection, a proper segmentation threshold based
on magnitude should be taken into consideration, separating the changed and unchanged part in the
next step.
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3.2. Change Boundary Extraction

After the motion detection, the next step is to determine the global optimal threshold of the
displacements so as to divide the changed and unchanged part which can be viewed as a two-class
classification problem. Based on displacements characteristics, the novel objective function and two
optimizing strategies for the optimal threshold selection are proposed, respectively.

3.2.1. The Objective Function

For any CD algorithm, the key factor differentiating change from non-change is the objective
function. The goal of setting the objective function is to find the global optimal threshold which can
maximize the between-class variance and minimize the within-class variance at the same time by
exploring a finite set of the possible displacement values as the possible threshold. Otsu is widely
used for global thresholding selection [54], but it does not work when the target and background vary
widely and two classes are very unequal [55,56]. Thus, in this paper, the objective function is set as the
ratio of maximum between-class variance and minimum within-class variance:

pbest(i) =
σ2

b(i)

σ2
in(i)

(2)

where i is the iteration number and the value range is from 0 to Num, the number of unique value of
motion detection results. pbest(i) is the fitness value of ith iteration, σ2

b(i) and σ2
in(i) are the between-class

and within-class variance, and the calculations are based on Equations (3) and (4), respectively.

σ2
b = P(C1)P(C2)(µ1 − µ2)

2 (3)

σ2
in = P(C1)σ

2
1 + P(C2)σ

2
2 (4)

where P(C1), P(C2), µ1,µ2, σ2
1, σ2

2 represent probabilities of class occurrence, class mean levels and the
class variances of unchanged class C1 and changed class C2, respectively. They are defined as following:
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P(C1) =
m∑

i=1

pi (5)

P(C2) =
n∑

i=m+1

pi (6)

µ1 =
1

P(C1)

m∑
i=1

wipi (7)

µ2 =
1

P(C2)

n∑
i=m+1

wipi (8)

σ2
1 =

1
m

m∑
i=1

(wi −
1
m

m∑
i=1

wi)

2

(9)

σ2
2 =

1
n−m

n∑
i=m+1

(wi −
1

n−m

n∑
i=m+1

wi)

2

(10)

The displacements can be represented in n levels [1, 2, . . . , n] and C1 denotes pixels with levels
[1, . . . , m], and C2 denotes pixels with levels [m + 1, . . . , n]. The pixel value and the corresponding
percentage at level i are denoted by wi and pi.

To concluded, σ2
b(i) and σ2

in(i) are determined by the iteration threshold value based on motion
detection results and the iteration threshold wi corresponding to the maximal fitness value pbest(i)
is considered as the optimal threshold tbest. The displacement of each pixel which is larger than the
optimal threshold could be classified into the changed part, while the smaller ones are unchanged.

g(x, y) =
{

1, r(x, y) > tbest
0, r(x, y) ≤ tbest

(11)

However, it requires large numbers of iteration and costs much time of too many unique values in
motion detection results because the changeable range of different pixels’ displacements being really
wide. Thus, the optimizing strategies are further proposed for optimal threshold selection.

3.2.2. Optimizing Strategies for Threshold Selection

According to the distribution of displacement data, we proposed two strategies to optimize the
threshold selection criterion: narrowing the searching range of iterations and dynamic normalization
of displacements which are greater than the currently selected threshold for each iteration.

Narrowing searching range is to efficiently reduce the scope of potential thresholds determined by
the wide range of experimental data. Comparing with the change of pre- and post- disasters, the video
data with 30 FPS during disasters can record the whole minor change of each frame. Thus, it should be
labeled as ‘change’ when pixels with displacements are larger than 1 pixel. Then, the searching range
can be narrowed from 0 to 1 and the corresponding iteration number is reduced to [0, N] and N is
the number of unique values of displacements with the value from 0 to 1. According to this, a large
number of the useless pixel values are excluded and speed can be enhanced greatly.

In order to reduce the influence of large range of displacement on the calculation of objective
function, quite a lot of pixels with displacements exceeding 1 pixel have to be normalized for the
whole image. Generally, pixels with larger displacements and great variations in magnitudes of
pixels’ movements must be classified as change class; therefore, normalization is executed only for the
pixels in changed class whose displacements are more than 1 pixel. To be more elaborate, the partial
normalization dynamically changes with each iteration. For ith iteration, the threshold is wi and pixels
with displacements’ values w1, . . . , wi are automatically labeled as unchanged class C1 and other pixels
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with displacements wi+1, . . . , wn which are larger than wi are classed as changed part C2. The pixels in
C2 whose displacements w j, . . . , wn ( j ≥ i + 1), are greater than 1 need to be normalized to [wi+1, wend]
but the corresponding percentages remain unchanged. The formulas are as follows:

k j =
wend −wi+1

wmax −wmin
(12)

w j = wend + k j
(
w j −wmin

)
(13)

wend is the maximum displacement value which is most close to 1; wmax, wmin are the maximum
and minimum pixel value of changed class C2 which need to be normalized.

Based on the two strategies, the threshold calculation can be more efficient and lay a foundation
for the selection of the optimal threshold.

3.3. The Proposed CD Method

The whole flowchart of proposed OFATS is as Figure 5 shown and the details of change detection
process are implemented in Algorithm 1. The essential steps of OFATS are motion detection based on
FlowNet 2.0 and segmentation based on adaptive threshold selection criteria. For motion detection,
the selected frames are input into FlowNet 2.0 to compute the magnitude in horizontal and vertical
directions, based on which the displacements are calculated by Equation (1). After that, the next steps
are the iterative process for optimal threshold selection. Following Algorithm 1, Equations (2)–(13)
are repeatedly applied to calculate the fitness value for a fixed number to enable the iterative
optimization. Based on the optimal threshold, the displacement result can be segmented into changed
and unchanged parts.

The details of OFATS are implemented in Algorithm 1:

Algorithm 1. The proposed OFATS for change detection in natural disaster

Input: The two frames extracted from the video sequence.
Output: The change detection result.
1: Input the two frame images and calculate the movement in horizontal and vertical directions based on
FlowNet 2.0;
2: Calculate the displacements reserving a decimal fraction based on Equation (1);
3: Generate initial global fitness value gbest and iteration value i;
4: while the algorithm does not reach the termination condition do
5: I = I + 1;
6: Divide into unchanged class C1 and changed class C2 threshold wi and normalize displacements which
are larger than 1 in C2 according to Equation (12) and (13) and then involve in arithmetic by using
Equations (5)–(10);
7: Calculate between- and within-class variance by using Equations (3) and (4);
8: Calculate fitness value by using Equation (2);
9: if The solution is better then
10: Replace the current individual;
11: else
12: The individual does not change;
13: End if
14: Find out the current global best agent;
15: end while
16: return The optimal threshold.
17: Divide the image into two parts by optimal threshold value by using Equation (11).
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4. Data and Experiments

In this section, the proposed OFATS is applied to the detection of motion in two real video datasets
including tsunami dataset and landslide dataset. The experimental results can be divided into two
parts. Firstly, we verify the performance of the proposed OFATS method using video frame images
with different input parameters. Secondly, the proposed method is compared with state-of-the-art CD
methods using the two datasets.

4.1. Study Datasets

The proposed CD method is evaluated using two video frame datasets representing different
natural disasters. The first video data gives a glimpse at tsunami in Petobo, Indonesia, where a
7.5 magnitude earthquake trigged a tsunami on 28 September 2018. Digital Globe’s WorldView
captured these change progress by satellite images and transformed into a video consisting of 301
effective video clips [57]. Another example is about the slow-moving landslide produced by a subject
named massive landslides caught on camera 2 and a video clip with 172 effective frames is selected [58].
In this research, we both select six frames of two video datasets but the quantities of alternate frame
are different (at frame 160 and 165, 162 and 163, and 175 and 180 for the tsunami scene and at frame
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4960 and 4970, frame 4970 and 4980, frame 4980 and 4985 for landslide scene, respectively) as the
input image sequences for change detection in order to test OFATS’s robust to arbitrary movements.
The experimental data together with the ground truth generated by visual interpretation are shown in
Figure 6.
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Figure 6. Experimental video frames and the corresponding ground truth: (a–c) Frame 160 and 165,
Frame 162 and 163, and Frame 175 and 180 of tsunami video, respectively; (d–f) Frame 4960 and 4970,
Frame 4970 and 4980, and Frame 4980 and 4985 of landslide video, respectively.
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4.2. Evaluation of the Proposed Threshold Selection Method

In this section, the aim is to verify whether the proposed algorithm is able to automatically
determine the optimal threshold for CD. Considering the change detection as a binary classification
problem, the F1-measure is often used to test the selection of the optimal threshold. F1, which can
synthetically consider precision (P) and recall (R) in binary classification, is shown in Table 1.
The threshold that has the highest F1 will be considered as the optimum threshold. The value of F1
indicates the accuracy of change detection, and the closer to 1 means more accurate. This verification is
executed on two sides: the correspondence of the optimal threshold and the maximum F1-measure
value, and the performance to determine the optimal threshold value based on adaptive threshold
selection proposed in OFATS and Otsu, a classic thresholding way for binarization in image processing.

Table 1. Formulas related to calculating F1.

Parameter Name Formula Explanation of Abbreviations

P tp
tp+ f p tp (true positive): detects that are correctly identified as changed

tn (true negative): detects that are correctly identified as unchanged
f p (false positive): detects that are falsely identified as changed

f n (false negative): detects that are falsely identified as unchanged

R tp
tp+ f n

F1 2∗P∗R
P+R

In the first experiment, the frames 160 and 165 in the tsunami video are taken as an example
to test whether the proposed OFATS can generate the optimal threshold with the corresponding
maximum F1-measure value. If the threshold determined by the proposed objective function is in
accordance with the peak value of F1, it means that the generated threshold is optimum and OFATS
has the best performance. The variations of objective function value with respect to threshold value are
demonstrated in Figure 7, as well as the corresponding F1 value. The blue bars represent the objective
function values and the red line represents F1 values with iterated threshold values. The optimal
threshold based on OFATS and the corresponding F1 are labeled with green circle. According to
Figure 7, the maximum objective function value (6.04 × 104) corresponds to the optimum threshold
(0.3) based on which can achieve the highest peak of F1 during the whole iterations. This indicates that
OFATS can automated produce the optimum threshold with the highest F1-measure value.Sensors 2020, 20, x FOR PEER REVIEW 12 of 21 
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In order to illustrate the robustness of adaptive threshold selection in OFATS, Otsu is introduced
as a comparison of the optimal threshold selection based on the same displacements’ results in the
second experiment. There are three groups of tsunami data and three groups of landslide data and the
comparison results based on different threshold selection methods for experimental data have been
shown in Table 2.

Table 2. The optimum thresholds and the corresponding F1 values based on adaptive threshold
selection in OFATS and Otsu for the experimental data.

Adaptive Threshold Selection in OFATS Threshold Selection Based on Otsu

Study Data Experimental Frame Optimum Threshold F1 Optimum Threshold F1

Tsunami data
Frame 160–165 0.3 0.98 0.4 0.97
Frame 162–163 0.2 0.97 0.38 0.90
Frame 175–180 0.3 0.99 0.48 0.96

Landslide data
Frame 4960–4970 0.4 0.94 0.4 0.94
Frame 4970–4980 0.3 0.92 0.5 0.91
Frame 4980–4985 0.3 0.92 0.5 0.91

According to Table 2, the corresponding F1 values based on the adaptive threshold selection in
OFATS are higher than Otsu in most cases, except the case in frames 4960–4970, which OFATS has
the same threshold with Otsu. For the majority experimental frames, average F1 values based on
OFATS are 0.02 higher than Otsu. This comparison indicates that the proposed OFATS is more robust
to generate the optimum threshold thus accurately detecting the natural disaster change between
video sequences.

4.3. Comparing the Proposed Method with Other CD Methods

This section takes frames 160–165 of the tsunami video and frames 4960–4970 of the landslide video
as examples and compares the proposed algorithm with state-of-the-art CD algorithms, including Image
Differencing, Image Rationing, Change Vector Analysis (CVA), Post-classification comparison (PCC),
Kullback–Leibler divergence (KL), and Classic optical flow (COF) based on HS, a traditional optical
flow estimation method. The aim is to test the superiority but to verify the robustness of OFATS to
different range of movements.

The evaluation methods in this experiment are Producer’s Accuracy (PA), and User’s Accuracy
(UA), Overall Accuracy (OA), Kappa coefficient (K). PA and UA are local indexes, where PA is obtained
by dividing the number of correctly classified pixels in each class by the number of ground truth pixels
in the corresponding class and UA is obtained by dividing the number of the total correctly classified
pixels in the same class. Thus, there are four related indexes, that are PAc, PAun, PA for changes
and unchanges, and UAc, UAun, UA for changes and unchanges, as shown by Equations (14)–(17).
OA and K are global indexes, where OA is the proportion of number of correctly identified pixels,
both changed and unchanged, to the number of total pixels, and K builds on OA by taking into account
both the omission and commission of pixels. As OA, K, and F1 increase and approach 100%, 1, and 1,
respectively, so too does the accuracy of the CD method in differentiating changes from non-changes.

PAc =
tp

tp + f n
(14)

PAun =
f p

f p + tn
(15)

UAc =
tp

tp + f p
(16)

UAun =
f n

f n + tn
(17)
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OA and K are calculated by Equations (17) and (18):

OA =
tp + tn

tp + tn + f p + f n
(18)

k =
k1 − k2

1− k2
(19)

where k1 and k2 are computed as follows:

k1 =
tp + tn

tp + tn + f p + f n
(20)

k2 =
(tp + f n) ∗ (tp + f p) + ( f p + tn) ∗ ( f n + tn)

(tp + tn + f p + f n)2 (21)

All of the previously mentioned CD methods were used to analyze tsunami and landslide data,
and CD maps are shown in Figures 8 and 10 and the accuracy results were tabulated in Tables 3 and 4,
respectively, and demonstrated in Figures 9 and 11, respectively. The results indicate that the proposed
OFATS method has K and F1 values closing to 1 and also has the highest OA values, which shows that
it is capable of accurately distinguishing between changed and unchanged pixels. The values of K, F1,
and OA, according to Tables 3 and 4, are 0.98%, 0.97% and 98.5%, respectively, for the tsunami dataset,
and 0.94%, 0.91%, and 96.3%, respectively, for the landside dataset.

Table 3. Confusion matrices along with indexes of the tsunami data.

Method
Ground Truth

F1 K OA (%)
C U UA (%)

Image differencing
C 507,934 37,899 93.0

0.79 0.69 86.0U 237,043 1,183,204 83.3
PA (%) 68.2 96.7

Image rationing
C 624,451 841,520 42.6

0.57 0.13 51.1U 120,526 379,583 76.0
PA (%) 83.8 31.1

CVA
C 420,863 229,199 64.7

0.60 0.39 71.9U 324,114 991,904 75.4
PA (%) 56.5 81.2

PCC
C 294,325 401,789 42.2

0.41 0.07 56.6U 450,652 819,314 64.5
PA (%) 39.5 67.1

KL
C 548,695 750,222 42.2

0.54 0.11 51.9U 196,282 470,881 70.6
PA (%) 73.7 38.6

COF
C 688,338 36,873 94.9

0.94 0.90 95.2U 56,639 1,184,230 95.4
PA (%) 92.4 97.0

OFATS
C 737,237 21,164 97.2

0.98 0.97 98.5U 7740 1,199,939 99.3
PA (%) 98.9 98.2

Figure 8a is the ground truth in which white represents changes and black means unchanges.
Figure 8b–g are the results from comparative CD methods, from which most of them have difficulty
to provide a clear boundary and complete changed area, especially for the CD methods of PCC
(Figure 8e) and KL (Figure 8f). Many changed areas are wrongly detected as non-changed areas of
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image differencing (Figure 8b); however, the results of image rationing and CVA (Figure 8c,d) are the
opposite. Figure 8g from COF is better than the traditional CD methods, and the result is very similar
to OFATS (Figure 8h); however, the change detection accuracy of COF is less than the proposed method
with several tiny false alarm areas.

Table 4. Confusion matrices along with indexes of landslide data.

Method
Ground Truth

F1 K OA (%)
C U UA (%)

Image differencing
C 512,244 218,623 70.1

0.76 0.64 83.8U 100,309 1,134,904 91.9
PA (%) 83.6 83.8

Image rationing
C 540,840 205,471 72.5

0.80 0.69 85.9U 71,713 1,148,056 94.1
PA (%) 88.3 84.8

CVA
C 577,780 90,087 86.5

0.90 0.86 93.6U 34,773 1,263,440 97.3
PA (%) 94.3 93.3

PCC
C 380,536 613,376 38.3

0.47 0.14 57.0U 232,017 740,151 76.1
PA (%) 62.1 54.7

KL
C 525,254 208,691 71.6

0.78 0.67 84.9U 87,299 1,144,836 92.9
PA (%) 85.7 84.6

COF
C 611,643 140,762 81.3

0.90 0.84 92.8U 910 1,212,765 99.9
PA (%) 99.8 89.6

OFATS
C 584,927 44,777 92.9

0.94 0.91 96.3U 27,626 1,308,750 97.9
PA (%) 95.4 96.7
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To further analyze the experimental results, Table 3 presents the quantitative performance indexes
of these different CD methods for the tsunami dataset and Figure 9 visually displays this. For image
rationing, PCC and KL CD methods, the F1 values are around 0.5, OA is less than 60% and K is
smaller than 0.15, which shows these methods fail to identify the changed area. Image differencing
and CVA are slightly better than them but the results are still unsatisfying. This is because most of
these CD methods only use one band of the RGB images to directly do algebraic operation or some
transformation computing, which is unable to digging deep features to detect the change information
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of the corresponding pixel with small changes. Thus, some originally changed land cover types are
hard to be tested. Moreover, the CD results are extremely fragmented and have to be implemented by
morphologic erosion and dilation. The selection of the optimum threshold for the final binary image
also produces errors. KL detects changes based on the spectral similarity of two single band, but
the changed pixels in our research are only with displacements and no obvious spectral change in
appearance. Thus, KL is less sensitive to this kind of changes that occurring when the displacements are
small. PCC concurrently obtains the changed boundary and the “from-to” change information; however,
PCC is the least accurate of the algorithms that were studied in this paper. Only small displacements or
slight deformations occur rather than land cover type changes, resulting in PCC’s ineffectiveness in the
experimental data. Both COF and the proposed OFATS method produce reasonable CD accuracy with
values of F1, OA and K higher than 0.9. Compared to COF, the proposed OFATS can achieve higher
accuracy because high-level features can be extracted based on deep learning and the corresponding
motion results can keep a higher precision [59]. Thus, the final CD accuracy based on OFATS are higher
than that based on COF even if they use the same optimal threshold value.
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Figure 10 shows the results for landslide dataset. Table 4 and Figure 11 present the quantitative
analysis indexes of different CD methods. By observing the CD results in Figure 10, we can still find
that the proposed OFATS is the most similar one to the change ground truth.Sensors 2020, 20, x FOR PEER REVIEW 16 of 21 
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Figure 10. The change detection results for landslide dataset: (a) Ground Truth; (b) Image differencing;
(c) Image rationing; (d) CVA; (e) PCC; (f) KL; (g) COF and (h) OFATS.
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Similar to Table 3, Table 4 also demonstrates the superior performance of OFATS with the highest
F1, OA and K indexes, reaching 0.94, 96.3% and 0.91, respectively. Figure 11 also visually displayed
the comparison of different CD algorithms, where the three accuracy indexes of OFATS are all the
maximum but the corresponding values of PCC are minimal. The similar accuracies of the two datasets
show that the proposed OFATS method maintains excellent performance and is robust to different
motion changes. It should be noticed that nearly all CD methods perform better than in the Indonesia
tsunami case.

Although the two experimental datasets are both from natural disaster scenes, the mean pixel
displacement in the landslide dataset is larger than that of the tsunami dataset. The difference can be
used to test the robustness of OFATS. The comparative analysis will be based on K values for all of the
algorithms for both the landslide and tsunami datasets, as shown in Figure 12. The K values based
on CD methods for the two datasets have varied but the change trends are basically identical. The K
values for the traditional CD methods, other than image differencing, all follow the trend of the value
obtained from the landslide dataset being higher than that of the tsunami dataset. It is worthwhile to
be mentioned that the K values obtained from the landslide dataset are significantly higher than that
of the tsunami dataset for image rationing, CVA and KL. Specially, the K values are greater than 0.6
and less than 0.4 for the landslide and tsunami datasets, respectively, which illustrates that these CD
methods should only be fit for large displacements. The different performances of these CD methods
indicate that only when the differences between corresponding pixels on bi-temporal images are large,
like in the case of landslides, can these CD algorithms detect the change. The K values that were
obtained using PCC are less than 0.2, therefore these results further indicate that PCC is not applicable
for these two types of situations regardless of the magnitude of displacement.

Despite the variations of K values, the two CD methods based on optical flow estimation
algorithms achieved excellent results for both experimental datasets and K values were all greater than
0.8. However, the K values obtained using OFATS are 10% higher than COF for both datasets and their
absolute values are both greater than 0.9. The superiority of OFATS is not only the accuracy, but it is
also significantly more efficient in terms of computing time. Therefore, our proposed OFATS is more
practical in these actual circumstances.
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detection, even for small motion; (3) it can automatically generate the optimum threshold for the 
following image segmentation.  

Author Contributions: H.Q., X.W. provided the original idea for this study; Y.W., S.L. and W.Z. contributed to 
the discussion of the design; H.Q., X.W. designed and performed the experiments, supervised the research and 
contributed to the article’s organization; X.W. and Y.W. edited the manuscript, which was revised by all authors. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported in part by the National Key Research and Development Program of China 
(No. 2018YFD1100405) and the National Natural Science Foundation of China (No. 41701468). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing 
climate. Nature 2002, 415, 514. 

Figure 12. The comparison of K for experimental datasets based on CD methods.

5. Conclusions

The challenging problems in natural disaster detection are how to detect the motion change and
how to determine an adaptive threshold that can automatically and rapidly produce accurate change
detection results. To solve this problem, an automatic change framework, termed as OFATS, is proposed
in this paper. First, the displacement was computed from two frames using optical flow estimation
algorithm based on deep learning. Then, the optimal threshold for rapidly separating changed from
unchanged parts was automatically generated using an adaptive threshold selection based on a new
objective function by narrowing the threshold searching range and dynamic normalization.

The proposed OFATS has been applied to two different natural disaster videos. The CD results
have been compared with seven other state-of-the-art CD methods, visually and quantitatively.
The quantitative evaluation demonstrated that the accuracies of proposed method are greater than 95%
for the two experimental datasets and it surpasses the most excellent CD algorithms by almost 4%
for tsunami data and 5% for landslide data. Experiments showed three advantages of the proposed
method: (1) it can detect the change using video datasets for natural disasters in an automatic way,
which have rarely been studied before; (2) it is highly efficient to conduct natural disaster change
detection, even for small motion; (3) it can automatically generate the optimum threshold for the
following image segmentation.

Author Contributions: H.Q., X.W. provided the original idea for this study; Y.W., S.L. and W.Z. contributed to
the discussion of the design; H.Q., X.W. designed and performed the experiments, supervised the research and
contributed to the article’s organization; X.W. and Y.W. edited the manuscript, which was revised by all authors.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Key Research and Development Program of China
(No. 2018YFD1100405) and the National Natural Science Foundation of China (No. 41701468).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing
climate. Nature 2002, 415, 514. [CrossRef] [PubMed]

2. Sublime, J.; Kalinicheva, E. Automatic post-disaster damage mapping using deep-learning techniques for
change detection: Case study of the Tohoku Tsunami. Remote Sens. 2019, 11, 1123. [CrossRef]

3. Crooks, A.T.; Wise, S. GIS and agent-based models for humanitarian assistance. Comput. Environ. Urban Syst.
2013, 41, 100–111. [CrossRef]

http://dx.doi.org/10.1038/415514a
http://www.ncbi.nlm.nih.gov/pubmed/11823857
http://dx.doi.org/10.3390/rs11091123
http://dx.doi.org/10.1016/j.compenvurbsys.2013.05.003


Sensors 2020, 20, 5076 18 of 20

4. Lu, C.; Ying, K.; Chen, H. Real-time relief distribution in the aftermath of disasters—A rolling horizon
approach. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 1–20. [CrossRef]

5. Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey.
Earth Sci. Inform. 2019, 12, 143–160. [CrossRef]

6. Klomp, J. Economic development and natural disasters: A satellite data analysis. Global Environ. Chang.
2016, 36, 67–88. [CrossRef]

7. Yu, H.; Wen, Y.; Guang, H.; Ru, H.; Huang, P. Change detection using high resolution remote sensing images
based on active learning and Markov random fields. Remote Sens. 2017, 9, 1233. [CrossRef]

8. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal
COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115,
990–1002. [CrossRef]

9. Lacroix, P.; Bièvre, G.; Pathier, E.; Kniess, U.; Jongmans, D. Use of Sentinel-2 images for the detection of
precursory motions before landslide failures. Remote Sens. Environ. 2018, 215, 507–516. [CrossRef]

10. Cai, J.; Wang, C.; Mao, X.; Wang, Q. An adaptive offset tracking method with SAR images for landslide
displacement monitoring. Remote Sens. 2017, 9, 830. [CrossRef]

11. Gautam, D.; Dong, Y. Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake
and 2017 central Nepal flash flood. J. Build. Eng. 2018, 17, 196–201. [CrossRef]

12. Alizadeh, M.; Ngah, I.; Hashim, M.; Pradhan, B.; Pour, A. A hybrid analytic network process and artificial
neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sens. 2018,
10, 975. [CrossRef]

13. Carlotto, M.J. Detection and analysis of change in remotely sensed imagery with application to wide area
surveillance. IEEE T. Image Process. 1997, 6, 189–202. [CrossRef] [PubMed]

14. Bejiga, M.; Zeggada, A.; Nouffidj, A.; Melgani, F. A convolutional neural network approach for assisting
avalanche search and rescue operations with UAV imagery. Remote Sens. 2017, 9, 100. [CrossRef]

15. Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence
state-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [CrossRef]

16. Hall, O.; Hay, G.J. A multiscale object-specific approach to digital change detection. Int. J. Appl. Earth Obs.
2003, 4, 311–327. [CrossRef]

17. Matsuoka, M.; Yamazaki, F. Building damage mapping of the 2003 Bam, Iran, earthquake using Envisat/ASAR
intensity imagery. Earthq. Spectra 2005, 21, 285–294. [CrossRef]

18. Sharma, K.; Saraf, A.K.; Das, J.; Baral, S.S.; Borgohain, S.; Singh, G. Mapping and change detection study of
Nepal-2015 earthquake induced landslides. J. Indian Soc. Remote 2018, 46, 605–615. [CrossRef]

19. Alizadeh, M.; Shirzadi, A.; Khosravi, K.; Melesse, A.M.; Yekrangnia, M.; Rezaie, F.; Al, E. SEVUCAS a novel
GIS-based machine learning software for seismic vulnerability assessment. Appl. Sci. 2019, 9, 3495.

20. ElGharbawi, T.; Tamura, M. Coseismic and postseismic deformation estimation of the 2011 Tohoku earthquake
in Kanto Region, Japan, using InSAR time series analysis and GPS. Remote Sens. Environ. 2015, 168, 374–387.
[CrossRef]

21. Du, S.; Zhang, Y.; Qin, R.; Yang, Z.; Zou, Z.; Tang, Y.; Fan, C. Building change detection using old aerial
images and new LiDAR data. Remote Sens. 2016, 8, 1030. [CrossRef]

22. Sudipan, S.; Francesca, B.; Lorenzo, B. Destroyed-buildings detection from VHR SAR images using deep
features. In Proceedings of the Image and Signal Processing for Remote Sensing XXIV, Berlin, Germany,
10–12 September 2018.

23. Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A comparative study of texture and convolutional neural network
features for detecting collapsed buildings after earthquakes using pre- and post-event satellite imagery.
Remote Sens. 2019, 11, 1202. [CrossRef]

24. Ci, T.; Liu, Z.; Wang, Y. Assessment of the degree of building damage caused by disaster using convolutional
neural networks in combination with ordinal regression. Remote Sens. 2019, 11, 2858. [CrossRef]

25. Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using
improved UNet++. Remote Sens. 2019, 11, 1382. [CrossRef]

26. Yavariabdi, A.; Kusetogullari, H. Change detection in multispectral landsat images using multiobjective
evolutionary algorithm. IEEE Geosci. Remote Sens. 2017, 14, 414–418. [CrossRef]

27. Ghaffarian, S.; Kerle, N.; Pasolli, E.; Jokar Arsanjani, J. Post-disaster building database updating using
automated deep learning: An integration of pre-disaster OpenStreetMap and multi-temporal satellite data.
Remote Sens. 2019, 11, 2427. [CrossRef]

http://dx.doi.org/10.1016/j.tre.2016.05.002
http://dx.doi.org/10.1007/s12145-019-00380-5
http://dx.doi.org/10.1016/j.gloenvcha.2015.11.001
http://dx.doi.org/10.3390/rs9121233
http://dx.doi.org/10.1016/j.rse.2010.12.002
http://dx.doi.org/10.1016/j.rse.2018.03.042
http://dx.doi.org/10.3390/rs9080830
http://dx.doi.org/10.1016/j.jobe.2018.02.016
http://dx.doi.org/10.3390/rs10060975
http://dx.doi.org/10.1109/83.552106
http://www.ncbi.nlm.nih.gov/pubmed/18282888
http://dx.doi.org/10.3390/rs9020100
http://dx.doi.org/10.3390/rs12101688
http://dx.doi.org/10.1016/S0303-2434(03)00010-2
http://dx.doi.org/10.1193/1.2101027
http://dx.doi.org/10.1007/s12524-017-0720-8
http://dx.doi.org/10.1016/j.rse.2015.07.016
http://dx.doi.org/10.3390/rs8121030
http://dx.doi.org/10.3390/rs11101202
http://dx.doi.org/10.3390/rs11232858
http://dx.doi.org/10.3390/rs11111382
http://dx.doi.org/10.1109/LGRS.2016.2645742
http://dx.doi.org/10.3390/rs11202427


Sensors 2020, 20, 5076 19 of 20

28. Pi, Y.; Nath, N.D.; Behzadan, A.H. Convolutional neural networks for object detection in aerial imagery for
disaster response and recovery. Adv. Eng. Inform. 2020, 43, 101009. [CrossRef]

29. Kung, H.; Hsieh, C.; Ho, C.; Tsai, Y.; Chan, H.; Tsai, M. Data-augmented hybrid named entity recognition for
disaster management by transfer learning. Appl. Sci. 2020, 10, 4234. [CrossRef]

30. Li, M.; Li, M.; Zhang, P.; Wu, Y.; Song, W.; An, L. SAR image change detection using PCANet guided by
saliency detection. IEEE Geosci. Remote Sens. 2018, 16, 402–406. [CrossRef]

31. Curtis, A.; Mills, J.W. Spatial video data collection in a post-disaster landscape: The Tuscaloosa Tornado of
27 April 2011. Appl. Geogr. 2012, 32, 393–400. [CrossRef]

32. Curtis, A.J.; Mills, J.W.; McCarthy, T.; Fotheringham, A.S.; Fagan, W.F. Space and Time Changes in Neighborhood
Recovery after a Disaster Using a Spatial Video Acquisition System; Springer: Berlin, Germany, 2009; pp. 373–392.

33. Tu, Z.; Xie, W.; Zhang, D.; Poppe, R.; Veltkamp, R.C.; Li, B.; Yuan, J. A survey of variational and CNN-based
optical flow techniques. Signal Process. Image Commun. 2019, 72, 9–24. [CrossRef]

34. Guo, Y.; Zhang, Z.; He, D.; Niu, J.; Tan, Y. Detection of cow mounting behavior using region geometry and
optical flow characteristics. Comput. Electron. Agric. 2019, 163, 104828. [CrossRef]

35. Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Monitoring pig movement at the slaughterhouse
using optical flow and modified angular histograms. Biosyst. Eng. 2016, 141, 19–30. [CrossRef]

36. Yan, W.; Wang, Y.; van der Geest, R.J.; Tao, Q. Cine MRI analysis by deep learning of optical flow: Adding
the temporal dimension. Comput. Biol. Med. 2019, 111, 103356. [CrossRef] [PubMed]

37. Wang, L.; Clarysse, P.; Liu, Z.; Gao, B.; Liu, W.; Croisille, P.; Delachartre, P. A gradient-based optical-flow
cardiac motion estimation method for cine and tagged MR images. Med. Image Anal. 2019, 57, 136–148.
[CrossRef]

38. Cao, Y.; Renfrew, A.; Cook, P. Comprehensive vehicle motion analysis using optical flow optimization based
on pulse-coupled neural network. IFAC Proc. Vol. 2008, 41, 158–163. [CrossRef]

39. Tchernykh, V.; Beck, M.; Janschek, K. Optical flow navigation for an outdoor UVA using a wide angle mono
camera and dem matching. IFAC Proc. Vol. 2006, 39, 590–595. [CrossRef]

40. Liu, Y.; Xi, D.; Li, Z.; Hong, Y. A new methodology for pixel-quantitative precipitation nowcasting using a
pyramid Lucas Kanade optical flow approach. J. Hydrol. 2015, 529, 354–364. [CrossRef]

41. Zhao, R.; Sun, P. Deformation-phase measurement by optical flow method. Opt. Commun. 2016, 371, 144–149.
[CrossRef]

42. Osman, A.B.; Ovinis, M. A review of in-situ optical flow measurement techniques in the Deepwater Horizon
oil spill. Measurement 2020, 153, 107396.

43. Yuan, W.; Yuan, X.; Xu, S.; Gong, J.; Shibasaki, R. Dense Image-Matching via Optical Flow Field Estimation
and Fast-Guided Filter Refinement. Remote Sens. 2019, 11, 2410. [CrossRef]

44. Sun, D.; Roth, S.; Black, M.J. Secrets of optical flow estimation and their principles. In Proceedings of the
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 13–18 June 2010; pp. 2432–2439.

45. Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [CrossRef]
46. Prajapati, D.; Galiyawala, H.J. A Review on Moving Object Detection and Tracking; Department of Electronics

and Communication Engineering, UKA Tarsadia University: Bardoli, India, 2015.
47. Wei, S.; Yang, L.; Chen, Z.; Liu, Z. Motion detection based on optical flow and self-adaptive threshold

segmentation. Procedia Eng. 2011, 15, 3471–3476. [CrossRef]
48. Hou, B.; Wang, Y.; Liu, Q. Change detection based on deep features and low rank. IEEE Geosci. Remote Sens.

2017, 14, 2418–2422. [CrossRef]
49. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning

in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716.
[CrossRef]

50. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T.
Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE International
Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 2758–2766.

51. Hui, T.W.; Tang, X. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 8981–8989.

http://dx.doi.org/10.1016/j.aei.2019.101009
http://dx.doi.org/10.3390/app10124234
http://dx.doi.org/10.1109/LGRS.2018.2876616
http://dx.doi.org/10.1016/j.apgeog.2011.06.002
http://dx.doi.org/10.1016/j.image.2018.12.002
http://dx.doi.org/10.1016/j.compag.2019.05.037
http://dx.doi.org/10.1016/j.biosystemseng.2015.10.002
http://dx.doi.org/10.1016/j.compbiomed.2019.103356
http://www.ncbi.nlm.nih.gov/pubmed/31323604
http://dx.doi.org/10.1016/j.media.2019.06.016
http://dx.doi.org/10.3182/20080706-5-KR-1001.00027
http://dx.doi.org/10.3182/20060912-3-DE-2911.00103
http://dx.doi.org/10.1016/j.jhydrol.2015.07.042
http://dx.doi.org/10.1016/j.optcom.2016.03.075
http://dx.doi.org/10.3390/rs11202410
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1016/j.proeng.2011.08.650
http://dx.doi.org/10.1109/LGRS.2017.2766840
http://dx.doi.org/10.1016/j.rse.2020.111716


Sensors 2020, 20, 5076 20 of 20

52. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, San Francisco, CA, USA, 18–20 June 1996; pp. 2462–2470.

53. Baker, S.; Scharstein, D.; Lewis, J.P.; Roth, S.; Black, M.J.; Szeliski, R. A Database and evaluation methodology
for optical flow. Int. J. Comput. Vis. 2011, 92, 1–31. [CrossRef]

54. Vala, H.J.; Baxi, A. A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol.
2013, 2, 387–389.

55. Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recogn. 1993, 26, 1277–1294. [CrossRef]
56. Waseem Khan, M. A Survey: Image segmentation techniques. Int. J. Future Comput. Commun. 2014, 3, 89–93.

[CrossRef]
57. Digital Globe Data in Indonesia Earthquake. Available online: https://www.youtube.com/watch?v=

-41ENJF0wVwx (accessed on 24 October 2018).
58. Slow-Moving Landslide Des Caught on Camera 2. Available online: https://www.youtube.com/watch?v=

PmLHg-mLrMU (accessed on 10 July 2019).
59. Qiao, H.J.; Wan, X.; Xu, J.Z.; Li, S.Y.; He, P.P. Deep learning based optical flow estimation for change detection:

A case study in Indonesia earthquake. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 317–322.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1016/0031-3203(93)90135-J
http://dx.doi.org/10.7763/IJFCC.2014.V3.274
https://www.youtube.com/watch?v=-41ENJF0wVwx
https://www.youtube.com/watch?v=-41ENJF0wVwx
https://www.youtube.com/watch?v=PmLHg-mLrMU
https://www.youtube.com/watch?v=PmLHg-mLrMU
http://dx.doi.org/10.5194/isprs-annals-V-3-2020-317-2020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Optical Flow Estimation Methods 
	Proposed OFATS Method 
	Motion Detection 
	Change Boundary Extraction 
	The Objective Function 
	Optimizing Strategies for Threshold Selection 

	The Proposed CD Method 

	Data and Experiments 
	Study Datasets 
	Evaluation of the Proposed Threshold Selection Method 
	Comparing the Proposed Method with Other CD Methods 

	Conclusions 
	References

