
sensors

Article

Cryptographic Keys Generating and Renewing
System for IoT Network Nodes—A Concept

Janusz Furtak

Faculty of Cybernetics, Military University of Technology, 00-908 Warsaw, Poland; janusz.furtak@wat.edu.pl;
Tel.: +48-261-838-701

Received: 21 July 2020; Accepted: 1 September 2020; Published: 3 September 2020
����������
�������

Abstract: Designers and users of the Internet of Things (IoT) are devoting more and more attention
to the issues of security and privacy as well as the integration of data coming from various areas.
A critical element of cooperation is building mutual trust and secure data exchange. Because IoT
devices usually have small memory resources, limited computing power, and limited energy resources,
it is often impossible to effectively use a well-known solution based on the Certification Authority.
This article describes the concept of the system for a cryptographic Key Generating and Renewing
system (KGR). The concept of the solution is based on the use of the hardware Trusted Platform
Module (TPM) v2.0 to support the procedures of creating trust structures, generating keys, protecting
stored data, and securing data exchange between system nodes. The main tasks of the system are the
secure distribution of a new symmetric key and renewal of an expired key for data exchange parties.
The KGR system is especially designed for clusters of the IoT nodes but can also be used by other
systems. A service based on the Message Queuing Telemetry Transport (MQTT) protocol will be used
to exchange data between nodes of the KGR system.

Keywords: key distribution system; cryptographic keys renewing; security in IoT; Trusted Platform
Module; MQTT secure data exchange

1. Introduction

System designers in which security issues are an important element often use cryptographic
techniques to secure stored data and to secure data exchange between system components.
The cryptographic algorithms available on the market can be divided into two classes: asymmetric
key algorithms and symmetric key algorithms. Each of these classes has different properties and
applications. System designers are forced to solve the dilemma of which algorithms to use in a case.
In most situations, mixed solutions are used.

Asymmetrical cryptography is used to build trust structures, to sign messages forwarded, and to
establish a secure connection with the other party to exchange data. Using asymmetrical cryptography,
mechanisms for distribution of symmetric keys are constructed, e.g., according to the Diffie–Hellmann
scheme [1]. Asymmetric cryptography is rather not used to encrypt large data, because these algorithms
are characterized by a relatively large overhead in relation to encrypted data, are time consuming and
resource consuming, and to ensure adequate cipher strength these keys must be relatively long.

Symmetric cryptography is more computationally effective and provides adequate cipher strength
by using keys much shorter than asymmetric cryptography. It is estimated that similar and today
acceptable cipher power can be obtained for asymmetric cryptography, e.g., RSA for a key length of
3072 bits and for symmetrical cryptography for a key length of 128 bits [2]—the key length difference is
very visible. However, there is a significant problem with symmetric cryptography. It is a distribution
of the key. For this purpose, asymmetrical algorithms are usually used to establish a connection and

Sensors 2020, 20, 5012; doi:10.3390/s20175012 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4853-7363
http://dx.doi.org/10.3390/s20175012
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/17/5012?type=check_update&version=2

Sensors 2020, 20, 5012 2 of 31

determine the so-called session key, which is a symmetric key used by both sides of the connection.
Further data exchange is already performed using the session key.

Each cryptographic key must be changed from time to time to make it difficult to guess the key by
attackers. The criteria for determining the key validity are different [3]. Usually, one of two scenarios
are used. The first scenario is based on the volume of data protected with this key, and the second
one is based on the key usage time determined e.g., as the number of processed frames or as the
elapsed time counted in seconds from the moment the key was generated. Regardless of how the
key validity criterion is determined, different strategies for renewing cryptographic keys are used.
The first group of methods uses asymmetric cryptography (very similar to the procedure for setting
the session key). In the second group of methods, the “old” symmetric cryptographic key is used to
support the procedure for obtaining the “new” key. In the third group of methods, when establishing
the session key, an additional symmetric key is generated, which in the future will only be used to
renew the session key.

Asymmetric cryptography is used in varying degrees in all scenarios. This cryptography requires
both parties exchanging data to ensure that each party has its own asymmetrical key. The procedure
for determining the session key for these parties requires exchanging their public keys. To ensure the
secure exchange of public keys between the parties, the so-called “third party” of trust [4], known as the
Certification Authority, is needed. The described solutions are known and widely used but require that
each node of the network have access to the network in which the Certification Authority is reachable.
In addition, the algorithms used require relatively large memory resources for stored keys; the device
must have adequate computing power and a sufficiently efficient energy source. These requirements
are easy to meet by stationary nodes, but are a big challenge for usually mobile, using wireless links
and battery-powered nodes of sensor network, which currently constitute a very large population of
IoT network nodes [5,6].

Looking at the development of the network, it can be seen that, despite the availability and proven
universal solutions for data exchange in the network and for data protection, various organizations
create clusters of network nodes in which specialized security rules adapted to the organization’s
requirements apply [7,8]. This approach is designed to protect data exchanged within the organization
against unauthorized activities from outside the organization.

Such an organization can be a large corporation, elements of the state’s critical infrastructure,
the armed forces, but it can also be one of the IoT applications e.g., a distributed system of measuring air
pollution, a system for monitoring the consumption of electricity by both private and public consumers,
a system for monitoring public transport vehicles in a smart city, clusters of sensor nodes performing
specific tasks, and also systems classified as critical infrastructure, e.g., systems used by the police
or army. Particularly in the event of a crisis, the highest demand is for current data, which can often
come from a variety of sources that cannot always be trusted. Crisis situations will force the secure
exchange of sensitive data between well-protected elements of critical infrastructure through little
trusted ICT links. An example of such cooperation can be the integration of commercial and civil
Internet of Things with military C2 (Command and Control) and logistics systems [9,10].

Certainly, any solution used to integrate such different systems, technologies, and security rules
will require a source of symmetric cryptographic keys with high entropy, which will be trusted by
all parties. This article describes the concept of a system for generating and renewing symmetric
cryptographic keys called the Key Generating and Renewing (KGR) system for customers who have
only limited resources in terms of memory, computing power, and energy supply, as well as for
customers who do not have such limitations. The main tasks of the system are the secure delivery of
a new key and renewal of an expired symmetric key for the parties to exchange data. The inspiration for
the solution was the need for secure and authorized data exchange ensuring Federated Interoperability
of Military Command and Control and IoT systems. In such a federation, individual groups of network
nodes may belong to different national armed forces, within which cryptographic security is inherently

Sensors 2020, 20, 5012 3 of 31

used, but not shared with other members of the federation. The main contributions of this paper are
presented as follows:

• Description of the concept of the KGR system intended for the safe distribution and renewal of
cryptographic keys for sensor nodes, which are representatives of sensor node clusters formulating
the security domain of sensor nodes [7,8]. These keys are designed to protect secure data exchange
between domains. Within each secure domain, independent of the KGR system, trust structures
are built and implemented mechanisms of data exchange protection and data storage protection.

• A method of building trust between KGR system nodes and protecting the resources of each node
of the KGR system.

• A detailed description of the procedures and protocols for data exchange intended for: initiating
the KGR system, preparing nodes for work, and registering the nodes in the KGR system as well
as generating, renewing, and distributing keys.

• Description of how to use the Trusted Platform Module (TPM) v2.0 hardware modules to support
procedures for creating trust, protection of sensor node resources and securing data exchange in
the KGR system.

• Description of how to use the Message Queuing Telemetry Transport (MQTT) service to securely
distribute data (including cryptographic keys) between KGR system nodes.

• Evaluation of the solution resistance to the most common attacks on the sensor node network.

The rest of the article is organized as follows. Related work is the content of Section 2. Section 3
presents the concept of KGR system operation and data structures used by system nodes. Section 4 is
devoted to a detailed description of the procedures necessary for the proper functioning of the KGR
system. The security evaluation of the proposed system is presented in Section 5. The future work is
the content of Section 6.

2. Related Work

In the era of the rapidly growing Internet of Things, a very big challenge is to ensure confidentiality,
integrity, and accessibility, which are the main attributes of system security. A large degree of difficulty
is compounded by the following facts: IoT nodes are very often mobile, have limited memory resources,
computing power and power sources, limited communication link range, are usually very numerous,
and operate in difficult environmental conditions and usually in an unattended environment. Security
mechanisms based on cryptographic solutions are used to build the trust of cooperating parties
and meet security requirements. The implementation of these mechanisms further increases the
requirements in terms of memory size and computing power. A critical element of such solutions is
the generation and renewal of cryptographic keys as well as the distribution of these keys to nodes
exchanging the data. Well-known solutions for building trust and distribution of cryptographic keys
can be used here, e.g., Certification Authorities, but in the case of devices with limited capabilities this
approach will be effective in few cases.

Attempts to find a compromise between the requirements described above most often resulted in
an approach in which a large network of sensor nodes was divided into groups of cooperating nodes
for which group key management (GKM) was used as a key distribution mechanism. Keys distributed
using GKM are usually shared by nodes forming one group. A very extensive analysis of GKM systems
can be found in [11]. Dammak et al. in [11] analyze the properties of GKM systems due to their
applications for: wireless body area networks (WBAN) [12], wireless sensor networks (WSN) [13–15],
cloud computing [16], wireless IPv6 networks [17], and IoT [18–20]. They compare solutions for
individual groups of GKM applications, taking into account many attributes, the most important of
which are: key distribution schemes (i.e., centralized, decentralized, distributed [21]), cryptography
type used (symmetric, asymmetric, polynomial, Attribute Based Encryption), forward and backward
secrecy (the shared key must be updated when a new node joins the group or some node leaves the
group), mutual key independence, existence of single point of failure, and scalability.

Sensors 2020, 20, 5012 4 of 31

The conclusions of this analysis can be described in the following. The analyzed solutions do
not fully solve the problem of having to renew the key if a node joins/leaves the group. In most
cases, symmetric cryptography algorithms are used. The performance of solutions quickly decreases
when the number of nodes is large, or the membership of cooperating groups changes frequently.
The scalability of the solutions is very limited. Against the background of these conclusions, in [11]
is presented the Decentralized Lightweight Group Key Management architecture for Access Control
in the IoT environment (DLGKM-AC). The solution is flexible and well scalable in a dynamic IoT
environment, uses a decentralized key distribution scheme, and does not cause a heavy load on the
GKM system in the event of changes in the membership of nodes to the group. Another interesting
GKM solution is proposed by Yao et al.’s key distribution scheme based on Logical Key Hierarchy [22].
This solution presents a method of building a key tree and a method of storing keys that reduces the
computational and memory load of individual sensor nodes. The system also supports the renewal of
cryptographic keys.

Another innovative approach to key generation and distribution is the use of the block chain
mechanism. This approach can be used in mobile sensor node networks. However, in these networks,
in addition to numerous sensor nodes implemented on constrained devices (L-sensors), there must
be, although much less numerous, nodes (H-sensors) with large data storage, and computational and
communication capabilities. H-sensors nodes form a consensus network and act as heads for node
clusters that will include L-sensors nodes. An example of such a solution was presented by Tian et al.
in [23].

3. The Concept of the Cryptographic Keys Generating and Renewing (KGR) System

3.1. The Idea of KGR System Operation

The clients of the KGR system will be mobile sensor node networks. Each sensor node network
forms one secure sensor node domain [7,8] in which data exchange is cryptographically secured.
Security mechanisms implemented in this domain also ensure the generation and distribution of
cryptographic keys inside the domain and cryptographic protection of the resources of each node.

One security domain of sensor nodes is formed by sensor nodes that are registered in the domain.
Each sensor node, in addition to performing the normal sensor and/or actuator tasks, plays the role
of Master or Replica in the domain. At a given moment, exactly one sensor node in a domain is
an authority in the domain. This node acts as a Master. Its resources store up-to-date descriptions of
the domain and descriptions of all sensor nodes of the domain as well as data necessary for domain
node authentication.

The remaining sensor nodes of the domain play a Replica role. These nodes in their resources
store a copy of the safe domain description obtained from the Master node. In the event of a failure of
the sensor node acting as the Master, a special procedure for selecting a new Master node from among
correctly functioning Replica nodes is launched.

One of the nodes of each domain (it may be either a Master or Replica sensor node) is designated
for data exchange between such domains and acts as a Gateway for the domain. This node is a sink
node for data originating from domain nodes, but also an emitter of data originating outside the
domain for domain nodes. The gateway node is responsible for secure data exchange between domains
and is the representative of the domain for the KGR system. For the KGR system, out of all security
domain nodes, only the sensor node is important, which at the given moment acts as a Gateway in the
security domain of the sensor nodes. In the KGR system, the source of cryptographic keys to protect
data transmission will be a separate node (Key Distribution Node) to which the gateway nodes will
have access. The way the domains cooperate with the key distribution node is shown in Figure 1.

There will be three types of nodes in the KGR system:

• KS node (Key Server)—the node that is equivalent to the Key Distribution Node in Figure 1 and
will be the source of the cryptographic keys;

Sensors 2020, 20, 5012 5 of 31

• N1, N2, . . . Nk nodes—the representative for domains for whom symmetrical keys will be created;
• AC node—Authorization Centre—a server for two services:

◦ The service for managing the resources of the KS node, and for adding new identifiers for
the authorized N nodes in the resources of the KS node;

◦ The service to prepare Nk nodes for work.
Sensors 2020, 20, x FOR PEER REVIEW 5 of 30

o The service to prepare Nk nodes for work.

Authorization
Centre

Key
Distribution

Node

SN1i

{Master}

SN1k

{Replica}

SN11

{Replica}

SN1j

{Gateway}
{Replica}

Domain 1

SNni

{Master}

SNnk

{Replica}

SNn1

{Replica}

SNnj

{Gateway}
{Replica}

Domain n

SN2i

{Replica}

SN2k

{Replica}

SN21

{Replica}

SN2j

{Gateway}
{Master}

Domain 2

Figure 1. The way various domains cooperate with the key distribution node.

3.2. The Method of Data Exchange in the KGR System

During one key generation operation, the KS node will prepare two symmetrical keys, NNSK

and NNSKsign, which will be used by a pair of nodes—Nm and Nn. The NNSK key (Node to Node

Security Key) will be used to encrypt data sent between the Nm and Nn nodes, and the NNSKsign (Node

to Node Security Key for signing) key will be used to prepare the HMAC for transmitted data. The

sequence of activities carried out during one key generation operation can be described as follows:

 Node Nm sends to KS node a request to generate a pair of symmetric keys for Nm and Nn nodes;

 Node KS generate NNSK and NNSKsign keys and temporarily stores them;

 KS node sends the keys to Nm and Nn nodes;

 Node Nn via KS node sends confirmation of key receipt to Nm node;

 After sending the confirmation, KS node removes the NNSK and NNSKsign keys from its

resources.

The sequence diagram for these activities is shown in Figure 2. The method of data exchange in

the KGR system is shown in Figure 3.

request to generate keys for Nm and Nn

keys for Nm

confirmation of keys for Nm

keys for Nn

confirmation of keys for Nm

Nm node

(store NNSK and NNSKsign keys

KS node

generate and temporarily
store NNSK and NNSKsign keys

Nn node

store NNSK and
NNSKsign keys

remove Nn and Nm keys

Figure 2. Sequence diagram of key generation for node pair Nm and Nn.

Figure 1. The way various domains cooperate with the key distribution node.

3.2. The Method of Data Exchange in the KGR System

During one key generation operation, the KS node will prepare two symmetrical keys, NNSK and
NNSKsign, which will be used by a pair of nodes—Nm and Nn. The NNSK key (Node to Node Security
Key) will be used to encrypt data sent between the Nm and Nn nodes, and the NNSKsign (Node to Node
Security Key for signing) key will be used to prepare the HMAC for transmitted data. The sequence of
activities carried out during one key generation operation can be described as follows:

• Node Nm sends to KS node a request to generate a pair of symmetric keys for Nm and Nn nodes;
• Node KS generate NNSK and NNSKsign keys and temporarily stores them;
• KS node sends the keys to Nm and Nn nodes;
• Node Nn via KS node sends confirmation of key receipt to Nm node;
• After sending the confirmation, KS node removes the NNSK and NNSKsign keys from its resources.

The sequence diagram for these activities is shown in Figure 2. The method of data exchange in
the KGR system is shown in Figure 3.

Sensors 2020, 20, 5012 6 of 31

Sensors 2020, 20, x FOR PEER REVIEW 5 of 30

o The service to prepare Nk nodes for work.

Authorization
Centre

Key
Distribution

Node

SN1i

{Master}

SN1k

{Replica}

SN11

{Replica}

SN1j

{Gateway}
{Replica}

Domain 1

SNni

{Master}

SNnk

{Replica}

SNn1

{Replica}

SNnj

{Gateway}
{Replica}

Domain n

SN2i

{Replica}

SN2k

{Replica}

SN21

{Replica}

SN2j

{Gateway}
{Master}

Domain 2

Figure 1. The way various domains cooperate with the key distribution node.

3.2. The Method of Data Exchange in the KGR System

During one key generation operation, the KS node will prepare two symmetrical keys, NNSK
and NNSKsign, which will be used by a pair of nodes—Nm and Nn. The NNSK key (Node to Node
Security Key) will be used to encrypt data sent between the Nm and Nn nodes, and the NNSKsign (Node
to Node Security Key for signing) key will be used to prepare the HMAC for transmitted data. The
sequence of activities carried out during one key generation operation can be described as follows:

• Node Nm sends to KS node a request to generate a pair of symmetric keys for Nm and Nn nodes;
• Node KS generate NNSK and NNSKsign keys and temporarily stores them;
• KS node sends the keys to Nm and Nn nodes;
• Node Nn via KS node sends confirmation of key receipt to Nm node;
• After sending the confirmation, KS node removes the NNSK and NNSKsign keys from its

resources.

The sequence diagram for these activities is shown in Figure 2. The method of data exchange in
the KGR system is shown in Figure 3.

request to generate keys for Nm and Nn

keys for Nm

confirmation of keys for Nm

keys for Nn

confirmation of keys for Nm

Nm node

(store NNSK and NNSKsign keys

KS node

generate and temporarily
store NNSK and NNSKsign keys

Nn node

store NNSK and
NNSKsign keys

remove Nn and Nm keys

Figure 2. Sequence diagram of key generation for node pair Nm and Nn. Figure 2. Sequence diagram of key generation for node pair Nm and Nn.Sensors 2020, 20, x FOR PEER REVIEW 6 of 30

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

AC – Authorization Centre
 (preparing N nodes for work)

KS – Key Server (Key
 Distribution Node)

N – client node (Gateway
 node of domain)

KS AC

credentials

N2N1 Nm Nn Nk

Figure 3. The method of data exchange in the Key Generating and Renewing (KGR) system.

3.3. Proposed KGR System for Mobile IoT Network

Considering the observations mentioned in the introduction and the fact that one of the parties
to the data exchange may be a mobile IoT network node that has limited memory, and computational
and energy resources, it was assumed that the designed system should meet the following
assumptions:

• The KGR system is a source of symmetric cryptographic keys generated using a high entropy
random number generator (e.g., a quantum random number generator).

• The KGR system is available on the Internet.
• The KGR system only handles requests from authorized clients.
• Data on authorized clients are provided to the KS node by the administrator of the KGR system.
• On behalf of each client of the KGR system, there is one node that is the client’s representative.
• The client representative can be implemented in hardware, but there can also be a software

component installed on a computer network node that has access to the KGR system.
• Representatives of two clients applying for a new pair of shared cryptographic keys are the only

nodes with which the KGR system exchanges data related to obtaining a common pair of
symmetric keys only for these clients.

• The MQTT protocol will be used to distribute cryptographic keys.
• Sensitive data stored in the resources of each node are cryptographically protected.
• Data transmission between nodes is protected by cryptography.
• Each node uses the local trust structure.
• Each node must be registered in the system before it can start normal working—registered nodes

before they begin their activities must be authenticated.
• The security mechanisms offered by the Trusted Platform Module (TPM) will be used to secure

data resources and secure data exchange between elements of the KGR system and its clients.
TPM is an implementation of a standard developed by the Trusted Computing Group [24,25].
This module is designed to hardware support the cryptographic procedures and protocols that
can be used for securing data [2,26].

3.4. Key Exchange Domain (KED) Structure

Nodes of the KGR system will form the Key Exchange Domain (KED). There will be one KS
node, one AC node and many N-type nodes in the KED domain. The Broker node will act as a data
exchange intermediary between these nodes. The KED domain structure is shown in Figure 4.

Figure 3. The method of data exchange in the Key Generating and Renewing (KGR) system.

3.3. Proposed KGR System for Mobile IoT Network

Considering the observations mentioned in the introduction and the fact that one of the parties to
the data exchange may be a mobile IoT network node that has limited memory, and computational and
energy resources, it was assumed that the designed system should meet the following assumptions:

• The KGR system is a source of symmetric cryptographic keys generated using a high entropy
random number generator (e.g., a quantum random number generator).

• The KGR system is available on the Internet.
• The KGR system only handles requests from authorized clients.
• Data on authorized clients are provided to the KS node by the administrator of the KGR system.
• On behalf of each client of the KGR system, there is one node that is the client’s representative.
• The client representative can be implemented in hardware, but there can also be a software

component installed on a computer network node that has access to the KGR system.
• Representatives of two clients applying for a new pair of shared cryptographic keys are the

only nodes with which the KGR system exchanges data related to obtaining a common pair of
symmetric keys only for these clients.

• The MQTT protocol will be used to distribute cryptographic keys.
• Sensitive data stored in the resources of each node are cryptographically protected.
• Data transmission between nodes is protected by cryptography.
• Each node uses the local trust structure.
• Each node must be registered in the system before it can start normal working—registered nodes

before they begin their activities must be authenticated.
• The security mechanisms offered by the Trusted Platform Module (TPM) will be used to secure

data resources and secure data exchange between elements of the KGR system and its clients.
TPM is an implementation of a standard developed by the Trusted Computing Group [24,25].

Sensors 2020, 20, 5012 7 of 31

This module is designed to hardware support the cryptographic procedures and protocols that
can be used for securing data [2,26].

3.4. Key Exchange Domain (KED) Structure

Nodes of the KGR system will form the Key Exchange Domain (KED). There will be one KS node,
one AC node and many N-type nodes in the KED domain. The Broker node will act as a data exchange
intermediary between these nodes. The KED domain structure is shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 7 of 30

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

KS

Broker

AC

N1 Nn

N2

Figure 4. Structure of a Key Exchange Domain.

One of the important elements that determines the correct use of the MQTT service is
determining the content of the special string, which is called “topic”. The task of the Broker node is to
forward data published by one node with a given “topic” to the node that subscribes to messages
with such “topic”. The presented solution assumes that the content of individual “topic” strings will
be randomly generated and known only for a pair of nodes that will exchange data with each other.
In the further part of the study, these character strings will be marked as TOPICn, where n = 0, 1, 2,
3, 4. The description of the purpose of each topic is presented in the Table 1.

Table 1. List of topics used by the nodes.

Topic Node Purpose
TOPIC0 1 KS for each N node for the first request during the registration procedure

TOPIC1 KS
for subsequent requests from the given N node during the registration

procedure
TOPIC2 N for requests from KS node

TOPIC3mn Nm for requests from Nn node
TOPIC4mn Nm for publishing to Nn node

1 Only TOPIC0 has fixed “register” content, the content of other topics is randomly generated.

Depending on the demand and the available Trusted Platform Module (TPM) model, the N-type
node can be implemented as:

• An autonomous device equipped with a hardware TPM, which implements all the features
defined in the specification TCG [24];

• An autonomous device equipped with a hardware TPM, which does not support the hardware
features encryption/decryption, these modules do not support the encrypt/decrypt function (an
example would be two hardware implementations, i.e., LetsTrust TPM 2.0 and Infineon Iridium
SLx 9670 available on the market, according to their documentation, they do not support
encryption/decryption functions);

• An autonomous device equipped with a software simulator TPM, which implements all the
features defined in the specification TCG [24];

• A program module that does not use the TPM module but provides the generation and renewal
of cryptographic keys for the system of which it is representative.

The KGR system concept presented in the work is prepared for the case in which the TPM
hardware modules used do not have the symmetric encryption/decryption function implemented.
Therefore, symmetric encryption/decryption must be performed by software. An additional adverse
effect of the lack of hardware encryption/decryption function is also the inability to use the “Key
Derivation Function” function offered by the TPM module. The lack of this function means that in
the NVRAM memory of the TPM module, instead of one “seed” string, two keys will have to be
stored, which will be a specific pair, i.e., accordingly, a symmetric key for encrypting/decrypting data
and a key for determining HMAC for these data.

Figure 4. Structure of a Key Exchange Domain.

One of the important elements that determines the correct use of the MQTT service is determining
the content of the special string, which is called “topic”. The task of the Broker node is to forward
data published by one node with a given “topic” to the node that subscribes to messages with such
“topic”. The presented solution assumes that the content of individual “topic” strings will be randomly
generated and known only for a pair of nodes that will exchange data with each other. In the further part
of the study, these character strings will be marked as TOPICn, where n = 0, 1, 2, 3, 4. The description
of the purpose of each topic is presented in the Table 1.

Table 1. List of topics used by the nodes.

Topic Node Purpose

TOPIC0 1 KS for each N node for the first request
during the registration procedure

TOPIC1 KS for subsequent requests from the given N
node during the registration procedure

TOPIC2 N for requests from KS node
TOPIC3mn Nm for requests from Nn node
TOPIC4mn Nm for publishing to Nn node

1 Only TOPIC0 has fixed “register” content, the content of other topics is randomly generated.

Depending on the demand and the available Trusted Platform Module (TPM) model, the N-type
node can be implemented as:

• An autonomous device equipped with a hardware TPM, which implements all the features defined
in the specification TCG [24];

• An autonomous device equipped with a hardware TPM, which does not support the hardware
features encryption/decryption, these modules do not support the encrypt/decrypt function
(an example would be two hardware implementations, i.e., LetsTrust TPM 2.0 and Infineon
Iridium SLx 9670 available on the market, according to their documentation, they do not support
encryption/decryption functions);

• An autonomous device equipped with a software simulator TPM, which implements all the
features defined in the specification TCG [24];

Sensors 2020, 20, 5012 8 of 31

• A program module that does not use the TPM module but provides the generation and renewal
of cryptographic keys for the system of which it is representative.

The KGR system concept presented in the work is prepared for the case in which the TPM hardware
modules used do not have the symmetric encryption/decryption function implemented. Therefore,
symmetric encryption/decryption must be performed by software. An additional adverse effect of
the lack of hardware encryption/decryption function is also the inability to use the “Key Derivation
Function” function offered by the TPM module. The lack of this function means that in the NVRAM
memory of the TPM module, instead of one “seed” string, two keys will have to be stored, which
will be a specific pair, i.e., accordingly, a symmetric key for encrypting/decrypting data and a key for
determining HMAC for these data.

3.5. The Concept of the Nodes Protection

It was assumed that KS node and N nodes would use their local trust structure. This structure
will be used to provide protection for sensitive node data, build trust relationships between KED
domain nodes, and to protect data exchange between KED domain nodes. For this reason, it is
recommended that each of the KED domain nodes be equipped with the TPM v2.0 module. For this
purpose, a hardware TPM v.2.0 was planned, implemented on the extension board attached to the
sensor node board (e.g., Raspberry Pi).

TPM is the international standard for a secure crypto processor designed to secure hardware
through integrated cryptographic keys. It can be implemented in software or in hardware. TPM typically
implements multiple cryptographic algorithms (e.g., SHA- (256, 384, 512), HMAC, RSA (2048, 3072,
16384), ECC (256, 384, 521), and AES (128, 256)) and crypto primitives (e.g., a random number generator,
key generation, a public-key cryptographic algorithm, a cryptographic hash function, a mask generation
function, digital signature generation and verification, ECC-based Direct Anonymous Attestation,
and symmetric-key algorithms). TPM enables the building of several hierarchies of cryptographic
keys (platform, storage, and endorsement hierarchies) that can be used to build a local trust structure
on each TPM-equipped node. The key hierarchy is built from asymmetric keys. At the top of each
hierarchy, there is an asymmetric key, which for a given TPM chip is randomly generated only once,
and its private part never leaves the TPM chip and is not readable. With this key, the next key in the
hierarchy is secured, etc. Any key that is secured using the key hierarchy is not shared outside the
TPM chip in an explicit form. All cryptographic operations with the use of these keys are performed
inside the TPM chip. In the TPM module NVRAM, it is possible to safely store sensitive system data
(e.g., cryptographic keys). The PCR (Platform Configuration Register) of TPM makes it possible to
build a system for detecting unauthorized hardware and software modifications of the resources of the
node where the TPM is installed.

Because KS and AC nodes will be nodes of the Internet and will not have restrictions in terms of
memory size, computing power, and energy, the possibilities of the Certification Authority will be
used to build trust relationships between them.

The local trust structure will be constructed based on one of the hierarchies offered by the TPM
v.2.0 module (i.e., storage hierarchy) built from asymmetric keys (e.g., RSA2048 or ECC256). It is
expected that the Storage Root Key (SRK) will be at the top of the hierarchy, and the next key will be
the asymmetric node key ANK (Asymmetric Node Key) for signing other keys that will be used by the
node. For the KS node, the second child of the SRK key will be the KEDK (Key Exchange Domain Key),
which will be needed to create the trust relationship between the KS node and the other N-type nodes.

3.5.1. Characteristics of the KS Node

The KS node plays the most important role in the KGR system and is responsible for generating
and renewing symmetric keys requested by N nodes and their safe distribution to the node requesting
the key and its partner. The data that are necessary to perform these tasks can be divided into the
following groups:

Sensors 2020, 20, 5012 9 of 31

• Local trust structure of the KS node;
• The node’s own data;
• Data for storing node descriptions (KED domain node data) that can use the services offered by

the KS node;
• Temporarily stored data that contain cryptographic material created for nodes that are in the

process of generating or renewing a symmetric key for those nodes.

It was assumed that this KS node’s own data and its local trust structure will be stored in the TPM
NVRAM installed on the node. KED domain description data and sensitive temporary data will be
stored in the node’s SD memory. All mentioned data will be cryptographically secured using TPM
mechanisms. The data stored on the KS node are shown in Figure 5.

Individual data of the KS node include:

• Asymmetric keys SRK, ANK, and KEDK which create local trust structure;
• N_ID—sensor node identifier in the domain;
• Keys:

◦ NK (Node Key)—symmetric key for encrypting the data stored in local SD memory (the
key is used only internally by this node);

◦ NKsign—key for determining HMAC for data encrypted with the NK key (the key is
known only to this node);

• BA (Broker Address)—MQTT broker IP address;
• TOPIC1—topic subscribed by KS in the MQTT service used to initiate the generation

and renewal of session keys by N nodes, common to all registered N nodes (10-byte
random string generated by the KS node).

Sensors 2020, 20, x FOR PEER REVIEW 9 of 30

• Asymmetric keys SRK, ANK, and KEDK which create local trust structure;
• N_ID—sensor node identifier in the domain;
• Keys:

o NK (Node Key)—symmetric key for encrypting the data stored in local SD memory (the
key is used only internally by this node);

o NKsign—key for determining HMAC for data encrypted with the NK key (the key is
known only to this node);

• BA (Broker Address)—MQTT broker IP address;
• TOPIC1—topic subscribed by KS in the MQTT service used to initiate the generation

and renewal of session keys by N nodes, common to all registered N nodes (10-byte
random string generated by the KS node).

TPM Non-volatile Memory

SD memory
node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

LOCAL TRUST
STRUCTURE

Storage Root Key (SRK)
Asymmetric Node

Key (ANK)
Key Exchange Domain

Key (KEDK)

DESCRIPTIONS
OF NODES

ID, tag,
symmetric keys,
topic for MQTT

EXCHANGING
NODES DATA

IDs,
symmetric keys,

topics

KS NODE OWN DATA
node ID, keys,
broker address
topic for MQTT

SRK

KEDKANK

NK IV
N_ID

NKsign

BA
TOPIC1

Figure 5. Data stored on the KS node.

Data stored in SD memory of KS node:

1. File node_desc—stores data of KED domain nodes that can use the services offered by the KS
node. One record in the file includes a description of one node. If only the N_ID and NTAG
fields of a given record are filled, then the node status is “authorized to register”. When all the
description fields of the node are filled, the node is “registered”. Each node description (except
the N_ID field) is encrypted with the NK key. After encryption, the HMAC value is generated
for the entire record using the NKsign key. Description of the record fields is as the following:

• N_ID (Node ID)—identifier of the node authorized to register in the domain (random
number 4 bytes long—field generated during the procedure of adding a new authorized
node to the domain description);

• NTAG (Node Tag)—tag for the node; SHA256 hash from the concatenation of the N_ID
field, the public part of the KEDK key, and a double-byte field containing the node
description entry number in the node_desc file (field generated during the procedure of
adding a new authorized node to the domain description);

• NKSK (Node to Key server Security Key)—a symmetrical key for securing data exchange
between a registered node and a KS node (field created during the node registration
procedure);

• NKSKsign—key for determining HMAC for data encrypted with the NKSK key (the key is
only known for the node and KS node);

• TOPIC2—topic subscribed by the N node in the MQTT service used to exchange data
related to generating/renewing session key for N node (10-byte random string generated
by the N node);

Figure 5. Data stored on the KS node.

Data stored in SD memory of KS node:

1. File node_desc—stores data of KED domain nodes that can use the services offered by the KS
node. One record in the file includes a description of one node. If only the N_ID and NTAG
fields of a given record are filled, then the node status is “authorized to register”. When all the
description fields of the node are filled, the node is “registered”. Each node description (except the
N_ID field) is encrypted with the NK key. After encryption, the HMAC value is generated for the
entire record using the NKsign key. Description of the record fields is as the following:

Sensors 2020, 20, 5012 10 of 31

• N_ID (Node ID)—identifier of the node authorized to register in the domain (random number
4 bytes long—field generated during the procedure of adding a new authorized node to the
domain description);

• NTAG (Node Tag)—tag for the node; SHA256 hash from the concatenation of the N_ID field,
the public part of the KEDK key, and a double-byte field containing the node description
entry number in the node_desc file (field generated during the procedure of adding a new
authorized node to the domain description);

• NKSK (Node to Key server Security Key)—a symmetrical key for securing data exchange
between a registered node and a KS node (field created during the node registration
procedure);

• NKSKsign—key for determining HMAC for data encrypted with the NKSK key (the key is
only known for the node and KS node);

• TOPIC2—topic subscribed by the N node in the MQTT service used to exchange data related
to generating/renewing session key for N node (10-byte random string generated by the
N node);

• HMAC—HMAC value for the entire record, which is generated using the NKsign key.

2. File gen_keys—temporarily stores the generated keys, i.e., from the moment they are generated
until the confirmation of receipt of these keys by the nodes for which these keys were generated.
Each record of the file (except the N_ID1 and N_ID2 fields) is encrypted with the NK key.
After encryption, the HMAC value is generated for the entire record using the NKsign key.
Description of the record fields is as follows:

• N_ID1—identifier of the node that sent the request to generate/renew the key for the pair of
nodes N_ID1 and N_ID2;

• N_ID2—identifier of the second node in the pair for which the key was generated/renewed;
• TOPIC3—topic subscribed by N_ID1 in the MQTT service to receive data from the

N_ID2 node;
• TOPIC4—topic subscribed by N_ID2 in the MQTT service to receive data from the

N_ID1 node.

Due to the fact that the KS node plays the most important role in the system and must be available
at all times to system customers, it should be implemented rather as a stationary device that is powered
from a constant power source and connected to an efficient Internet connection. The node should be
properly configured from a security point of view and protected using tools such as a firewall, IDS/IPS
systems, antivirus software, etc. Considering that clients may be different nodes of N-type, which will
not necessarily have a commonly used Ethernet or Wi-Fi connection in the Internet, and most often will
use other communication technologies specific to IoT networks, the KS node should be equipped with
an additional device which will act as a gateway for other communication technologies, e.g., LoRa,
Xbee, ZigBee, BLE etc.

3.5.2. Characteristics of N-Type Nodes

The clients of the cryptographic key generation and renewal service are N nodes. Each such node
will store in its resources the necessary data to establish a connection and secure data exchange with
the KS node, as well as the data necessary for secure data exchange with other N nodes. The data that
are necessary to perform these tasks can be divided into the following groups:

• Local trust structure of N node;
• Node’s own data;
• Data on current session keys to secure data exchange with other N-type nodes.

Sensors 2020, 20, 5012 11 of 31

It was assumed that this N node’s own data and its local trust structure would be stored in the
node’s NVRAM of the TPM. Data about the current session keys will be stored in the node’s SD
memory. All mentioned data will be cryptographically secured using TPM mechanisms. These are the
secure storage of data in the NVRAM of the TPM, the use of the HMAC hash generation function for
each record in the SD memory, and the symmetric encryption/decryption feature that uses keys that
are securely stored and shared by previously created hierarchies of keys. Data stored on the KS node
are shown in Figure 6.

Individual data of the N node include:

• Asymmetric keys SRK and ANK which create a local trust structure.
• NTAG (Node Tag)—tag for the node; obtained from the AC node during the procedure of

preparing the node for work in the KED domain.
• N_ID—sensor node identifier; obtained from the AC node during the procedure of preparing the

node for work in the KED domain.
• BA (Broker Address)—MQTT broker IP address.
• keys:

◦ NK (Node Key)—symmetric key for encrypting the data stored in local SD memory (the
key is used only internally by this node);

◦ NKsign—key for determining HMAC for data encrypted with the NK key (the key is
known only to this node);

◦ NKSK (Node to Key server Security Key)—a symmetrical key for securing data exchange
between a registered node and a KS node (known only for the given node and KS node);
created during the procedure of registering the node in the KED domain;

◦ NKSKsign—key for determining HMAC for data encrypted with the NKSK key (known
only for the given node and KS node); created during the procedure of registering the node
in the KED domain.

• TOPIC1—topic subscribed by KS in the MQTT service used to initiate the generation and renewal
of session keys by N nodes, common to all registered N nodes.

• TOPIC2—topic subscribed by node N in the MQTT service for exchanging data with the node KS
related to generating/renewing session key.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 30

o NKsign—key for determining HMAC for data encrypted with the NK key (the key is
known only to this node);

o NKSK (Node to Key server Security Key)—a symmetrical key for securing data exchange
between a registered node and a KS node (known only for the given node and KS node);
created during the procedure of registering the node in the KED domain;

o NKSKsign—key for determining HMAC for data encrypted with the NKSK key (known
only for the given node and KS node); created during the procedure of registering the node
in the KED domain.

• TOPIC1—topic subscribed by KS in the MQTT service used to initiate the generation and
renewal of session keys by N nodes, common to all registered N nodes.

• TOPIC2—topic subscribed by node N in the MQTT service for exchanging data with the node
KS related to generating/renewing session key.

TPM Non-volatile Memory

SD memory

SRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

NKSK IV
NKSKsign
TOPIC1

BA
LOCAL TRUST
STRUCTURE

Storage Root Key (SRK)
Asymmetric Node

Key (ANK)

SESSION KEYS
DATA

IDs, keys,
topics for MQTT

N NODE OWN DATA
node tag and ID,
broker address

keys,
topics for MQTT

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 6. Data stored on the N node.

Data stored in SD memory of N node:

1. File ses_keys—stores data about valid symmetrical session keys to secure data exchange
between a given node and a node with identifier N_ID. One record in the file includes a
description of one session key. If the CTime field is zeroed, it means that the session key has not
been generated yet or expired. Each session key description (except the N_ID and CTime fields)
is encrypted with the NK key. After encryption, the HMAC value is generated for the entire
record using the NKsign key. Description of the record fields is as follows:

• N_ID (Node ID)—identifier of the target node for which the valid session key is NNSK;
• NNSK (Node to Node Security Key)—a symmetrical key for securing data exchange

between a given node and a node with the identifier N_ID (known only for the given node
and node with the identifier N_ID);

• NNSKsign—key for determining HMAC for data encrypted with the NNSK key (known
only for the given node and node with the identifier N_ID);

• TOPIC3—topic subscribed by the local node to receive data from the N_ID node;
• TOPIC4—topic subscribed by node N_ID to receive data from the local node;
• CTime (Creation Time of the key)—time stamp of the moment of obtaining the session key.

When developing the concept of the KGR system, small requirements were specified for N-type
nodes. These nodes, to be clients of the KGR system, should have a communication link ensuring
cooperation with the KS node. Regarding N nodes, the following assumptions were made [27]:

• Node N is a class 1 (RAM << 10 KB and Flash << 100KB) or class 2 device (RAM ~ 10 KB and
Flash ~ 100KB) constrained device;

• Node N is powered by a class E1 energy source (i.e., “Period energy-limited”, for example battery
that is periodically recharged or replaced) or E2 (“Lifetime energy-limited”, for example
nonreplaceable primary battery).

Figure 6. Data stored on the N node.

Data stored in SD memory of N node:

1. File ses_keys—stores data about valid symmetrical session keys to secure data exchange between
a given node and a node with identifier N_ID. One record in the file includes a description of one
session key. If the CTime field is zeroed, it means that the session key has not been generated

Sensors 2020, 20, 5012 12 of 31

yet or expired. Each session key description (except the N_ID and CTime fields) is encrypted
with the NK key. After encryption, the HMAC value is generated for the entire record using the
NKsign key. Description of the record fields is as follows:

• N_ID (Node ID)—identifier of the target node for which the valid session key is NNSK;
• NNSK (Node to Node Security Key)—a symmetrical key for securing data exchange between

a given node and a node with the identifier N_ID (known only for the given node and node
with the identifier N_ID);

• NNSKsign—key for determining HMAC for data encrypted with the NNSK key (known
only for the given node and node with the identifier N_ID);

• TOPIC3—topic subscribed by the local node to receive data from the N_ID node;
• TOPIC4—topic subscribed by node N_ID to receive data from the local node;
• CTime (Creation Time of the key)—time stamp of the moment of obtaining the session key.

When developing the concept of the KGR system, small requirements were specified for N-type
nodes. These nodes, to be clients of the KGR system, should have a communication link ensuring
cooperation with the KS node. Regarding N nodes, the following assumptions were made [27]:

• Node N is a class 1 (RAM << 10 KB and Flash << 100 KB) or class 2 device (RAM ~ 10 KB and
Flash ~ 100 KB) constrained device;

• Node N is powered by a class E1 energy source (i.e., “Period energy-limited”, for example battery that
is periodically recharged or replaced) or E2 (“Lifetime energy-limited”, for example nonreplaceable
primary battery).

This means that the N node can be a mobile device using a wireless link, has limited memory
resources, limited computing power, and is powered from a limited capacity energy source.

3.5.3. Characteristics of the AC Node

It was assumed that the KS node would only support authorized N-type nodes. To accomplish
this goal, it is necessary to provide the KS and N-type nodes with relevant data. The KS node will
require the information on N-type nodes that will be entitled to cooperate with the KS node. For N-type
nodes, you will need the credentials that will enable the initiation of cooperation between the given N
node and the KS node. These activities define the main tasks of the AC node in the KGR system.

Due to the fact that the KGR system is designed to support systems that are very diverse in
many respects, e.g., in terms of purpose, technology used, information processing method, method of
protecting system resources, classification of processed data, organizational and national affiliation,
etc., it is very difficult to define a uniform way of cooperation between such systems. Therefore, it was
assumed that the process of initiating such cooperation must be based on organizational procedures
that will be supported by the AC node. It is expected that AC node resources will store data that reflect
these organizational processes. The specification of these processes is not the content of this study.

From the security point of view, the critical moment of initiating cooperation between systems
will be the transfer of authentication data to N-type nodes (because they are constrained devices class 1
or 2), which will not be able to fully use the mechanisms of secure data exchange currently used in the
Internet. These activities should be performed in a controlled and safe environment. Considering the
above observations, it was assumed that the AC node will perform the following tasks:

(a) Securely forwarding to the KS node a list of N nodes that will be entitled to use the service of the
KGR system and obtaining from the KS node the data necessary to initiate cooperation of each of
these nodes with the KS node. This data will include the identifier (N_ID) for N node and the tag
(NTAG) for this node;

(b) Securely forwarding the credentials prepared by the KS node to authorized N node. These data
include the N_ID for N node and the NTAG for this node;

Sensors 2020, 20, 5012 13 of 31

(c) Secure transfer to the authorized N node of a list containing the identifiers of other N-type nodes
with which the given node will be able to cooperate.

The manner of implementing the above tasks is not the content of the study. It is expected that
the task described in item (a) will be able to be performed through the internet application using the
HTTPS protocol or using the MQTT service. For the purposes of the study, it was assumed that the data
that are the result of the task described in subsection (b) will be transferred via a text file containing one
record, which will contain the authentication data for the N node (i.e., N_ID, NTAG and BA). Data that
are the result of the task described in subsection (c) will also be transferred via a text file that will
contain a list of identifiers of other N-type nodes with which the given node will be able to cooperate.

4. Procedures in the Key Exchange Domain

Building a secure system requires designing security solutions for the software and hardware
configuration of all system components. An important element of these solutions is secure procedures
for creating such a system and secure procedures for using such a system and decommissioning it.
The following procedures are foreseen for the KGR system:

1. The procedure for starting the Broker node;
2. The procedure for initiating the KS node;
3. The procedure for preparing the credentials for the N node;
4. The procedure for initiating N node;
5. The procedure for registration N node in the KED domain;
6. Procedure for forwarding the list of authorized nodes to cooperation.
7. The procedure for generating session keys consists of three stages:

(a) Requesting the session key;
(b) Providing the session key to the destination node;
(c) Confirmation of the delivery of the session key to the destination node.

8. Procedure for secure data exchange between nodes.
9. The procedure for renewing the session key consists of three stages:

(a) Session key renewal request—includes the process of notifying the other party that the
procedure has been initiated;

(b) Providing a renewed session key to the destination node;
(c) Confirmation of the delivery of the renewed session key to the destination node.

The next part of the study contains descriptions of the procedures. In the above list, the procedure
names that are described in detail, are marked in bold.

4.1. The Procedure for Starting the Broker Node

The Broker node acts as an intermediary in the exchange of data between nodes of the KGR
system. Activities related to launching the MQTT service should be performed first when initiating the
KGR system. It was assumed that the service must be configured so that data exchange between KGR
system nodes is secured using the TLS (Transport Layer Security) mechanism. In addition, the network
node on which the MQTT service operates should be properly configured from a security point of
view in accordance with good practices in this field. Actions connected with launching the MQTT
service are not the content of this study.

4.2. The Procedure for Initiating KS Node

The KS node initialization procedure is the first step that must be performed to start the KGR
system. The purpose of this procedure is to create a local trust structure for the KS node (including

Sensors 2020, 20, 5012 14 of 31

asymmetric keys SRK, ANK, and KEDK) and create individual data for the node. These data include:
node identifier N_ID, symmetric key NK and the accompanying NKsign key for securing data stored
in the node’s SD memory, MQTT broker address, and topic TOPIC1 which will be subscribed by the
KS node in the MQTT service to generate or renew the session keys for N nodes. The last step of the
procedure is to start subscription to the topic TOPIC0 and TOPIC1, which establishes the readiness of
the KS node to work. The sequence diagram for the KS node initialization procedure and the data
stored on the KS node after the procedure are shown in Figure 7 (the updated data are highlighted
in yellow).

Sensors 2020, 20, x FOR PEER REVIEW 13 of 30

8. The procedure for generating session keys consists of three stages:

(a) Requesting the session key;
(b) Providing the session key to the destination node;
(c) Confirmation of the delivery of the session key to the destination node.

9. Procedure for secure data exchange between nodes.
10. The procedure for renewing the session key consists of three stages:

(a) Session key renewal request—includes the process of notifying the other party that the
procedure has been initiated;

(b) Providing a renewed session key to the destination node;
(c) Confirmation of the delivery of the renewed session key to the destination node.

The next part of the study contains descriptions of the procedures. In the above list, the procedure
names that are described in detail, are marked in bold.

4.1. The Procedure for Starting the Broker Node

The Broker node acts as an intermediary in the exchange of data between nodes of the KGR system.
Activities related to launching the MQTT service should be performed first when initiating the KGR
system. It was assumed that the service must be configured so that data exchange between KGR system
nodes is secured using the TLS (Transport Layer Security) mechanism. In addition, the network node
on which the MQTT service operates should be properly configured from a security point of view in
accordance with good practices in this field. Actions connected with launching the MQTT service are
not the content of this study.

4.2. The Procedure for Initiating KS Node

The KS node initialization procedure is the first step that must be performed to start the KGR
system. The purpose of this procedure is to create a local trust structure for the KS node (including
asymmetric keys SRK, ANK, and KEDK) and create individual data for the node. These data include:
node identifier N_ID, symmetric key NK and the accompanying NKsign key for securing data stored
in the node’s SD memory, MQTT broker address, and topic TOPIC1 which will be subscribed by the
KS node in the MQTT service to generate or renew the session keys for N nodes. The last step of the
procedure is to start subscription to the topic TOPIC0 and TOPIC1, which establishes the readiness of
the KS node to work. The sequence diagram for the KS node initialization procedure and the data stored
on the KS node after the procedure are shown in Figure 7 (the updated data are highlighted in yellow).

(a) (b)

Figure 7. The sequence diagram for the KS node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

(1) Generating local
 trust structure
 (SRK, ANK, KEDK)
(2) Generate N_ID
 for node
(3) Generate keys
 NK and NKsign

(4) Generate string
 for TOPIC1

(5) Set BA address

KS node

(6) start subscription
 "register" and TOPIC1

TPM Non-volatile Memory

SD memory
The files are

empty

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

Figure 7. The sequence diagram for the KS node initialization procedure (a) and the data stored on the
KS node after the initialization procedure (b).

4.3. The Procedure for Preparing the Credentials for N Nodes

According to suggestions in the description of the AC node (Section 3.5.3), this procedure is not
described here in detail. The AC node sends request to the KS node to prepare credentials for the given
N node. The KS node generates the credentials and sends them to the AC node. The way the two
nodes work together during this procedure is shown in Figure 8.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 30

4.3. The Procedure for Preparing the Credentials for N Nodes

According to suggestions in the description of the AC node (Section 3.5.3), this procedure is not
described here in detail. The AC node sends request to the KS node to prepare credentials for the
given N node. The KS node generates the credentials and sends them to the AC node. The way the
two nodes work together during this procedure is shown in Figure 8.

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2

credentials

Nk

Figure 8. The way the AC node and the KS node work together during the procedure for preparing
the credentials for the given N node.

The result of this procedure is the appearance of a new entry in the node_desc file stored in the
resources of the KS node and a text file containing the credentials intended for given N node that
have just been added to the resources of the KS node. An example of data stored on the KS node after
the procedure is shown in Figure 9. (the updated data after adding the first node are highlighted in
yellow).

TPM Non-volatile Memory

SD memory

The file is
empty

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

Figure 9. An example of data stored on the KS node after adding the description of the first N node.

4.4. The Procedure for Initiating the N Node

The procedure for initiating the given N node aims to create a local trust structure for the N node
(including asymmetric keys SRK and ANK), load the credentials obtained from the AC node, and
create individual data for the node. Loaded data include: node tag NTAG and node identifier N_ID.
Generated data include: symmetric key NK and the accompanying NKsign key for securing data
stored in the node’s SD memory, and topic TOPIC2, which will be subscribed by the given N node in
the MQTT service during the procedure for registration the N node in the KED domain and the
procedure of generating or renewing the session keys for the N node. In the last step, the IP address
of the MQTT broker is loaded to the BA field. The way the AC node and the N node work together

Figure 8. The way the AC node and the KS node work together during the procedure for preparing the
credentials for the given N node.

The result of this procedure is the appearance of a new entry in the node_desc file stored in the
resources of the KS node and a text file containing the credentials intended for given N node that have
just been added to the resources of the KS node. An example of data stored on the KS node after
the procedure is shown in Figure 9. (the updated data after adding the first node are highlighted
in yellow).

Sensors 2020, 20, 5012 15 of 31

Sensors 2020, 20, x FOR PEER REVIEW 14 of 30

4.3. The Procedure for Preparing the Credentials for N Nodes

According to suggestions in the description of the AC node (Section 3.5.3), this procedure is not
described here in detail. The AC node sends request to the KS node to prepare credentials for the
given N node. The KS node generates the credentials and sends them to the AC node. The way the
two nodes work together during this procedure is shown in Figure 8.

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2

credentials

Nk

Figure 8. The way the AC node and the KS node work together during the procedure for preparing
the credentials for the given N node.

The result of this procedure is the appearance of a new entry in the node_desc file stored in the
resources of the KS node and a text file containing the credentials intended for given N node that
have just been added to the resources of the KS node. An example of data stored on the KS node after
the procedure is shown in Figure 9. (the updated data after adding the first node are highlighted in
yellow).

TPM Non-volatile Memory

SD memory

The file is
empty

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

Figure 9. An example of data stored on the KS node after adding the description of the first N node.

4.4. The Procedure for Initiating the N Node

The procedure for initiating the given N node aims to create a local trust structure for the N node
(including asymmetric keys SRK and ANK), load the credentials obtained from the AC node, and
create individual data for the node. Loaded data include: node tag NTAG and node identifier N_ID.
Generated data include: symmetric key NK and the accompanying NKsign key for securing data
stored in the node’s SD memory, and topic TOPIC2, which will be subscribed by the given N node in
the MQTT service during the procedure for registration the N node in the KED domain and the
procedure of generating or renewing the session keys for the N node. In the last step, the IP address
of the MQTT broker is loaded to the BA field. The way the AC node and the N node work together

Figure 9. An example of data stored on the KS node after adding the description of the first N node.

4.4. The Procedure for Initiating the N Node

The procedure for initiating the given N node aims to create a local trust structure for the N
node (including asymmetric keys SRK and ANK), load the credentials obtained from the AC node,
and create individual data for the node. Loaded data include: node tag NTAG and node identifier
N_ID. Generated data include: symmetric key NK and the accompanying NKsign key for securing
data stored in the node’s SD memory, and topic TOPIC2, which will be subscribed by the given N node
in the MQTT service during the procedure for registration the N node in the KED domain and the
procedure of generating or renewing the session keys for the N node. In the last step, the IP address of
the MQTT broker is loaded to the BA field. The way the AC node and the N node work together during
this procedure is shown in Figure 10. The sequence diagram for the procedure and the data stored
on the N node after the procedure are shown in Figure 11 (the updated data after the initialization
procedure for the N node are highlighted in yellow).

Sensors 2020, 20, x FOR PEER REVIEW 15 of 30

during this procedure is shown in Figure 10. The sequence diagram for the procedure and the data
stored on the N node after the procedure are shown in Figure 11 (the updated data after the
initialization procedure for the N node are highlighted in yellow).

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2
credentials

Nk

Figure 10. The way the AC node and the N node work together during the procedure for initiating the
N node.

(a) (b)

Figure 11. The sequence diagram for the N node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

4.5. The Procedure for Registration N node in KED Domain

This procedure is intended to register the N node in the resources of the KS node and generate
and transfer to the registered node the NKSK and NKSKSign keys to secure future data exchange
between the given N node and KS node. Data from the N_ID, NTAG fields of the registered node,
which this node obtained from the AC node in the node initialization procedure, and TOPIC2 field
are encrypted using the contents of the NTAG field (the contents of this field will be used as a “one
time password”). HMAC is determined for all sent data also using NTAG, and then the data are sent
to the KS node. The KS node checks the authorization of the received request. If the KS node detects
any abnormalities in the request, it ignores the request. These abnormalities include the following
situations: in the KS resource, no description of the node that issued the request, an invalid NTAG,
or an invalid HMAC hash.

In the next step, the KS node generates NKSK and NKSKsign keys for the registered node,
completes the description of this node in the local file node_desc, and in response sends the generated
keys supplemented with the field TOPIC1 to the registered node. The contents of the NTAG field of
the node being registered is used to protect the response. The MQTT service is used during the
registration procedure. The way the KS node and the N node work together during this procedure is
shown in Figure 12. The sequence diagram of the procedure for the registration of the node in the
domain is shown in Figure 13.

(1) Generating local
 trust structure
 (SRK, ANK)
(2) Load N_ID
 for node
(3) Load NTAG
 for node

(4) Generate keys
 NK and NKsign
(5) Generate string
 for TOPIC2

N node

(6) Load MQTT
 broker addres

TPM Non-volatile Memory

SD memory
The file
is empty

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign
TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

Figure 10. The way the AC node and the N node work together during the procedure for initiating the
N node.

Sensors 2020, 20, 5012 16 of 31

Sensors 2020, 20, x FOR PEER REVIEW 15 of 30

during this procedure is shown in Figure 10. The sequence diagram for the procedure and the data
stored on the N node after the procedure are shown in Figure 11 (the updated data after the
initialization procedure for the N node are highlighted in yellow).

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2
credentials

Nk

Figure 10. The way the AC node and the N node work together during the procedure for initiating the
N node.

(a) (b)

Figure 11. The sequence diagram for the N node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

4.5. The Procedure for Registration N node in KED Domain

This procedure is intended to register the N node in the resources of the KS node and generate
and transfer to the registered node the NKSK and NKSKSign keys to secure future data exchange
between the given N node and KS node. Data from the N_ID, NTAG fields of the registered node,
which this node obtained from the AC node in the node initialization procedure, and TOPIC2 field
are encrypted using the contents of the NTAG field (the contents of this field will be used as a “one
time password”). HMAC is determined for all sent data also using NTAG, and then the data are sent
to the KS node. The KS node checks the authorization of the received request. If the KS node detects
any abnormalities in the request, it ignores the request. These abnormalities include the following
situations: in the KS resource, no description of the node that issued the request, an invalid NTAG,
or an invalid HMAC hash.

In the next step, the KS node generates NKSK and NKSKsign keys for the registered node,
completes the description of this node in the local file node_desc, and in response sends the generated
keys supplemented with the field TOPIC1 to the registered node. The contents of the NTAG field of
the node being registered is used to protect the response. The MQTT service is used during the
registration procedure. The way the KS node and the N node work together during this procedure is
shown in Figure 12. The sequence diagram of the procedure for the registration of the node in the
domain is shown in Figure 13.

(1) Generating local
 trust structure
 (SRK, ANK)
(2) Load N_ID
 for node
(3) Load NTAG
 for node

(4) Generate keys
 NK and NKsign
(5) Generate string
 for TOPIC2

N node

(6) Load MQTT
 broker addres

TPM Non-volatile Memory

SD memory
The file
is empty

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign
TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

Figure 11. The sequence diagram for the N node initialization procedure (a) and the data stored on the
KS node after the initialization procedure (b).

4.5. The Procedure for Registration N Node in KED Domain

This procedure is intended to register the N node in the resources of the KS node and generate
and transfer to the registered node the NKSK and NKSKSign keys to secure future data exchange
between the given N node and KS node. Data from the N_ID, NTAG fields of the registered node,
which this node obtained from the AC node in the node initialization procedure, and TOPIC2 field are
encrypted using the contents of the NTAG field (the contents of this field will be used as a “one time
password”). HMAC is determined for all sent data also using NTAG, and then the data are sent to
the KS node. The KS node checks the authorization of the received request. If the KS node detects
any abnormalities in the request, it ignores the request. These abnormalities include the following
situations: in the KS resource, no description of the node that issued the request, an invalid NTAG,
or an invalid HMAC hash.

In the next step, the KS node generates NKSK and NKSKsign keys for the registered node,
completes the description of this node in the local file node_desc, and in response sends the generated
keys supplemented with the field TOPIC1 to the registered node. The contents of the NTAG field
of the node being registered is used to protect the response. The MQTT service is used during the
registration procedure. The way the KS node and the N node work together during this procedure is
shown in Figure 12. The sequence diagram of the procedure for the registration of the node in the
domain is shown in Figure 13.Sensors 2020, 20, x FOR PEER REVIEW 16 of 30

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2
credentials

Nk

Figure 12. The way the KS node and N node work together during the procedure for registration of
the N node.

KS nodeN node
(1) Generate node
 registration request

(3) Acquire NKSK,
 NKSKsign and TOPIC1

nksk_key_req

nksk_key_ans

(2) Generate keys: NKSK and
 NKSKsign, and update
 node_desc file

Figure 13. The sequence diagram for N node registration procedure.

The result of the node registration procedure in the key exchange domain is the update of data
in the KS node resources and the resources of the registered node. The contents of the KS node and
the first registered node in the domain are shown in Figure 14 (the updated data after the registration
procedure are highlighted in yellow).

(a) (b)

Figure 14. The sequence diagram for the N node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

TPM Non-volatile Memory

SD memory
The file

is empty

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

Figure 12. The way the KS node and N node work together during the procedure for registration of the
N node.

Sensors 2020, 20, 5012 17 of 31

Sensors 2020, 20, x FOR PEER REVIEW 16 of 30

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2
credentials

Nk

Figure 12. The way the KS node and N node work together during the procedure for registration of
the N node.

KS nodeN node
(1) Generate node
 registration request

(3) Acquire NKSK,
 NKSKsign and TOPIC1

nksk_key_req

nksk_key_ans

(2) Generate keys: NKSK and
 NKSKsign, and update
 node_desc file

Figure 13. The sequence diagram for N node registration procedure.

The result of the node registration procedure in the key exchange domain is the update of data
in the KS node resources and the resources of the registered node. The contents of the KS node and
the first registered node in the domain are shown in Figure 14 (the updated data after the registration
procedure are highlighted in yellow).

(a) (b)

Figure 14. The sequence diagram for the N node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

TPM Non-volatile Memory

SD memory
The file

is empty

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

Figure 13. The sequence diagram for N node registration procedure.

The result of the node registration procedure in the key exchange domain is the update of data
in the KS node resources and the resources of the registered node. The contents of the KS node and
the first registered node in the domain are shown in Figure 14 (the updated data after the registration
procedure are highlighted in yellow).

Sensors 2020, 20, x FOR PEER REVIEW 16 of 30

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

KS AC

N1 N2
credentials

Nk

Figure 12. The way the KS node and N node work together during the procedure for registration of
the N node.

KS nodeN node
(1) Generate node
 registration request

(3) Acquire NKSK,
 NKSKsign and TOPIC1

nksk_key_req

nksk_key_ans

(2) Generate keys: NKSK and
 NKSKsign, and update
 node_desc file

Figure 13. The sequence diagram for N node registration procedure.

The result of the node registration procedure in the key exchange domain is the update of data
in the KS node resources and the resources of the registered node. The contents of the KS node and
the first registered node in the domain are shown in Figure 14 (the updated data after the registration
procedure are highlighted in yellow).

(a) (b)

Figure 14. The sequence diagram for the N node initialization procedure (a) and the data stored on
the KS node after the initialization procedure (b).

TPM Non-volatile Memory

SD memory
The file

is empty

ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

Figure 14. The sequence diagram for the N node initialization procedure (a) and the data stored on the
KS node after the initialization procedure (b).

Detailed descriptions of the most important steps of the procedure (in Figure 13, the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:

(1) Generate node registration request—a node registration request sent to the KS node is also
a request to send the keys NKSK and NKSKsign, and string TOPIC1 back to the N node. Conduct
the following:

• Prepare the nksk_key_req packet containing the following data: N_ID, NTAG, and TOPIC2
of the registered N node (Figure 15). The packet is encrypted using the string from NTAG
field, and NTAG is also used to determine the HMAC hash;

• Publish a nksk_key_req packet using the topic TOPIC0.

Sensors 2020, 20, 5012 18 of 31

Sensors 2020, 20, x FOR PEER REVIEW 17 of 30

Detailed descriptions of the most important steps of the procedure (in Figure 13, the numbers in
parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are as
follows:

(1) Generate node registration request—a node registration request sent to the KS node is also a
request to send the keys NKSK and NKSKsign, and string TOPIC1 back to the N node. Conduct
the following:

• Prepare the nksk_key_req packet containing the following data: N_ID, NTAG, and TOPIC2
of the registered N node (Figure 15). The packet is encrypted using the string from NTAG
field, and NTAG is also used to determine the HMAC hash;

• Publish a nksk_key_req packet using the topic TOPIC0.

N_ID – ID of N node
NTAG – Node tag
TOPIC2 – Topic will be subscribed by N node
HMAC – Digital signature of the frame

code
"151" NTAG

(2) (32)
area to encrypt

TOPIC2
(10)

pad
(6)

HMAC
(32)

nksk_key_req

N_ID
(4)

Figure 15. The node registration request frame.

(2) Generate keys: NKSK and NKSKsign and update the N node description in the node_desc file.
Conduct the following:

• On the KS node, decrypt the data from the nksk_key_req packet using the NTAG from the
description of the N_ID node and verify the correctness of the NTAG field from the packet.
If it is not correct, stop the procedure.

• On the KS node, generate the keys NKSK with the initialization vector and NKSKsign,
prepare the N node description, and then encrypt this description using the NK and the IV
vector of the KS node, determine the HMAC using NKsign, and update the N node
description in local file node_desc. The fields of the description should have the following
values:

N_ID = the content remains unchanged (the field is not encrypted);
NTAG = the content remains unchanged;
NKSK and IV = value generated by the KS node;
NKSKsign = value generated by the KS node;
TOPIC2 = TOPIC2 gathered from the nksk_key_req packet.

NKSK – Node to Ker server Key + Initialization vector
NKSKsign – Node to Ker server Security Key for signing
TOPIC1 – Topic subscribed by KS node
HMAC – Digital signature of the frame

code
"152" NKSK

(2) (32+16)
area to encrypt

pad
(6)

HMAC
(32)

nksk_key_ans

NKSKsign
(32)

TOPIC1
(10)

Figure 16. The confirmation frame for node registration.

• Publish a confirmation of registration to node N (nksk_key_ans packet in Figure 16) using
topic TOPIC2 of registered node. The confirmation contains NKSK, IV, NKSKsign, TOPIC1.
The fields are encrypted using the NTAG of the registered node, and for the encrypted blob,
the HMAC is determined also using NTAG of the registered node.

Figure 15. The node registration request frame.

(2) Generate keys: NKSK and NKSKsign and update the N node description in the node_desc file.
Conduct the following:

• On the KS node, decrypt the data from the nksk_key_req packet using the NTAG from the
description of the N_ID node and verify the correctness of the NTAG field from the packet.
If it is not correct, stop the procedure.

• On the KS node, generate the keys NKSK with the initialization vector and NKSKsign, prepare
the N node description, and then encrypt this description using the NK and the IV vector of
the KS node, determine the HMAC using NKsign, and update the N node description in
local file node_desc. The fields of the description should have the following values:

N_ID = the content remains unchanged (the field is not encrypted);
NTAG = the content remains unchanged;
NKSK and IV = value generated by the KS node;
NKSKsign = value generated by the KS node;
TOPIC2 = TOPIC2 gathered from the nksk_key_req packet.

• Publish a confirmation of registration to node N (nksk_key_ans packet in Figure 16) using
topic TOPIC2 of registered node. The confirmation contains NKSK, IV, NKSKsign, TOPIC1.
The fields are encrypted using the NTAG of the registered node, and for the encrypted blob,
the HMAC is determined also using NTAG of the registered node.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 30

Detailed descriptions of the most important steps of the procedure (in Figure 13, the numbers in
parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are as
follows:

(1) Generate node registration request—a node registration request sent to the KS node is also a
request to send the keys NKSK and NKSKsign, and string TOPIC1 back to the N node. Conduct
the following:

• Prepare the nksk_key_req packet containing the following data: N_ID, NTAG, and TOPIC2
of the registered N node (Figure 15). The packet is encrypted using the string from NTAG
field, and NTAG is also used to determine the HMAC hash;

• Publish a nksk_key_req packet using the topic TOPIC0.

N_ID – ID of N node
NTAG – Node tag
TOPIC2 – Topic will be subscribed by N node
HMAC – Digital signature of the frame

code
"151" NTAG

(2) (32)
area to encrypt

TOPIC2
(10)

pad
(6)

HMAC
(32)

nksk_key_req

N_ID
(4)

Figure 15. The node registration request frame.

(2) Generate keys: NKSK and NKSKsign and update the N node description in the node_desc file.
Conduct the following:

• On the KS node, decrypt the data from the nksk_key_req packet using the NTAG from the
description of the N_ID node and verify the correctness of the NTAG field from the packet.
If it is not correct, stop the procedure.

• On the KS node, generate the keys NKSK with the initialization vector and NKSKsign,
prepare the N node description, and then encrypt this description using the NK and the IV
vector of the KS node, determine the HMAC using NKsign, and update the N node
description in local file node_desc. The fields of the description should have the following
values:

N_ID = the content remains unchanged (the field is not encrypted);
NTAG = the content remains unchanged;
NKSK and IV = value generated by the KS node;
NKSKsign = value generated by the KS node;
TOPIC2 = TOPIC2 gathered from the nksk_key_req packet.

NKSK – Node to Ker server Key + Initialization vector
NKSKsign – Node to Ker server Security Key for signing
TOPIC1 – Topic subscribed by KS node
HMAC – Digital signature of the frame

code
"152" NKSK

(2) (32+16)
area to encrypt

pad
(6)

HMAC
(32)

nksk_key_ans

NKSKsign
(32)

TOPIC1
(10)

Figure 16. The confirmation frame for node registration.

• Publish a confirmation of registration to node N (nksk_key_ans packet in Figure 16) using
topic TOPIC2 of registered node. The confirmation contains NKSK, IV, NKSKsign, TOPIC1.
The fields are encrypted using the NTAG of the registered node, and for the encrypted blob,
the HMAC is determined also using NTAG of the registered node.

Figure 16. The confirmation frame for node registration.

(3) Acquire NKSK, NKSKsign, and TOPIC1. Conduct the following:

• On the N node, decrypt received the nksk_key_ans packet using NTAG, save the received
data in NVRAM of TPM. The data should have the following values:

NKSK and IV = NKSK gathered from the nksk_key_ans packet;
NKSKsign = NKSKsign gathered from the nksk_key_ans packet;
TOPIC1 = TOPIC1 gathered from the nksk_key_req packet.

The contents of the N node after registration in the domain are shown on the right side of the
Figure 14 (the updated data after the registration procedure are highlighted in yellow).

The sequence diagram of the data exchange in the MQTT service for the registration procedure of
the N node in the domain is shown in the Figure 17.

Sensors 2020, 20, 5012 19 of 31

Sensors 2020, 20, x FOR PEER REVIEW 18 of 30

(3) Acquire NKSK, NKSKsign, and TOPIC1. Conduct the following:
• On the N node, decrypt received the nksk_key_ans packet using NTAG, save the received

data in NVRAM of TPM. The data should have the following values:
NKSK and IV = NKSK gathered from the nksk_key_ans packet;
NKSKsign = NKSKsign gathered from the nksk_key_ans packet;
TOPIC1 = TOPIC1 gathered from the nksk_key_req packet.

The contents of the N node after registration in the domain are shown on the right side of the
Figure 14 (the updated data after the registration procedure are highlighted in yellow).

The sequence diagram of the data exchange in the MQTT service for the registration procedure
of the N node in the domain is shown in the Figure 17.

(A) sub TOPIC0

KS node

(2) Generate keys: NKSK and
 NKSKsign, and update
 node_desc file

BrokerN node

(1) Generate node
 registration request

(3) Acquire NKSK,
 NKSKsign and TOPIC1

(C) pub TOPIC0 nksk_key_req

(D) sub TOPIC2[N]

(E) pub TOPIC2[N] nksk_key_ans

(B) sub TOPIC1
KS init

N registration

Figure 17. The sequence diagram of the data exchange in the Message Queuing Telemetry Transport
(MQTT) service for the registration procedure.

4.6. Procedure for Forwarding the List of Authorized Nodes to Cooperation

This procedure requires N node cooperation with an AC node. Similarly to the procedure for
preparing the credentials for N nodes (described in Section 0), this procedure is not described here in
detail, but only the expected results of this procedure are given. The result of this procedure is the
appearance of new, incomplete entries in the file ses_keys stored in the resources of the N node.
These new records contain only identifiers and TOPIC3 (the remaining fields are empty) for other
N-type nodes with which the given node is authorized to establish a common symmetrical session
key with those nodes. The list of such nodes is the basis for the procedure for generating session keys,
a description of this procedure is given in the Section 0. An example of data stored on the N node
after the procedure in which two new nodes were added is shown in Figure 18 (the updated data
after adding two identifiers are highlighted in yellow).

TPM Non-volatile Memory

SD memory
ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 18. An example of data stored on the N node after the procedure in which two new nodes were
added.

Figure 17. The sequence diagram of the data exchange in the Message Queuing Telemetry Transport
(MQTT) service for the registration procedure.

4.6. Procedure for Forwarding the List of Authorized Nodes to Cooperation

This procedure requires N node cooperation with an AC node. Similarly to the procedure for
preparing the credentials for N nodes (described in Section 4.3), this procedure is not described here
in detail, but only the expected results of this procedure are given. The result of this procedure is
the appearance of new, incomplete entries in the file ses_keys stored in the resources of the N node.
These new records contain only identifiers and TOPIC3 (the remaining fields are empty) for other
N-type nodes with which the given node is authorized to establish a common symmetrical session key
with those nodes. The list of such nodes is the basis for the procedure for generating session keys,
a description of this procedure is given in the Section 4.7. An example of data stored on the N node
after the procedure in which two new nodes were added is shown in Figure 18 (the updated data after
adding two identifiers are highlighted in yellow).

Sensors 2020, 20, x FOR PEER REVIEW 18 of 30

(3) Acquire NKSK, NKSKsign, and TOPIC1. Conduct the following:
• On the N node, decrypt received the nksk_key_ans packet using NTAG, save the received

data in NVRAM of TPM. The data should have the following values:
NKSK and IV = NKSK gathered from the nksk_key_ans packet;
NKSKsign = NKSKsign gathered from the nksk_key_ans packet;
TOPIC1 = TOPIC1 gathered from the nksk_key_req packet.

The contents of the N node after registration in the domain are shown on the right side of the
Figure 14 (the updated data after the registration procedure are highlighted in yellow).

The sequence diagram of the data exchange in the MQTT service for the registration procedure
of the N node in the domain is shown in the Figure 17.

(A) sub TOPIC0

KS node

(2) Generate keys: NKSK and
 NKSKsign, and update
 node_desc file

BrokerN node

(1) Generate node
 registration request

(3) Acquire NKSK,
 NKSKsign and TOPIC1

(C) pub TOPIC0 nksk_key_req

(D) sub TOPIC2[N]

(E) pub TOPIC2[N] nksk_key_ans

(B) sub TOPIC1
KS init

N registration

Figure 17. The sequence diagram of the data exchange in the Message Queuing Telemetry Transport
(MQTT) service for the registration procedure.

4.6. Procedure for Forwarding the List of Authorized Nodes to Cooperation

This procedure requires N node cooperation with an AC node. Similarly to the procedure for
preparing the credentials for N nodes (described in Section 0), this procedure is not described here in
detail, but only the expected results of this procedure are given. The result of this procedure is the
appearance of new, incomplete entries in the file ses_keys stored in the resources of the N node.
These new records contain only identifiers and TOPIC3 (the remaining fields are empty) for other
N-type nodes with which the given node is authorized to establish a common symmetrical session
key with those nodes. The list of such nodes is the basis for the procedure for generating session keys,
a description of this procedure is given in the Section 0. An example of data stored on the N node
after the procedure in which two new nodes were added is shown in Figure 18 (the updated data
after adding two identifiers are highlighted in yellow).

TPM Non-volatile Memory

SD memory
ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 18. An example of data stored on the N node after the procedure in which two new nodes were
added.
Figure 18. An example of data stored on the N node after the procedure in which two new nodes
were added.

4.7. The Procedure for Generating Session Keys

This procedure is intended to generate a new symmetric session key for a pair of N-type nodes
(one element of the pair is a given node and the other element is another N-type node) and ensure
secure transfer of the generated keys to another N node. The KS node is responsible for generating the
session key and distributing it to the nodes concerned. The procedure consists of three stages:

(a) Requesting the session key;
(b) Providing the session key to the destination node;
(c) Confirmation of the delivery of the session key to the destination node.

Sensors 2020, 20, 5012 20 of 31

The condition for the correct completion of the procedure is to register both nodes in the resources
of the KS node before starting the procedure of generating the session key for these nodes. In the
further description of the procedure, it was assumed that the key will be generated for the pair of N1
and N2 nodes. The designation N1 refers to a given node, which will initiate the session key generation
procedure, and N2 refers to the second node from this pair of nodes. As a result of the procedure,
the session key generated at the request of the N1 node and topics TOPIC3 and TOPIC4 will be securely
transferred to the N1 and N2 nodes. Later, these topics will be used by the N1 and N2 nodes in the
MQTT service during secure data exchange that will use the generated session key.

The way the KS node and the N node work together during this procedure is shown in Figure 19.
The sequence diagram for the procedure is shown in Figure 20, and an example of the data stored on
each N-type node after the procedure is shown in Figure 21 (the updated data after generating sessions
key are highlighted in yellow). The content of data stored by the KS node after step (2) and after step
(5) is shown in Figure 22. After completing the procedure, in the gen_keys file stored by the KS node,
there is no longer the entry regarding the generated key.

Sensors 2020, 20, x FOR PEER REVIEW 19 of 30

4.7. The Procedure for Generating Session Keys

This procedure is intended to generate a new symmetric session key for a pair of N-type nodes
(one element of the pair is a given node and the other element is another N-type node) and ensure
secure transfer of the generated keys to another N node. The KS node is responsible for generating
the session key and distributing it to the nodes concerned. The procedure consists of three stages:

(a) Requesting the session key;
(b) Providing the session key to the destination node;
(c) Confirmation of the delivery of the session key to the destination node.

The condition for the correct completion of the procedure is to register both nodes in the
resources of the KS node before starting the procedure of generating the session key for these nodes.
In the further description of the procedure, it was assumed that the key will be generated for the pair
of N1 and N2 nodes. The designation N1 refers to a given node, which will initiate the session key
generation procedure, and N2 refers to the second node from this pair of nodes. As a result of the
procedure, the session key generated at the request of the N1 node and topics TOPIC3 and TOPIC4
will be securely transferred to the N1 and N2 nodes. Later, these topics will be used by the N1 and
N2 nodes in the MQTT service during secure data exchange that will use the generated session key.
The way the KS node and the N node work together during this procedure is shown in Figure 19.
The sequence diagram for the procedure is shown in Figure 20, and an example of the data stored on
each N-type node after the procedure is shown in Figure 21 (the updated data after generating
sessions key are highlighted in yellow). The content of data stored by the KS node after step (2) and
after step (5) is shown in Figure 22. After completing the procedure, in the gen_keys file stored by the
KS node, there is no longer the entry regarding the generated key.

KS AC

N1 N2
credentials

Nk

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

Figure 19. The way the KS node and the N node work together during the procedure for generating
session keys.

nnsk_key_req

nnsk_key_ans

nksk_adv_ans

nnsk_adv_req

nnsk_conf_req

nnsk_conf_ans

N1 node

(3) Acquire keys:
 NNSK and NNSKsign,
 update ses_key file

(1) Generate session
 key request

KS node

(2) Generate keys: NNSK
 and , NNSKsign, and
 update gen_keys file

N2 node

(4) Acquire keys:
 NNSK and NNSKsign,
 update ses_keys file

(5) Update
 gen_keys file

(6) Update ses_key file

(7) delete NNSK data
 from gen_keys file

Figure 20. The sequence diagram for the procedure for generating session keys.

Figure 19. The way the KS node and the N node work together during the procedure for generating
session keys.

Sensors 2020, 20, x FOR PEER REVIEW 19 of 30

4.7. The Procedure for Generating Session Keys

This procedure is intended to generate a new symmetric session key for a pair of N-type nodes
(one element of the pair is a given node and the other element is another N-type node) and ensure
secure transfer of the generated keys to another N node. The KS node is responsible for generating
the session key and distributing it to the nodes concerned. The procedure consists of three stages:

(a) Requesting the session key;
(b) Providing the session key to the destination node;
(c) Confirmation of the delivery of the session key to the destination node.

The condition for the correct completion of the procedure is to register both nodes in the
resources of the KS node before starting the procedure of generating the session key for these nodes.
In the further description of the procedure, it was assumed that the key will be generated for the pair
of N1 and N2 nodes. The designation N1 refers to a given node, which will initiate the session key
generation procedure, and N2 refers to the second node from this pair of nodes. As a result of the
procedure, the session key generated at the request of the N1 node and topics TOPIC3 and TOPIC4
will be securely transferred to the N1 and N2 nodes. Later, these topics will be used by the N1 and
N2 nodes in the MQTT service during secure data exchange that will use the generated session key.
The way the KS node and the N node work together during this procedure is shown in Figure 19.
The sequence diagram for the procedure is shown in Figure 20, and an example of the data stored on
each N-type node after the procedure is shown in Figure 21 (the updated data after generating
sessions key are highlighted in yellow). The content of data stored by the KS node after step (2) and
after step (5) is shown in Figure 22. After completing the procedure, in the gen_keys file stored by the
KS node, there is no longer the entry regarding the generated key.

KS AC

N1 N2
credentials

Nk

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

Figure 19. The way the KS node and the N node work together during the procedure for generating
session keys.

nnsk_key_req

nnsk_key_ans

nksk_adv_ans

nnsk_adv_req

nnsk_conf_req

nnsk_conf_ans

N1 node

(3) Acquire keys:
 NNSK and NNSKsign,
 update ses_key file

(1) Generate session
 key request

KS node

(2) Generate keys: NNSK
 and , NNSKsign, and
 update gen_keys file

N2 node

(4) Acquire keys:
 NNSK and NNSKsign,
 update ses_keys file

(5) Update
 gen_keys file

(6) Update ses_key file

(7) delete NNSK data
 from gen_keys file

Figure 20. The sequence diagram for the procedure for generating session keys. Figure 20. The sequence diagram for the procedure for generating session keys.

Sensors 2020, 20, 5012 21 of 31
Sensors 2020, 20, x FOR PEER REVIEW 20 of 30

TPM Non-volatile Memory

SD memory
ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 21. An example of the data stored on each N-type node after the procedure for generating
session keys (the first entry in the ses_keys file is complete → the keys described there are known to
N1 and N2).

(a) (b)

Figure 22. The content of data stored by the KS node after the step (3) (a) and after the step (5) (b).

Detailed descriptions of the most important steps of the procedure (in Figure 20, the numbers in
parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are as
follows:

(1) Generate session key request. Conduct the following:

• Prepare the nnsk_key_req packet (Figure 23) containing the following data: N_ID1, N_ID2,
and topic TOPIC3 which will be subscribed by the N_ID1 node during secure data exchange
with the N_ID2 node. The N_ID2 and TOPIC3 fields of the packet are encrypted using the
NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using the
NKSKsign of the N_ID1 node;

• Publish a nnsk_key req packet using the topic TOPIC1.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC3 – Topic subscribed by N_ID1 node
HMAC – Digital signature of the frame

code
"153" N_ID2

(2) (4)
area to encrypt

TOPIC3
(10)

pad
(2)

HMAC
(32)

nnsk_key_req

N_ID1
(4)

Figure 23. The session key request frame.

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

Figure 21. An example of the data stored on each N-type node after the procedure for generating
session keys (the first entry in the ses_keys file is complete→ the keys described there are known to N1
and N2).

Sensors 2020, 20, x FOR PEER REVIEW 20 of 30

TPM Non-volatile Memory

SD memory
ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 21. An example of the data stored on each N-type node after the procedure for generating
session keys (the first entry in the ses_keys file is complete → the keys described there are known to
N1 and N2).

(a) (b)

Figure 22. The content of data stored by the KS node after the step (3) (a) and after the step (5) (b).

Detailed descriptions of the most important steps of the procedure (in Figure 20, the numbers in
parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are as
follows:

(1) Generate session key request. Conduct the following:

• Prepare the nnsk_key_req packet (Figure 23) containing the following data: N_ID1, N_ID2,
and topic TOPIC3 which will be subscribed by the N_ID1 node during secure data exchange
with the N_ID2 node. The N_ID2 and TOPIC3 fields of the packet are encrypted using the
NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using the
NKSKsign of the N_ID1 node;

• Publish a nnsk_key req packet using the topic TOPIC1.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC3 – Topic subscribed by N_ID1 node
HMAC – Digital signature of the frame

code
"153" N_ID2

(2) (4)
area to encrypt

TOPIC3
(10)

pad
(2)

HMAC
(32)

nnsk_key_req

N_ID1
(4)

Figure 23. The session key request frame.

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

Figure 22. The content of data stored by the KS node after the step (3) (a) and after the step (5) (b).

Detailed descriptions of the most important steps of the procedure (in Figure 20, the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:

(1) Generate session key request. Conduct the following:

• Prepare the nnsk_key_req packet (Figure 23) containing the following data: N_ID1, N_ID2,
and topic TOPIC3 which will be subscribed by the N_ID1 node during secure data exchange
with the N_ID2 node. The N_ID2 and TOPIC3 fields of the packet are encrypted using
the NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using the
NKSKsign of the N_ID1 node;

• Publish a nnsk_key req packet using the topic TOPIC1.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 30

TPM Non-volatile Memory

SD memory
ses_keys – valid session keys

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

NKSK IV
NKSKsign

TOPIC1

BASRK

ANK
NK IV
N_ID

NKsign
TOPIC2

NTAG

HMACN_ID NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC CTime

Figure 21. An example of the data stored on each N-type node after the procedure for generating
session keys (the first entry in the ses_keys file is complete → the keys described there are known to
N1 and N2).

(a) (b)

Figure 22. The content of data stored by the KS node after the step (3) (a) and after the step (5) (b).

Detailed descriptions of the most important steps of the procedure (in Figure 20, the numbers in
parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are as
follows:

(1) Generate session key request. Conduct the following:

• Prepare the nnsk_key_req packet (Figure 23) containing the following data: N_ID1, N_ID2,
and topic TOPIC3 which will be subscribed by the N_ID1 node during secure data exchange
with the N_ID2 node. The N_ID2 and TOPIC3 fields of the packet are encrypted using the
NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using the
NKSKsign of the N_ID1 node;

• Publish a nnsk_key req packet using the topic TOPIC1.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC3 – Topic subscribed by N_ID1 node
HMAC – Digital signature of the frame

code
"153" N_ID2

(2) (4)
area to encrypt

TOPIC3
(10)

pad
(2)

HMAC
(32)

nnsk_key_req

N_ID1
(4)

Figure 23. The session key request frame.

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

TPM Non-volatile Memory

SD memory

NK IV
N_ID

NKsign

BA
TOPIC1

SRK

KEDKANK

node_desc - node descriptions

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

N_ID NTAG NKSK IV NKSKsign TOPIC2 HMAC

gen_keys – temporary data

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

N_ID1 N_ID2 NNSK IV NNSKsign TOPIC3 TOPIC4 HMAC

Figure 23. The session key request frame.

Sensors 2020, 20, 5012 22 of 31

(2) Generate keys: NNSK and NNSKsign and create a new entry in the gen_keys file. Conduct
the following:

• On the KS node, decrypt the data from the nnsk_key_req packet using the NKSK from the
description of the N_ID1 node and verify the HMAC.

• On the KS node, generate the keys NNSK with the initialization vector and NNSKsign,
create the description of these keys, and then encrypt this description using the NK and the IV
vector of the KS node; determine the HMAC using NKsign and append the keys description
in local file gen_keys. The fields of the description should have the following values:

N_ID1 = N_ID1 gathered from the nksk_key_req packet;
N_ID2 = N_ID2 gathered from the nksk_key_req packet;
NNSK and IV = value generated by the KS node;
NNSKsign = value generated by the KS node;
TOPIC3 = TOPIC3 gathered from the nksk_key_req packet;
TOPIC4 = empty;
HMAC = HMAC determined for all fields of the entry using NKsign key;
CTime—time stamp of the operation;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key of the
KS node.

• Publish a response to the session key request frame to the N_ID1 node (nnsk_key_ans packet
showed in Figure 24) using topic TOPIC2 of N1 node. The fields: N_ID1, N_ID2, NNSK,
and NNSKsign are encrypted using the NKSK of N_ID1 node; the HMAC is determined for
all fields of the packet using the NKSKsign of N_ID1 node.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 30

(2) Generate keys: NNSK and NNSKsign and create a new entry in the gen_keys file. Conduct the
following:

• On the KS node, decrypt the data from the nnsk_key_req packet using the NKSK from the
description of the N_ID1 node and verify the HMAC.

• On the KS node, generate the keys NNSK with the initialization vector and NNSKsign,
create the description of these keys, and then encrypt this description using the NK and the
IV vector of the KS node; determine the HMAC using NKsign and append the keys
description in local file gen_keys. The fields of the description should have the following
values:

N_ID1 = N_ID1 gathered from the nksk_key_req packet;
N_ID2 = N_ID2 gathered from the nksk_key_req packet;
NNSK and IV = value generated by the KS node;
NNSKsign = value generated by the KS node;
TOPIC3 = TOPIC3 gathered from the nksk_key_req packet;
TOPIC4 = empty;
HMAC = HMAC determined for all fields of the entry using NKsign key;
CTime—time stamp of the operation;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key of the
KS node.

• Publish a response to the session key request frame to the N_ID1 node (nnsk_key_ans
packet showed in Figure 24) using topic TOPIC2 of N1 node. The fields: N_ID1, N_ID2,
NNSK, and NNSKsign are encrypted using the NKSK of N_ID1 node; the HMAC is
determined for all fields of the packet using the NKSKsign of N_ID1 node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
NNSK – Node to Node Security Key + Initialization Vector
NNSKsign – Node to Node Security Key for signing
HMAC – Digital signature of the frame

code
"154" N_ID2

(2) (4)
area to encrypt

pad
(8)

HMAC
(32)

nnsk_key_ans

N_ID1
(4)

NNSKsign
(32)

NNSK
(32+16)

Figure 24. Response to the session key request frame.

• Publish a notification about the new session key to N_ID2 node (nnsk_not_req packet
showed in Figure 25) using topic TOPIC2 of the N2 node. The fields: N_ID, NNSK,
NNSKsign, and TOPIC3 are encrypted using the NKSK of N_ID2 node; the HMAC is
determined for all fields of the packet using the NKSKsign of N_ID2 node.

N_ID – ID of requesting N node
NNSK – Node to Node Security Key + Initialization Vector
NNSKsign – Node to Node Security Key for signing
TOPIC3 – Topic subscribed by requesting node
HMAC – Digital signature of the frame

code
"155" NNSK

(2) (32+16)
area to encrypt

TOPIC3
(10)

pad
(2)

HMAC
(32)

nnsk_not_req

N_ID
(4)

NNSKsign
(32)

Figure 25. The frame of notification about the new session key.

Figure 24. Response to the session key request frame.

• Publish a notification about the new session key to N_ID2 node (nnsk_not_req packet showed
in Figure 25) using topic TOPIC2 of the N2 node. The fields: N_ID, NNSK, NNSKsign,
and TOPIC3 are encrypted using the NKSK of N_ID2 node; the HMAC is determined for all
fields of the packet using the NKSKsign of N_ID2 node.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 30

(2) Generate keys: NNSK and NNSKsign and create a new entry in the gen_keys file. Conduct the
following:

• On the KS node, decrypt the data from the nnsk_key_req packet using the NKSK from the
description of the N_ID1 node and verify the HMAC.

• On the KS node, generate the keys NNSK with the initialization vector and NNSKsign,
create the description of these keys, and then encrypt this description using the NK and the
IV vector of the KS node; determine the HMAC using NKsign and append the keys
description in local file gen_keys. The fields of the description should have the following
values:

N_ID1 = N_ID1 gathered from the nksk_key_req packet;
N_ID2 = N_ID2 gathered from the nksk_key_req packet;
NNSK and IV = value generated by the KS node;
NNSKsign = value generated by the KS node;
TOPIC3 = TOPIC3 gathered from the nksk_key_req packet;
TOPIC4 = empty;
HMAC = HMAC determined for all fields of the entry using NKsign key;
CTime—time stamp of the operation;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key of the
KS node.

• Publish a response to the session key request frame to the N_ID1 node (nnsk_key_ans
packet showed in Figure 24) using topic TOPIC2 of N1 node. The fields: N_ID1, N_ID2,
NNSK, and NNSKsign are encrypted using the NKSK of N_ID1 node; the HMAC is
determined for all fields of the packet using the NKSKsign of N_ID1 node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
NNSK – Node to Node Security Key + Initialization Vector
NNSKsign – Node to Node Security Key for signing
HMAC – Digital signature of the frame

code
"154" N_ID2

(2) (4)
area to encrypt

pad
(8)

HMAC
(32)

nnsk_key_ans

N_ID1
(4)

NNSKsign
(32)

NNSK
(32+16)

Figure 24. Response to the session key request frame.

• Publish a notification about the new session key to N_ID2 node (nnsk_not_req packet
showed in Figure 25) using topic TOPIC2 of the N2 node. The fields: N_ID, NNSK,
NNSKsign, and TOPIC3 are encrypted using the NKSK of N_ID2 node; the HMAC is
determined for all fields of the packet using the NKSKsign of N_ID2 node.

N_ID – ID of requesting N node
NNSK – Node to Node Security Key + Initialization Vector
NNSKsign – Node to Node Security Key for signing
TOPIC3 – Topic subscribed by requesting node
HMAC – Digital signature of the frame

code
"155" NNSK

(2) (32+16)
area to encrypt

TOPIC3
(10)

pad
(2)

HMAC
(32)

nnsk_not_req

N_ID
(4)

NNSKsign
(32)

Figure 25. The frame of notification about the new session key.

Figure 25. The frame of notification about the new session key.

(3) On N1 node—acquire keys: NNSK and NNSKsign and update the ses_key file. Conduct
the following:

Sensors 2020, 20, 5012 23 of 31

• On the N1 node, decrypt the data from the nnsk_key_ans packet using the NKSK of the N1
node and verify the HMAC.

• On the N1 node, update the entry for node N_ID2 in the ses_keys file based on the data
from the received frame. The fields of the entry should have the following values:

N_ID—should be the same as field N_ID2 from the received frame;
NNSK and IV = NNSK gathered from the nnsk_key_ans packet;
NNSKsign = NNSKsign gathered from the nnsk_key_ans packet;
TOPIC3—should remain unchanged;
TOPIC4 = empty;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using NK key of the
N1 node.

(4) On N2 node—acquire keys: NNSK and NNSKsign and update ses_key file. Conduct
the following:

• On the N2 node, decrypt the data from the nnsk_not_req packet using the NKSK of the N2
node and verify the HMAC.

• On the N2 node, create the entry for node N_ID1 in ses_keys file based on the data from the
received frame. The fields of the entry should have the following values:

N_ID–N_ID gathered from the nnsk_not_req packet;
NNSK and IV = NNSK gathered from the nnsk_not_req packet;
NNSKsign = NNSKsign gathered from the nnsk_not_req packet;
TOPIC—10-bytes string generated by the the N2 node;
TOPIC4 = TOPIC3 gathered from the nnsk_not_req packet;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key of the
N2 node.

• Publish response to notification about the new session key to KS node (nnsk_not_ans packet
showed in Figure 26) using topic TOPIC1 of the KS node. The fields: N_ID2 and TOPIC4 are
encrypted using the NKSK of the N_ID2 node; the HMAC is determined for all fields of the
packet using the NKSKsign of N_ID2 node.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 30

(3) On N1 node—acquire keys: NNSK and NNSKsign and update the ses_key file. Conduct the
following:

• On the N1 node, decrypt the data from the nnsk_key_ans packet using the NKSK of the N1
node and verify the HMAC.

• On the N1 node, update the entry for node N_ID2 in the ses_keys file based on the data
from the received frame. The fields of the entry should have the following values:

N_ID—should be the same as field N_ID2 from the received frame;
NNSK and IV = NNSK gathered from the nnsk_key_ans packet;
NNSKsign = NNSKsign gathered from the nnsk_key_ans packet;
TOPIC3—should remain unchanged;
TOPIC4 = empty;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using NK key of the N1
node.

(4) On N2 node—acquire keys: NNSK and NNSKsign and update ses_key file. Conduct the
following:

• On the N2 node, decrypt the data from the nnsk_not_req packet using the NKSK of the N2
node and verify the HMAC.

• On the N2 node, create the entry for node N_ID1 in ses_keys file based on the data from
the received frame. The fields of the entry should have the following values:

N_ID–N_ID gathered from the nnsk_not_req packet;
NNSK and IV = NNSK gathered from the nnsk_not_req packet;
NNSKsign = NNSKsign gathered from the nnsk_not_req packet;
TOPIC—10-bytes string generated by the the N2 node;
TOPIC4 = TOPIC3 gathered from the nnsk_not_req packet;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key of the
N2 node.

• Publish response to notification about the new session key to KS node (nnsk_not_ans packet
showed in Figure 26) using topic TOPIC1 of the KS node. The fields: N_ID2 and TOPIC4
are encrypted using the NKSK of the N_ID2 node; the HMAC is determined for all fields of
the packet using the NKSKsign of N_ID2 node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC4 – Topic subscribed by destined node
HMAC – Digital signature of the frame

code
"156" N_ID2

(2) (4)
area to encrypt

TOPIC4
(10)

pad
(2)

HMAC
(32)

nnsk_not_ans

N_ID1
(4)

Figure 26. The response to frame of notification about the new session key.

(5) Update gen_keys file. Conduct the following:

• On the KS node, decrypt the data from the nnsk_not_ans packet using the NKSK from the
description of the N_ID2 node and verify the HMAC.

• On the KS node, update the description of the session key requested by the N_ID1 node in
the gen_keys file. The fields of the description should have the following values:

N_ID1—should be the same as field N_ID1 from the received frame;
N_ID2—should be the same as field N_ID2 from the received frame;

Figure 26. The response to frame of notification about the new session key.

(5) Update gen_keys file. Conduct the following:

• On the KS node, decrypt the data from the nnsk_not_ans packet using the NKSK from the
description of the N_ID2 node and verify the HMAC.

• On the KS node, update the description of the session key requested by the N_ID1 node in
the gen_keys file. The fields of the description should have the following values:

N_ID1—should be the same as field N_ID1 from the received frame;
N_ID2—should be the same as field N_ID2 from the received frame;

Sensors 2020, 20, 5012 24 of 31

NNSK and IV—should remain unchanged;
NNSKsign—should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from nnsk_not_ans packet;
HMAC = HMAC determined for all fields of the entry using NKsign key of the KS node;
The fields N_ID2, NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key
of the KS node.

• Publish a session key confirmation request to the N1 node (nnsk_conf_req packet showed
in Figure 27) using topic TOPIC2 of the N1 node. The fields: N_ID1, N_ID2, and TOPIC4
are encrypted using the NKSK of N_ID1 node; the HMAC is determined for all fields of the
packet using the NKSKsign of N_ID1 node.

Sensors 2020, 20, x FOR PEER REVIEW 23 of 30

NNSK and IV—should remain unchanged;
NNSKsign—should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from nnsk_not_ans packet;
HMAC = HMAC determined for all fields of the entry using NKsign key of the KS node;
The fields N_ID2, NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key
of the KS node.

• Publish a session key confirmation request to the N1 node (nnsk_conf_req packet showed
in Figure 27) using topic TOPIC2 of the N1 node. The fields: N_ID1, N_ID2, and TOPIC4
are encrypted using the NKSK of N_ID1 node; the HMAC is determined for all fields of the
packet using the NKSKsign of N_ID1 node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC4 – Topic subscribed by destined node
HMAC – Digital signature of the frame

code
"157" N_ID2

(2) (4)
area to encrypt

TOPIC4
(10)

pad
(14)

HMAC
(32)

nnsk_conf_req

N_ID1
(4)

Figure 27. The frame of session key confirmation request.

(6) Update ses_key file. Conduct the following:

• On the N1 node, decrypt the data from the nnsk_conf_req packet using the NKSK of the N1
node and verify the HMAC.

• On the N1 node, update the entry for node N_ID2 in the ses_keys file based on the data
from the received frame. The fields of the entry should have the following values:

N_ID—should be the same as field N_ID2 from the received frame;
NNSK and IV—should remain unchanged;
NNSKsign should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from the nnsk_conf_req packet;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using NK key of the N1
node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
HMAC – Digital signature of the frame

code
"158" N_ID2

(2) (4)
area to encrypt

pad
(12)

HMAC
(32)

nnsk_conf_ans

N_ID1
(4)

Figure 28. The response to the frame of session key confirmation request.

• Publish a response to session key confirmation request to SK node (nnsk_conf_ans packet
showed in Figure 28) using topic TOPIC1 of the KS node. The field N_ID2 is encrypted
using the NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using
the NKSKsign of the N_ID1 node.

(7) Delete NNSK data from gen_keys file. Conduct the following:

• On the KS node, decrypt the data from the nnsk_conf_ans packet using the NKSK from the
description of the N_ID1 node and verify the HMAC;

• Delete the session key entry for the N_ID1 and N_ID2 node pair from the gen_keys file.

Figure 27. The frame of session key confirmation request.

(6) Update ses_key file. Conduct the following:

• On the N1 node, decrypt the data from the nnsk_conf_req packet using the NKSK of the N1
node and verify the HMAC.

• On the N1 node, update the entry for node N_ID2 in the ses_keys file based on the data
from the received frame. The fields of the entry should have the following values:

N_ID—should be the same as field N_ID2 from the received frame;
NNSK and IV—should remain unchanged;
NNSKsign should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from the nnsk_conf_req packet;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using NK key of the
N1 node.

• Publish a response to session key confirmation request to SK node (nnsk_conf_ans packet
showed in Figure 28) using topic TOPIC1 of the KS node. The field N_ID2 is encrypted using
the NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using the
NKSKsign of the N_ID1 node.

Sensors 2020, 20, x FOR PEER REVIEW 23 of 30

NNSK and IV—should remain unchanged;
NNSKsign—should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from nnsk_not_ans packet;
HMAC = HMAC determined for all fields of the entry using NKsign key of the KS node;
The fields N_ID2, NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using the NK key
of the KS node.

• Publish a session key confirmation request to the N1 node (nnsk_conf_req packet showed
in Figure 27) using topic TOPIC2 of the N1 node. The fields: N_ID1, N_ID2, and TOPIC4
are encrypted using the NKSK of N_ID1 node; the HMAC is determined for all fields of the
packet using the NKSKsign of N_ID1 node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
TOPIC4 – Topic subscribed by destined node
HMAC – Digital signature of the frame

code
"157" N_ID2

(2) (4)
area to encrypt

TOPIC4
(10)

pad
(14)

HMAC
(32)

nnsk_conf_req

N_ID1
(4)

Figure 27. The frame of session key confirmation request.

(6) Update ses_key file. Conduct the following:

• On the N1 node, decrypt the data from the nnsk_conf_req packet using the NKSK of the N1
node and verify the HMAC.

• On the N1 node, update the entry for node N_ID2 in the ses_keys file based on the data
from the received frame. The fields of the entry should have the following values:

N_ID—should be the same as field N_ID2 from the received frame;
NNSK and IV—should remain unchanged;
NNSKsign should remain unchanged;
TOPIC3—should remain unchanged;
TOPIC4 = TOPIC4 gathered from the nnsk_conf_req packet;
HMAC = HMAC determined for all fields of the entry using the NKsign key;
The fields NNSK, NNSKsign, TOPIC3, and TOPIC4 are encrypted using NK key of the N1
node.

N_ID1 – ID of requesting N node
N_ID2 – ID of destined N node
HMAC – Digital signature of the frame

code
"158" N_ID2

(2) (4)
area to encrypt

pad
(12)

HMAC
(32)

nnsk_conf_ans

N_ID1
(4)

Figure 28. The response to the frame of session key confirmation request.

• Publish a response to session key confirmation request to SK node (nnsk_conf_ans packet
showed in Figure 28) using topic TOPIC1 of the KS node. The field N_ID2 is encrypted
using the NKSK of N_ID1 node, the HMAC is determined for all fields of the packet using
the NKSKsign of the N_ID1 node.

(7) Delete NNSK data from gen_keys file. Conduct the following:

• On the KS node, decrypt the data from the nnsk_conf_ans packet using the NKSK from the
description of the N_ID1 node and verify the HMAC;

• Delete the session key entry for the N_ID1 and N_ID2 node pair from the gen_keys file.

Figure 28. The response to the frame of session key confirmation request.

(7) Delete NNSK data from gen_keys file. Conduct the following:

Sensors 2020, 20, 5012 25 of 31

• On the KS node, decrypt the data from the nnsk_conf_ans packet using the NKSK from the
description of the N_ID1 node and verify the HMAC;

• Delete the session key entry for the N_ID1 and N_ID2 node pair from the gen_keys file.

The sequence diagram of the data exchange in the MQTT service for the procedure of generating
the session keys for N1 and N2 nodes is shown in the Figure 29.

Sensors 2020, 20, x FOR PEER REVIEW 24 of 30

The sequence diagram of the data exchange in the MQTT service for the procedure of generating
the session keys for N1 and N2 nodes is shown in the Figure 29.

N2 node

(4) Acquire keys:
 NNSK and NNSKsign
 update ses_keys file

KS node

(2) Generate keys: NNSK
 and , NNSKsign, and
 update gen_keys file

(5) Update
 gen_keys file

(7) delete NNSK data
 from gen_keys file

N1 node

(3) Acquire keys:
 NNSK and NNSKsign,
 update ses_key file

(1) Generate session
 key request

(6) Update ses_key file

Broker Broker
(A) sub TOPIC0
(B) sub TOPIC1 KS init

(C) sub TOPIC2[N1] (D) sub TOPIC2[N2]

(E) pub TOPIC1 nnsk_key_req

(F) pub TOPIC2[N1] nnsk_key_ans
(G) pub TOPIC2[N2] nnsk_adv_req

(H) pub TOPIC1 nksk_adv_ans

(I) sub TOPIC3[N2,N1]
(J) pub TOPIC2[N1] nnsk_conf_req

(K) pub TOPIC1 nnsk_conf_ans

(L) sub TOPIC3[N1,N2]
Generating session keys for N1 and N2

N1 registration N2 registration

Figure 29. The sequence diagram of the data exchange in the MQTT service for the session key
generation procedure.

4.8. Procedure for Secure Data Exchange between Nodes

The data exchange protocol between the N1 and N2 nodes for which session keys were
generated depends on how the two nodes cooperate and is established outside the key
generation/renewal system. This topic is not the content of the study. For this reason, to demonstrate
the operation of the KGR system, a simple transmission of a 12-byte character string from node N1
to node N2 will be shown as well as sending a response frame. The way the N1 node and the N2 node
work together during this experiment is shown in Figure 30. The sequence diagram for the procedure
is shown in Figure 31.

KS AC

N1 N2
credentials

Nk

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

Figure 30. The way the N1 node and the N2 node work together during the data exchanging.

N2 nodeN1 node

(1) Generate data
 packet

node_data_req

node_data_ans
(2) Acquire data

Figure 31. The sequence diagram for the procedure of exchanging data between nodes.

Figure 29. The sequence diagram of the data exchange in the MQTT service for the session key
generation procedure.

4.8. Procedure for Secure Data Exchange between Nodes

The data exchange protocol between the N1 and N2 nodes for which session keys were generated
depends on how the two nodes cooperate and is established outside the key generation/renewal system.
This topic is not the content of the study. For this reason, to demonstrate the operation of the KGR
system, a simple transmission of a 12-byte character string from node N1 to node N2 will be shown as
well as sending a response frame. The way the N1 node and the N2 node work together during this
experiment is shown in Figure 30. The sequence diagram for the procedure is shown in Figure 31.

Sensors 2020, 20, x FOR PEER REVIEW 24 of 30

The sequence diagram of the data exchange in the MQTT service for the procedure of generating
the session keys for N1 and N2 nodes is shown in the Figure 29.

N2 node

(4) Acquire keys:
 NNSK and NNSKsign
 update ses_keys file

KS node

(2) Generate keys: NNSK
 and , NNSKsign, and
 update gen_keys file

(5) Update
 gen_keys file

(7) delete NNSK data
 from gen_keys file

N1 node

(3) Acquire keys:
 NNSK and NNSKsign,
 update ses_key file

(1) Generate session
 key request

(6) Update ses_key file

Broker Broker
(A) sub TOPIC0
(B) sub TOPIC1 KS init

(C) sub TOPIC2[N1] (D) sub TOPIC2[N2]

(E) pub TOPIC1 nnsk_key_req

(F) pub TOPIC2[N1] nnsk_key_ans
(G) pub TOPIC2[N2] nnsk_adv_req

(H) pub TOPIC1 nksk_adv_ans

(I) sub TOPIC3[N2,N1]
(J) pub TOPIC2[N1] nnsk_conf_req

(K) pub TOPIC1 nnsk_conf_ans

(L) sub TOPIC3[N1,N2]
Generating session keys for N1 and N2

N1 registration N2 registration

Figure 29. The sequence diagram of the data exchange in the MQTT service for the session key
generation procedure.

4.8. Procedure for Secure Data Exchange between Nodes

The data exchange protocol between the N1 and N2 nodes for which session keys were
generated depends on how the two nodes cooperate and is established outside the key
generation/renewal system. This topic is not the content of the study. For this reason, to demonstrate
the operation of the KGR system, a simple transmission of a 12-byte character string from node N1
to node N2 will be shown as well as sending a response frame. The way the N1 node and the N2 node
work together during this experiment is shown in Figure 30. The sequence diagram for the procedure
is shown in Figure 31.

KS AC

N1 N2
credentials

Nk

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

Figure 30. The way the N1 node and the N2 node work together during the data exchanging.

N2 nodeN1 node

(1) Generate data
 packet

node_data_req

node_data_ans
(2) Acquire data

Figure 31. The sequence diagram for the procedure of exchanging data between nodes.

Figure 30. The way the N1 node and the N2 node work together during the data exchanging.

Sensors 2020, 20, 5012 26 of 31

Sensors 2020, 20, x FOR PEER REVIEW 24 of 30

The sequence diagram of the data exchange in the MQTT service for the procedure of generating
the session keys for N1 and N2 nodes is shown in the Figure 29.

N2 node

(4) Acquire keys:
 NNSK and NNSKsign
 update ses_keys file

KS node

(2) Generate keys: NNSK
 and , NNSKsign, and
 update gen_keys file

(5) Update
 gen_keys file

(7) delete NNSK data
 from gen_keys file

N1 node

(3) Acquire keys:
 NNSK and NNSKsign,
 update ses_key file

(1) Generate session
 key request

(6) Update ses_key file

Broker Broker
(A) sub TOPIC0
(B) sub TOPIC1 KS init

(C) sub TOPIC2[N1] (D) sub TOPIC2[N2]

(E) pub TOPIC1 nnsk_key_req

(F) pub TOPIC2[N1] nnsk_key_ans
(G) pub TOPIC2[N2] nnsk_adv_req

(H) pub TOPIC1 nksk_adv_ans

(I) sub TOPIC3[N2,N1]
(J) pub TOPIC2[N1] nnsk_conf_req

(K) pub TOPIC1 nnsk_conf_ans

(L) sub TOPIC3[N1,N2]
Generating session keys for N1 and N2

N1 registration N2 registration

Figure 29. The sequence diagram of the data exchange in the MQTT service for the session key
generation procedure.

4.8. Procedure for Secure Data Exchange between Nodes

The data exchange protocol between the N1 and N2 nodes for which session keys were
generated depends on how the two nodes cooperate and is established outside the key
generation/renewal system. This topic is not the content of the study. For this reason, to demonstrate
the operation of the KGR system, a simple transmission of a 12-byte character string from node N1
to node N2 will be shown as well as sending a response frame. The way the N1 node and the N2 node
work together during this experiment is shown in Figure 30. The sequence diagram for the procedure
is shown in Figure 31.

KS AC

N1 N2
credentials

Nk

Link for the KS node
management

Link for N node
preparation procedure

Link for normal work
of N node

route for N node
credentials

Figure 30. The way the N1 node and the N2 node work together during the data exchanging.

N2 nodeN1 node

(1) Generate data
 packet

node_data_req

node_data_ans
(2) Acquire data

Figure 31. The sequence diagram for the procedure of exchanging data between nodes. Figure 31. The sequence diagram for the procedure of exchanging data between nodes.

Detailed descriptions of the most important steps of the procedure (in Figure 31, the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:

(1) Generate data packet. Conduct the following:

• Prepare the node_data_req packet (Figure 32) containing the following data: N_ID1 (ID of
sending node), N_ID2 (ID od destination node), and DATA. The N_ID2 and DATA fields of
the packet are encrypted using the NKSK session key common for N_ID1 and N_ID2 nodes;
the HMAC is determined for all fields of the packet using also common NNSKsign;

Sensors 2020, 20, x FOR PEER REVIEW 25 of 30

Detailed descriptions of the most important steps of the procedure (in Figure 31. , the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:
(1) Generate data packet. Conduct the following:

• Prepare the node_data_req packet (Figure 32) containing the following data: N_ID1 (ID of
sending node), N_ID2 (ID od destination node), and DATA. The N_ID2 and DATA fields
of the packet are encrypted using the NKSK session key common for N_ID1 and N_ID2
nodes; the HMAC is determined for all fields of the packet using also common NNSKsign;

N_ID1 – ID of the sending node
N_ID2 – ID of destined node
DATA – frame message
HMAC – Digital signature of the frame

code
"159" N_ID2

(2) (4)
HMAC

(32)

node_data_req

N_ID1
(4)

DATA
(12)

area to encrypt

Figure 32. The data frame.

• Publish a node_data_req packet using the topic TOPIC3 subscribed by the N_ID2 node for
exchange data session with N_ID1 node.

(2) Acquire data. Conduct the following:

• On the N2 node, decrypt the data from the node_data_req packet using the NNSK session
key for a pair of nodes N1 and N2 and verify the HMAC.

• Extract the data from the DATA field.
• Publish a response to the data packet frame to the N_ID1 node (node_data_ans packet

showed in Figure 33) using topic TOPIC3 subscribed by the N_ID1 node for exchange data
session with the N_ID2 node. The field N_ID2 is encrypted using the NNSK session key for
a pair of nodes N1 and N2, the HMAC is determined for all fields of the packet using
common NKSKsign.

N_ID2 – ID of the response sending node
N_ID1 – ID of the node that sent the message
HMAC – Digital signature of the frame

code
"160" N_ID2

(2) (4)
area to encrypt

pad
(12)

HMAC
(32)

node_data_ans

N_ID1
(4)

Figure 33. Response to the data frame.

The sequence diagram of the data exchange in the MQTT service for the procedure of sending
data from N1 node to N2 node is shown in the Figure 34.

N2 node

(2) Acquire data

BrokerN1 node

(1) Generate data packet

(C) pub TOPIC3[N2,N1] node_data

(D) pub TOPIC3[N1,N2] node_data_ans

(B) sub TOPIC3[N2,N1](A) sub TOPIC3[N1,N2]

Data exchange

Generating session
keys for N1 and N2

Figure 34. The sequence diagram of the data exchange in the MQTT service for the procedure of
sending data from N1 node to N2 node.

Figure 32. The data frame.

• Publish a node_data_req packet using the topic TOPIC3 subscribed by the N_ID2 node for
exchange data session with N_ID1 node.

(2) Acquire data. Conduct the following:

• On the N2 node, decrypt the data from the node_data_req packet using the NNSK session
key for a pair of nodes N1 and N2 and verify the HMAC.

• Extract the data from the DATA field.
• Publish a response to the data packet frame to the N_ID1 node (node_data_ans packet

showed in Figure 33) using topic TOPIC3 subscribed by the N_ID1 node for exchange data
session with the N_ID2 node. The field N_ID2 is encrypted using the NNSK session key
for a pair of nodes N1 and N2, the HMAC is determined for all fields of the packet using
common NKSKsign.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 30

Detailed descriptions of the most important steps of the procedure (in Figure 31. , the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:
(1) Generate data packet. Conduct the following:

• Prepare the node_data_req packet (Figure 32) containing the following data: N_ID1 (ID of
sending node), N_ID2 (ID od destination node), and DATA. The N_ID2 and DATA fields
of the packet are encrypted using the NKSK session key common for N_ID1 and N_ID2
nodes; the HMAC is determined for all fields of the packet using also common NNSKsign;

N_ID1 – ID of the sending node
N_ID2 – ID of destined node
DATA – frame message
HMAC – Digital signature of the frame

code
"159" N_ID2

(2) (4)
HMAC

(32)

node_data_req

N_ID1
(4)

DATA
(12)

area to encrypt

Figure 32. The data frame.

• Publish a node_data_req packet using the topic TOPIC3 subscribed by the N_ID2 node for
exchange data session with N_ID1 node.

(2) Acquire data. Conduct the following:

• On the N2 node, decrypt the data from the node_data_req packet using the NNSK session
key for a pair of nodes N1 and N2 and verify the HMAC.

• Extract the data from the DATA field.
• Publish a response to the data packet frame to the N_ID1 node (node_data_ans packet

showed in Figure 33) using topic TOPIC3 subscribed by the N_ID1 node for exchange data
session with the N_ID2 node. The field N_ID2 is encrypted using the NNSK session key for
a pair of nodes N1 and N2, the HMAC is determined for all fields of the packet using
common NKSKsign.

N_ID2 – ID of the response sending node
N_ID1 – ID of the node that sent the message
HMAC – Digital signature of the frame

code
"160" N_ID2

(2) (4)
area to encrypt

pad
(12)

HMAC
(32)

node_data_ans

N_ID1
(4)

Figure 33. Response to the data frame.

The sequence diagram of the data exchange in the MQTT service for the procedure of sending
data from N1 node to N2 node is shown in the Figure 34.

N2 node

(2) Acquire data

BrokerN1 node

(1) Generate data packet

(C) pub TOPIC3[N2,N1] node_data

(D) pub TOPIC3[N1,N2] node_data_ans

(B) sub TOPIC3[N2,N1](A) sub TOPIC3[N1,N2]

Data exchange

Generating session
keys for N1 and N2

Figure 34. The sequence diagram of the data exchange in the MQTT service for the procedure of
sending data from N1 node to N2 node.

Figure 33. Response to the data frame.

Sensors 2020, 20, 5012 27 of 31

The sequence diagram of the data exchange in the MQTT service for the procedure of sending
data from N1 node to N2 node is shown in the Figure 34.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 30

Detailed descriptions of the most important steps of the procedure (in Figure 31. , the numbers
in parentheses (e.g., (2)) preceding the descriptions indicate the numbers of the individual steps) are
as follows:
(1) Generate data packet. Conduct the following:

• Prepare the node_data_req packet (Figure 32) containing the following data: N_ID1 (ID of
sending node), N_ID2 (ID od destination node), and DATA. The N_ID2 and DATA fields
of the packet are encrypted using the NKSK session key common for N_ID1 and N_ID2
nodes; the HMAC is determined for all fields of the packet using also common NNSKsign;

N_ID1 – ID of the sending node
N_ID2 – ID of destined node
DATA – frame message
HMAC – Digital signature of the frame

code
"159" N_ID2

(2) (4)
HMAC

(32)

node_data_req

N_ID1
(4)

DATA
(12)

area to encrypt

Figure 32. The data frame.

• Publish a node_data_req packet using the topic TOPIC3 subscribed by the N_ID2 node for
exchange data session with N_ID1 node.

(2) Acquire data. Conduct the following:

• On the N2 node, decrypt the data from the node_data_req packet using the NNSK session
key for a pair of nodes N1 and N2 and verify the HMAC.

• Extract the data from the DATA field.
• Publish a response to the data packet frame to the N_ID1 node (node_data_ans packet

showed in Figure 33) using topic TOPIC3 subscribed by the N_ID1 node for exchange data
session with the N_ID2 node. The field N_ID2 is encrypted using the NNSK session key for
a pair of nodes N1 and N2, the HMAC is determined for all fields of the packet using
common NKSKsign.

N_ID2 – ID of the response sending node
N_ID1 – ID of the node that sent the message
HMAC – Digital signature of the frame

code
"160" N_ID2

(2) (4)
area to encrypt

pad
(12)

HMAC
(32)

node_data_ans

N_ID1
(4)

Figure 33. Response to the data frame.

The sequence diagram of the data exchange in the MQTT service for the procedure of sending
data from N1 node to N2 node is shown in the Figure 34.

N2 node

(2) Acquire data

BrokerN1 node

(1) Generate data packet

(C) pub TOPIC3[N2,N1] node_data

(D) pub TOPIC3[N1,N2] node_data_ans

(B) sub TOPIC3[N2,N1](A) sub TOPIC3[N1,N2]

Data exchange

Generating session
keys for N1 and N2

Figure 34. The sequence diagram of the data exchange in the MQTT service for the procedure of
sending data from N1 node to N2 node.
Figure 34. The sequence diagram of the data exchange in the MQTT service for the procedure of
sending data from N1 node to N2 node.

4.9. The Procedure for Renewing the Session Keys

Each cryptographic key loses its validity and must be renewed, regardless of how the cryptographic
key was generated, what the key was used for, or how it was stored. Too long using the same key makes
it easier to guess by unauthorized persons. A separate and very important problem is determining the
criterion of validity of the cryptographic key. As a measure of the “consumption” of the key, you can use
the passage of time from the moment the key is generated, the number of data portions (e.g., frames)
secured with the key, or the size of the data (calculated in bytes) secured with the key, etc. The KGR
system does not provide mechanisms for determining the key renewal criterion, and these issues are
not the content of the study. In contrast, the KGR system is ready to renew keys upon request of
N-type nodes.

This procedure is intended to renew invalid symmetric session key for a pair of N-type nodes and
ensure secure transfer of the generated keys to both N nodes. The KS node is responsible for generating
a new session key and distributing it to the nodes concerned. The procedure consists of three stages:

(a) Session key renewal request—includes the process of notifying the other party that the procedure
has been initiated;

(b) Providing a renewed session key to the destination node;
(c) Confirmation of the delivery of the renewed session key to the destination node.

The KS node stores the generated keys during the key distribution process, and after sending
the key to interested parties, all data related to this key are deleted from the resources of the KS node.
From the KGR system point of view, the procedure for renewing the session key is very similar to
the procedure for generating the session key. The only difference is that when generating a new key
in the resources of N1 and N2 nodes, new entries are created in their ses_keys files containing the
key attributes, and in the renewal procedure, the entries already exist but are filled with a new data.
During key renewal, the following fields are modified: NNSK and NNSKsign keys as well as TOPIC3
and TOPIC4 fields.

Because the session key generation procedure is described in detail in the Section 4.7, and due to
the similarity of both procedures, the procedure for renewing the session key will not be described in
detail here.

5. Security Evaluation

Comprehensive security solutions for secure implementation of the Internet of Things should
include preventive, detective, and reactive measures [28]. In the concept of the KGR system attention has
been paid to preventive measures. The goal is to prevent and obstruct a certain group of typical attacks.
This does not mean that the concept completely omits the use of detective and reactive measures.

Sensors 2020, 20, 5012 28 of 31

Because the KGR system is mainly intended for IoT network nodes, which usually use wireless
links to exchange data, the risks specific to such networks were considered in the security analysis.
In most cases, sensor network nodes are unattended and can be an easy target for attack. For this
reason, the following attacks will be considered: malicious sensor node injection (node replication
attack), sensor impersonation (imitation), attacks on the information in transit, DoS attacks, and routing
attacks [28]. The presented solution uses selected mechanisms offered by TPM to counteract these
attacks. These include: securing cryptographic keys through a hierarchy of keys, creating a local
trust structure, using PCR registers to detect attempts of unauthorized modification of data, software
and hardware configuration of the sensor node, cryptographic protection of data stored in sensor
node resources (in SD and NVRAM memory), and determining the value of the HMAC function for
transmitted and stored data to ensure data integrity. The following sections also present what TPM
mechanisms have been used for this purpose.

5.1. Node Replication Attack

The attack involves adding a cloned node to the network. For IoT nodes, this attack is relatively
easy to perform when the node is unsecured. In the case of KGR system nodes, such an attack will
not be possible, because the KS node and N-type nodes are equipped with TPM modules. Each TPM
will use a symmetric SRK key that cannot be deleted or regenerated. This key is at the top of the key
hierarchy, which creates a local trust structure. In this structure, each node has an ANK key, which is
used to secure the cryptographic material stored in the node’s resources and to secure the cryptographic
keys of the node. It has been assumed that the creation of a local trust structure on a node is conditioned
by passing credentials to the new node. The prepared node can only obtain this data in a secure and
controlled area via the AC node. It should be recognized that such an attempt will not be possible
by unauthorized persons. Another way could be to try to obtain an ASK key from a working node.
However, this attempt requires unauthorized interference with the node’s resources. These types of
actions can be detected by the mechanism offered by the TPM module using its Platform Configuration
Registers (PCR). If such actions are detected, then the node’s software may take various actions, e.g.,
turning off the device, deleting sensitive data, informing other nodes about such an incident, as well as
physical destruction of the node. These types of activities are not the content of this study.

5.2. Sensor Impersonation

Impersonation of the sensor is very difficult to perform. Before starting normal operation, its node
identifier (N_ID) and special tag (NTAG) are set for each node. These node credentials are stored in
the node’s TPM resources and protected using TPM mechanisms. All these parameters are determined
during the node preparation procedure and used during the domain registration procedure. The NTAG
tag is of utmost importance. This tag is never passed in explicit form. Determining the value of this
tag requires knowledge of the node identifier and other fields known only to the KS node.

5.3. Attack on Information in Transit

Data sent over wireless links are particularly susceptible to eavesdropping, modification, injection,
interruption, and traffic analysis. The concept of the KGR system provides the use of authentication
techniques and confidentiality and integrity checking of transmitted data. Each portion of data
transferred will be supplemented with HMAC, which will use keys known only to individual pairs of
nodes that exchange data. An additional safeguard, which is provided in the concept, is the generation
of individual strings for topics used in the MQTT service. The content of each topic will also be known
only for a pair of nodes that exchange data via the MQTT service. The distribution of these topics will
take place during the secure distribution of cryptographic keys between nodes.

Sensors 2020, 20, 5012 29 of 31

5.4. Denial of Service

DoS attack at the physical level and in the upper layers is beyond the scope of protection offered
by mechanisms of the KGR system. To increase the system’s resistance to these types of attacks,
you should use all known methods of securing your network against such attacks.

5.5. Routing Attacks

Many attacks choose the WSN routing protocol as their target. Almost all such attacks, such as
Selective Forwarding, Sybil Attack, Wormhole Attack, Sinkhole Attack, or False Routing Information,
require the placement of a malicious node in the network or manipulation of an existing node.
The possibilities of performing such attacks in the KGR system are very limited. The mechanisms
described in Sections 5.1 and 5.2 counteract this.

5.6. Botnet Activities

Botnets are a significant threat to the IoT network. Botnets are designed to spread infection to
misconfigured devices and then attack the target node after receiving the appropriate command from
the person controlling the bot. An example of such a bot is Mirai malware [29]. Solutions proposed in
the concept of the KGR system ensure resistance to the injection of bots by protecting its resources
using the PCR registers of the TPM module. These issues are not considered in the study.

6. Implementation

The presented concept has not yet been fully verified. However, attempts were made to examine
a very simple version of the cryptographic key generation system that met the selected requirements
described at the beginning of Section 3.1. The design and demonstrator of this version were described
in [30]. The prepared demonstrator included three N-type nodes (N1, N2, and N3), a KS node, and an
MQTT broker node (AC node not implemented). All nodes were implemented using the Raspberry
Pi 3 Model B board. Nodes N1, N2, and N3 and the KS node were additionally equipped with
a LetsTrust TPM module containing the Infineon Optiga ™ SLB 9670 TPM 2.0 chip and 32GB SD
memory (Figure 35). OASIS MQTT Version 3.1.1 was used to support the MQTT protocol. An Ethernet
interface was used for data exchange. The structure of the demonstrator is shown in the Figure 36.
The demonstrator software was prepared with the use of Python and the IBM TSS 1470 library.

Sensors 2020, 20, x FOR PEER REVIEW 28 of 30

5.6. Botnet Activities

Botnets are a significant threat to the IoT network. Botnets are designed to spread infection to
misconfigured devices and then attack the target node after receiving the appropriate command from
the person controlling the bot. An example of such a bot is Mirai malware [29]. Solutions proposed
in the concept of the KGR system ensure resistance to the injection of bots by protecting its resources
using the PCR registers of the TPM module. These issues are not considered in the study.

6. Implementation

The presented concept has not yet been fully verified. However, attempts were made to examine
a very simple version of the cryptographic key generation system that met the selected requirements
described at the beginning of Section 0. The design and demonstrator of this version were described
in [30]. The prepared demonstrator included three N-type nodes (N1, N2, and N3), a KS node, and
an MQTT broker node (AC node not implemented). All nodes were implemented using the
Raspberry Pi 3 Model B board. Nodes N1, N2, and N3 and the KS node were additionally equipped
with a LetsTrust TPM module containing the Infineon Optiga ™ SLB 9670 TPM 2.0 chip and 32GB
SD memory (Figure 35). OASIS MQTT Version 3.1.1 was used to support the MQTT protocol. An
Ethernet interface was used for data exchange. The structure of the demonstrator is shown in the
Figure 36. The demonstrator software was prepared with the use of Python and the IBM TSS 1470
library.

Figure 35. Raspberry Pi 3B+ with LetsTrust TPM v.2.0.

Raspberry Pi

TPM

Eth

KS

Raspberry Pi

TPM

Eth

N2

Raspberry Pi

TPM

Eth

N3

Raspberry Pi

TPM

Eth

N1

Et
he

rn
et

Raspberry PiEth

Broker

Figure 36. Structure of the simplified KGR system demonstrator.

The conclusions of the experiments were the basis for developing the presented concept and
specifying the requirements for the system, which in addition to generating cryptographic keys
should give the opportunity to renew the keys. Particular attention was paid to refining secure data
exchange in all phases of the system life cycle.

Figure 35. Raspberry Pi 3B+ with LetsTrust TPM v.2.0.

The conclusions of the experiments were the basis for developing the presented concept and
specifying the requirements for the system, which in addition to generating cryptographic keys should
give the opportunity to renew the keys. Particular attention was paid to refining secure data exchange
in all phases of the system life cycle.

Sensors 2020, 20, 5012 30 of 31

Sensors 2020, 20, x FOR PEER REVIEW 28 of 30

5.6. Botnet Activities

Botnets are a significant threat to the IoT network. Botnets are designed to spread infection to
misconfigured devices and then attack the target node after receiving the appropriate command from
the person controlling the bot. An example of such a bot is Mirai malware [29]. Solutions proposed
in the concept of the KGR system ensure resistance to the injection of bots by protecting its resources
using the PCR registers of the TPM module. These issues are not considered in the study.

6. Implementation

The presented concept has not yet been fully verified. However, attempts were made to examine
a very simple version of the cryptographic key generation system that met the selected requirements
described at the beginning of Section 0. The design and demonstrator of this version were described
in [30]. The prepared demonstrator included three N-type nodes (N1, N2, and N3), a KS node, and
an MQTT broker node (AC node not implemented). All nodes were implemented using the
Raspberry Pi 3 Model B board. Nodes N1, N2, and N3 and the KS node were additionally equipped
with a LetsTrust TPM module containing the Infineon Optiga ™ SLB 9670 TPM 2.0 chip and 32GB
SD memory (Figure 35). OASIS MQTT Version 3.1.1 was used to support the MQTT protocol. An
Ethernet interface was used for data exchange. The structure of the demonstrator is shown in the
Figure 36. The demonstrator software was prepared with the use of Python and the IBM TSS 1470
library.

Figure 35. Raspberry Pi 3B+ with LetsTrust TPM v.2.0.

Raspberry Pi

TPM

Eth

KS

Raspberry Pi

TPM

Eth

N2

Raspberry Pi

TPM

Eth

N3

Raspberry Pi

TPM

Eth

N1

Et
he

rn
et

Raspberry PiEth

Broker

Figure 36. Structure of the simplified KGR system demonstrator.

The conclusions of the experiments were the basis for developing the presented concept and
specifying the requirements for the system, which in addition to generating cryptographic keys
should give the opportunity to renew the keys. Particular attention was paid to refining secure data
exchange in all phases of the system life cycle.

Figure 36. Structure of the simplified KGR system demonstrator.

7. Future Work

Future work will be focused on the implementation of the presented system and its testing.
I predict that in the first stage of testing, the correctness of the solutions presented in the concept will
be verified, and in the second stage, penetration tests for the system and testing of system resistance to
various attacks will be performed. Further research stages will include the use of the KGR system for
the secure exchange of data between secure domains of sensor nodes [7,8] and the extension of N-node
preparation procedures for the case of hardware TPM v2.0, which implements all the features defined
in the specification [25].

Funding: This research received no external funding. The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

Acknowledgments: This work was supported by the GBU 2020 WCY ITC university project. The presented study
is the result of the author’s R&D activity in IST-176 Research Task Group on Federated Interoperability of Military
C2 and IoT Systems.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Diffie, W.; Hellman, M.E. New Directions in Cryptography. IEEE Trans. Inf. Theory 1976, 22, 644–654. [CrossRef]
2. Will, A.; Challener, D.; Goldman, K. History of the TPM. In A Practical Guide to TPM 2.0; Apress Media:

Berkeley, CA, USA, 2015.
3. Barker, E.; Barker, W.; Burr, W.; Polk, W.; Smid, M. Recommendation for Key Management—Part 1: General

(Revised). Natl. Inst. Stand. Technol. 2007. [CrossRef]
4. Kodali, R.K.; Chougule, S.; Agarwal, A. Key management technique for heterogeneous wireless sensor

networks. In IEEE 2013 Tencon—Spring; IEEE: Piscataway, NJ, USA, 2013; pp. 183–187.
5. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT World: Present and

Future Challenges. IEEE Internet Things J. 2018, 5, 2483–2495. [CrossRef]
6. Keoh, S.L.; Kumar, S.S.; Tschofenig, H. Securing the Internet of Things: A standardization perspective.

IEEE Internet Things J. 2014, 1, 265–275. [CrossRef]
7. Furtak, J.; Zieliński, Z.; Chudzikiewicz, J. Procedures for sensor nodes operation in the secured domain.

Concurr. Comput. Pract. Exp. 2019, 32, e5183. [CrossRef]
8. Furtak, J.; Zieliński, Z.; Chudzikiewicz, J. A Framework for Constructing a Secure Domain of Sensor Nodes.

Sensors 2019, 19, 2797. [CrossRef] [PubMed]
9. Johnsen, F.T.; Zieliński, Z.; Wrona, K.; Suri, N.; Fuchs, C.; Pradhan, M.; Furtak, J.; Vasilache, B.; Pellegrini, V.;

Dyk, M.; et al. Application of IoT in Military Operations in a Smart City. In 2018 International Conference
on Military Communications and Information Systems (ICMCIS); IEEE: Piscataway, NJ, USA, 2018; pp. 163–169.
[CrossRef]

10. Suri, N.; Zieliński, Z.; Tortonesi, M.; Fuchs, C.; Pradhan, M.; Wrona, K.; Furtak, J.; Vasilache, B.; Street, M.;
Pellegrini, V.; et al. Exploiting smart city IoT for disaster recovery operations. In IEEE 4th World Forum on
Internet of Things (WF-IoT); IEEE: Piscataway, NJ, USA, 2018; pp. 458–463. [CrossRef]

http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.6028/NIST.SP.800-57p1r2007
http://dx.doi.org/10.1109/JIOT.2017.2767291
http://dx.doi.org/10.1109/JIOT.2014.2323395
http://dx.doi.org/10.1002/cpe.5183
http://dx.doi.org/10.3390/s19122797
http://www.ncbi.nlm.nih.gov/pubmed/31234463
http://dx.doi.org/10.1109/ICMCIS.2018.8398690
http://dx.doi.org/10.1109/WF-IoT.2018.8355117

Sensors 2020, 20, 5012 31 of 31

11. Dammak, M.; Senouci, S.M.; Messous, M.A.; Elhdhili, M.H.; Gransart, C. Decentralized Lightweight Group
Key Management for Dynamic Access Control in IoT Environments. IEEE Trans. Netw. Serv. Manag. 2020,
1–15. [CrossRef]

12. Tan, H.; Chung, I. A Secure and Efficient Group Key Management Protocol with Cooperative Sensor
Association in WBANs. Sensors 2018, 18, 3930. [CrossRef] [PubMed]

13. Zhu, B.; Susilo, W.; Qin, J.; Guo, F.; Zhao, Z.; Ma, J. A Secure and Efficient Data Sharing and Searching
Scheme in Wireless Sensor Networks. Sensors 2019, 19, 2583. [CrossRef] [PubMed]

14. Park, M.; Park, Y.; Jeong, H.; Seo, S. Key Management for Multiple Multicast Groups in Wireless Networks.
IEEE Trans. Mob. Comput. 2012, 12, 1712–1723. [CrossRef]

15. Zhong, H.; Luo, W.; Cui, J. Multiple multicast group key management for the Internet of People. Concurr.
Comput. Pract. Exp. 2016, 29, e3817. [CrossRef]

16. Ding, W.; Hu, R.; Yan, Z.; Qian, X.; Deng, R.H.; Yang, L.T.; Dong, M. An Extended Framework of
Privacy-Preserving Computation with Flexible Access Control. IEEE Trans. Netw. Serv. Manag. 2020, 17,
918–930. [CrossRef]

17. Mehdizadeh, A.; Hashim, F.; Othman, M. Lightweight decentralized multicast–unicast key management
method in wireless IPv6 networks. J. Netw. Comput. Appl. 2014, 42, 59–69. [CrossRef]

18. Kung, Y.; Hsiao, H. GroupIt: Lightweight Group Key Management for Dynamic IoT Environments.
IEEE Internet Things J. 2018, 5, 5155–5165. [CrossRef]

19. Abdmeziem, M.R.; Tandjaoui, D.; Romdhani, I. A Decentralized Batch-Based Group Key Management
Protocol for Mobile Internet of Things (DBGK). In Proceedings of the IEEE International
Conference on Computer and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK,
26–28 October 2015; pp. 1109–1117. [CrossRef]

20. Abdmeziem, M.R.; Charoy, F. Fault-Tolerant and Scalable Key Management Protocol for IoT-Based Collaborative
Groups. In Security and Privacy in Communication Networks. SecureComm 2017. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering; Lin, X., Ghorbani, A., Ren, K., Zhu, S.,
Zhang, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 239, pp. 320–338. [CrossRef]

21. Cheikhrouhou, O. Secure Group Communication in Wireless Sensor Networks: A survey. J. Netw. Comput.
Appl. 2016, 61, 115–132. [CrossRef]

22. Yao, W.; Han, S.; Li, X. LKH++ Based Group Key Management Scheme for Wireless Sensor Network.
Wirel. Pers. Commun. 2015, 83, 3057–3073. [CrossRef]

23. Tian, Y.; Wang, Z.; Xiong, J.; Ma, J. A Blockchain-Based Secure Key Management Scheme with Trustworthiness
in DWSNs. IEEE Trans. Ind. Inform. 2020, 16, 6193–6202. [CrossRef]

24. Trusted Computing Group. TPM Main Part 1 Design Principles. Specification Version 1.2, Revision 116; Trusted
Computing Group: Beaverton, OR, USA, 2011.

25. Trusted Computing Group. Trusted Platfom Module Library (Part 1–4), Family 2.0, Level 00, Rev. 01.38; Trusted
Computing Group: Beaverton, OR, USA, 2016.

26. Kinney, S. Trusted Platform Module Basics: Using TPM in Embedded Systems; Embedded Technology Series;
Elsevier Inc.: Philadelphia, PA, USA, 2006.

27. Bormann, C.; Ersue, M.; Keranen, A. Terminology for Constrained-Node Networks. Internet Eng. Task Force
2014, 2070-1721.

28. Healy, M.; Newe, T.; Lewis, E. Security for Wireless Sensor Networks: A Review. In 2009 IEEE Sensors
Applications Symposium; IEEE: New Orleans, LA, USA, 2009; pp. 80–85. [CrossRef]

29. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017,
50, 40–44. [CrossRef]

30. Socha, E. Protocol for Renewing Cryptographic Keys Using the MQTT Server. Engineer’s Thesis, Military
University of Technology, Warsaw, Poland, 2020. (In Polish)

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNSM.2020.3002957
http://dx.doi.org/10.3390/s18113930
http://www.ncbi.nlm.nih.gov/pubmed/30441790
http://dx.doi.org/10.3390/s19112583
http://www.ncbi.nlm.nih.gov/pubmed/31174350
http://dx.doi.org/10.1109/TMC.2012.135
http://dx.doi.org/10.1002/cpe.3817
http://dx.doi.org/10.1109/TNSM.2019.2952462
http://dx.doi.org/10.1016/j.jnca.2014.03.013
http://dx.doi.org/10.1109/JIOT.2018.2840321
http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.166
http://dx.doi.org/10.1007/978-3-319-78816-6_22
http://dx.doi.org/10.1016/j.jnca.2015.10.011
http://dx.doi.org/10.1007/s11277-015-2582-0
http://dx.doi.org/10.1109/TII.2020.2965975
http://dx.doi.org/10.1109/SAS.2009.4801782
http://dx.doi.org/10.1109/MC.2017.201
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Concept of the Cryptographic Keys Generating and Renewing (KGR) System
	The Idea of KGR System Operation
	The Method of Data Exchange in the KGR System
	Proposed KGR System for Mobile IoT Network
	Key Exchange Domain (KED) Structure
	The Concept of the Nodes Protection
	Characteristics of the KS Node
	Characteristics of N-Type Nodes
	Characteristics of the AC Node

	Procedures in the Key Exchange Domain
	The Procedure for Starting the Broker Node
	The Procedure for Initiating KS Node
	The Procedure for Preparing the Credentials for N Nodes
	The Procedure for Initiating the N Node
	The Procedure for Registration N Node in KED Domain
	Procedure for Forwarding the List of Authorized Nodes to Cooperation
	The Procedure for Generating Session Keys
	Procedure for Secure Data Exchange between Nodes
	The Procedure for Renewing the Session Keys

	Security Evaluation
	Node Replication Attack
	Sensor Impersonation
	Attack on Information in Transit
	Denial of Service
	Routing Attacks
	Botnet Activities

	Implementation
	Future Work
	References

