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Abstract: In smart interactive environments, such as digital museums or digital exhibition halls, it is
important to accurately understand the user’s intent to ensure successful and natural interaction
with the exhibition. In the context of predicting user intent, gaze estimation technology has been
considered one of the most effective indicators among recently developed interaction techniques
(e.g., face orientation estimation, body tracking, and gesture recognition). Previous gaze estimation
techniques, however, are known to be effective only in a controlled lab environment under normal
lighting conditions. In this study, we propose a novel deep learning-based approach to achieve
a successful gaze estimation under various low-light conditions, which is anticipated to be more
practical for smart interaction scenarios. The proposed approach utilizes a generative adversarial
network (GAN) to enhance users’ eye images captured under low-light conditions, thereby restoring
missing information for gaze estimation. Afterward, the GAN-recovered images are fed into the
convolutional neural network architecture as input data to estimate the direction of the user gaze.
Our experimental results on the modified MPIIGaze dataset demonstrate that the proposed approach
achieves an average performance improvement of 4.53%–8.9% under low and dark light conditions,
which is a promising step toward further research.

Keywords: adversarial network; deep learning; gaze estimation; low-light environment

1. Introduction

Human–computer interaction technologies are becoming increasingly vital for advanced smart
interactive systems. To achieve successful and natural interaction between users and devices,
the technologies to accurately understand user intent has become all the more important. For example,
recent interactive systems attempt to detect user intents expressed in the form of gestures or voice
commands using signals from various sensing devices [1–3]. More immersive and natural ways to
capture user intent include face orientation estimation [4–6], body tracking [7–9], and estimation
of gaze direction [10–21]. For example, the authors of [4–6] proposed to estimate a driver’s face
orientation with color or depth images taken in a specific environment, such as a vehicle, with the aim
of preventing traffic accidents. Attempts have been made to detect a human activity by recognizing
the joints of a human body with several Kinects for an interactive virtual training environment [8].

Gaze estimation is based on the assumption that the object a user is looking at is the focus of
the user’s interest [18]. This technique has been considered one of the most effective indicators with
considerable potential to accurately interpret the user intent. Methods for estimating gaze direction can
be divided into feature-based methods [10–14] and appearance-based methods [15–18]. Feature-based
methods estimate gaze points using local eye features, such as a the center of the pupil and the
cornea, which can be extracted from images of the eye. Therefore, this method generally requires an
expensive hardware configuration to obtain high-resolution images of the eye for robust calibration
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and fine-grained geometry operations. The feature-based methods are divided into three approaches:
3D-model-based, regression-based, and cross-ratio-based approaches. The 3D-model-based approaches
compute the gaze points from a 3D geometric eye model [10–12,22], regression-based approaches
attempt to directly map the gaze points from the local features [13], and cross-ratio-based methods
utilize the cross-ratio property of the projective space [14]. Although feature-based methods achieve
highly accurate gaze estimation in a controlled set-up, the disadvantages of these methods are their
high calibration costs and their requirement for high-resolution images. By contrast, appearance-based
methods use an entire eye image itself as input to map the gaze point from the global image feature
rather than local eye features. These methods do not require calibration and can be used with a low-cost
conventional device such as a webcam; however, their performance is relatively lower than that of
feature-based methods [10]. As an example of appearance-based methods, a Gaussian process-based
method was proposed for gaze point estimation with images of the entire eye [15]. Recent advances in
deep learning techniques, which are able to automatically extract a quality representation from images,
have encouraged researchers to attempt an appearance-based approach with various deep neural
network architectures. For instance, researchers [16,17,23,24] proposed to apply the convolutional
neural network architectures such as VGG-19 [25], RNN [26], and ResNet [27] for gaze estimation
using an image of the eye.

Although various studies concerned with gaze interaction have been reported, the performance
of these methods in smart interactive environments under real-life conditions is still not satisfactory.
Among the various real-life conditions, this study focuses on the effect of variations in the illumination
on the gaze estimation performance. Robust gaze estimation in spaces with low or dark illumination is
particularly important for smart interactive environments, such as a digital museums, galleries, or art
exhibition halls. For example, the environments shown in Figure 1 usually require interactions with
users under low or dark illumination conditions. These visitors would considerably benefit from
robust gaze estimation while interacting with smart environments under challenging conditions.

Figure 1. Example of smart interactive environment.

To address this issue, in this paper we discuss a deep learning-based gaze estimation approach
robust to challenging lighting conditions. Specifically, we propose an approach to improve the
performance of a modern deep learning-based gaze estimation model under low-light conditions.
This is achieved by using generative adversarial networks (GANs) to process an image of the eye during
the inference phase of the system. The GAN-based method enables us to enhance the appearance
of eye images with noise (i.e., low or dark illumination), such that missing information is recovered
automatically. The experimental results on the modified MPIIGaze dataset demonstrated that the
proposed approach achieved an average performance improvement of 4.53%–8.9%.

The main contributions of this paper are as follows. First, we discuss the way in which low
or dark illumination conditions affect the performance of a deep learning-based gaze estimation
method. Second, we present the feasibility of gaze estimation under low-light conditions using the
GAN-based method, which attempts to adaptively enhance the appearance of low-light eye images,
thereby effectively recovering gaze information. Even though GAN-based approaches have been
generally used for image generation, reconstruction, and enhancement, how to utilize them for the
gaze estimation domain is still not clear. Our analysis will provide various insights on the feasibility
of a GAN-based method for gaze estimation in real-life applications. Finally, we conduct various
experiments to determine the effects of adopting GAN on the performance of deep learning-based gaze
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estimation in low-light environments. In particular, we designed various qualitative and quantitative
experiments to answer the following research questions.

1. Can a method based on a deep neural network provide a good estimation of gaze points
under low-light and dark illumination conditions? This question is to determine the extent
to which low and dark lighting conditions affect the performance of a deep learning-based gaze
estimation method. To answer this question, we compared the performance of a conventional
deep learning-based gaze estimation for normal, low, and dark illuminated images.

2. Could the proposed approach improve the performance of gaze estimation under low
illumination conditions? Through this question, we validate the feasibility of the proposed
approach which adopts GAN-based image enhancement in the loop. To this end, we conducted
experiments to compare the performance of gaze estimation for low-light images between the
conventional gaze estimation protocol and the proposed approach.

3. Would a GAN-based adaptive enhancement method be more effective than a simple method
involving manual brightness adjustment? The proposed approach is based on a deep adversarial
technique to enhance the appearance of low-light eye images. However, a simple image
processing method, such as adjusting intensity or gamma values of an image, can be also
considered an alternative way to enhance the appearance of low-light images. To show the
effectiveness of the proposed approach with a generative adversarial network, we compared the
performance of the proposed approach with those of baseline methods.

Finally, we report and discuss the experimental results and present the future research directions.
The remainder of this paper is organized as follows. Section 2 describes related work. In Section 3,

we describe the proposed method and Section 4 discusses the experimental results. Finally, we provide
our conclusions in Section 5.

2. Related Work

In general, image-or vision-based computing and interaction in a low-light environment are
problematic in various ways. For example, object detection and recognition under low-light conditions
is one of the most important challenges in the field of computer vision. We briefly review previous
studies on the enhancement of low-light images and gaze interaction in the real-life environment.

2.1. Image Enhancement

Images captured in a low-light environment tend to be characterized by low contrast, low visibility,
and contain a large amount of high noise. These characteristics usually have the effect of complicating
computer vision tasks such as autonomous driving and object recognition or classification. Attempts to
overcome these problems resulted in the development of methods to brighten the image itself on
the basis of the Retinex theory [28], which explains the color perception properties of the human
vision system. Single-scale Retinex (SSR) achieves an enhanced result using center/surround Retinex,
the general form of which is similar to the Difference of Gaussian (DoG), which can be defined
by Equation (1),

Rssr(x, y) = log(I(x, y))− log(G(x, y) ∗ I(x, y)), (1)

where Rssr is the associated Retinex output, I(x, y) is an image, G(x, y) is a Gaussian function,
and ∗ denotes the convolution operation. Multiscale Retinex (MSR) is considered a weighted sum of
the outputs of several different SSR outputs [29], which is denoted as follows,

Rmsr(x, y) = ∑
i

wiRssr(x, y). (2)

However, the images enlightened by these algorithms often appear unnatural [29]. To compensate
for this problem, the authors of [29] proposed MSR-Net, based on multiscale Retinex, to directly
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learn the end-to-end mapping between dark-light and normal-light images. This study succeeded in
improving the brightness of images by using logarithmic transformation, a convolution operation,
and a color restoration process. The authors of [30] proposed Retinex-Net that decomposes the images
into reflection and illumination and enhances the brightness of the low-light images. Retinex-Net
reconstructs an image with an encoder–decoder network using the adjusted illumination and denoised
reflection. A dataset consisting of pairs of low-and normal-light images used for training networks
was also constructed. Another attempt to improve the illumination of an image led to the proposal of
a global illumination-aware and detail-preserving network (GLADNet) based on an encoder–decoder
architecture [31]. This network first calculates the global illumination estimation for an input image.
Then GLADNet adjusts the illumination under the guidance of the estimation and reconstructs the
details by concatenating the intermediate result with the original input.

In addition to the studies based on the Retinex theory, convolutional neural network (CNN)-based
studies have also been presented. A novel image descriptor using U-Net and a VGG network was
proposed to improve the image retrieval performance under various lighting conditions [32]. To this
end, they constructed a dataset consisting of images of day–night pairs of images. In addition, a fully
convolutional network based on end-to-end training was proposed to enhance the brightness of
low-light images [33]. The authors of [33] also constructed a dataset comprising raw images taken in a
low-light environment to compensate for the lack of large-scale low-light images suitable for training
or testing purposes.

The aforementioned studies commonly required datasets containing pairs of low-light and normal
images. However, it is difficult to capture a large number of these image pairs. Therefore, various studies
have attempted to enhance the brightness of low-light images using a GAN-based approach [34–36].
For example, a method named EnlightenGAN was proposed to enhance the brightness of low-light
images when a set of low-light and normal image pairs is unavailable [36]. EnlightenGAN has the
following procedure. First, the low-light image is inputted to a generator consisting of attention-guided
U-Net [37]. Subsequently, a global and local discriminator architecture is used to distinguish between
real images and images artificially generated from low-light images. Their experimental results showed
EnlightenGAN framework to be effective in the domains of face, building, and natural scene.

2.2. Gaze Estimation in a Real-Life Environment

As the need for smart interaction under real-life conditions increases, gaze estimation under
real-life conditions (e.g., long-distance, mobile, and low-light) has become more important as well.

2.2.1. Long-Distance Set-Up

As shown in Figure 1, advanced smart interactive environments typically require a set-up of
long-distance between users and displays, which makes it comparatively more difficult to accurately
estimate the gaze direction of a user. Efforts to solve this problem resulted in the proposal of a public
dataset consisting of eye images that were captured by a camera 1.0 − 1.5m away from the user in
both indoor and outdoor environments [38,39]. Subsequently, a method was proposed for estimating
the gaze of a user who posed naturally in a laboratory with normal lighting conditions [38]. A set of
motion capture systems, eye tracking glasses, and RGB-D cameras was used to discover the mapping
between the gaze points and the user’s face image. Finally, they estimated the gaze direction using an
image of the face and images of the left and right eye. In [39], a dataset was constructed by capturing
users at various angles and in various settings in an outdoor environment using an AprilTag [40] and
MegaPixel cameras. The AprilTag was used to specify the target the user was required to look at and
MegaPixel cameras were utilized to capture 360-degree images of the user. The constructed data were
fed into a long short-term memory (LSTM) network to obtain the final gaze direction as output.
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2.2.2. Mobile Environment

Conventional gaze interaction studies usually collected gaze data by a set of cameras installed at
a fixed location, such as at the bottom of a monitor [10,16,41], or standing on the floor or mounted on
a wall [38,42]. Recently, attempts were made to collect gaze data by using portable devices, such as
mobile phones and tablets. For example, gaze data were collected in a daily-life environment using a
mobile tablet [43,44]. For data collection, participants of [43,44] were instructed to gaze at the point
displayed on a tablet screen. The researchers of [43] used a CNN to estimate the gaze direction using
the left eye, right eye, facial images, and face grid information. Others [44] cropped the images of
the left and right eyes to extract a set of eye features, such as the histograms of oriented gradients
(HOG) [45]. The extracted features were used to predict the final gaze point by using various regression
algorithms, such as k-nearest neighbor (k-NN), and random forest (RF).

2.2.3. Low-Light Conditions

As mentioned earlier, current smart interactive environment usually interacts with users under
low or dark illumination conditions. However, it is difficult to estimate the user’s gaze direction or
orientation under such a challenging condition. Several studies endeavoring to address this limitation
have been reported. In [17], a laptop webcam was used to construct a dataset in both indoor and
outdoor environments. It was proposed that gray scaling and histogram equalization be applied to
images and a classification model be trained using a set of synthesized eye images by varying the
illumination. The authors generated cropped images of eyes using eye location extracted by facial
landmarks and produced head pose vectors from 3D head rotation values through a data normalization
process. Afterward, the cropped eye images and head pose vectors were inputted into a CNN model
to estimate the final gaze direction. A method to enhance the low performance of gaze estimation
under low illumination conditions with an infrared camera was proposed [41]. The gaze direction
was estimated using the infrared light points reflected in the pupil. In this way, the gaze features
extracted from each camera were fused to estimate the user’s final gaze direction. On the other hand,
the authors of [17,38] tried to apply gray-scale conversion and histogram equalization to address the
gaze estimation problem under various lighting conditions.

In summary, a number of studies have been conducted to overcome these challenging conditions
(i.e., a long-distance set-up, mobile environment, and low-light conditions). In this study, we focus on
addressing the problem of gaze estimation under low-light conditions. Although previous studies
were also concerned with this problem, several aspects thereof have not yet been satisfactorily resolved
and could be seen as limitations: (i) an additional hardware set-up (e.g., infrared LEDs) is required,
(ii) extra training data such as synthesized images are required, and (iii) the number of test images
captured in both low and dark illumination continues to remain limited. To overcome these limitations,
we decided to employ a GAN-based approach, which is well known to reconstruct an image in
the facial, building, and natural scene domain, to an image in the eye and gaze estimation domain.
In particular, we investigated the feasibility of using the GAN-based approach for gaze estimation
under low-light conditions.

3. Proposed Method

The overall gaze estimation process of this study follows the MPIIGaze protocol [17], as shown
in the top of Figure 2. The MPIIGaze protocol consists of the following steps: first, eye images of
the MPIIGaze dataset captured under various lighting conditions are preprocessed by gray-scale
conversion and histogram equalization. As a result of preprocessing, a set of binary images of the eye
is obtained from the raw eye images. Afterward, MPIIGaze is used to train a deep neural network
using the binary images and estimate the user’s gaze direction.
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Figure 2. Overall workflow of the proposed approach.

The proposed protocol extends the original MPIIGaze protocol by adding an enhancement
process to recover the appearance of low-light eye images during the test phase. The overall
workflow of the proposed protocol is shown in the lower panel of Figure 2. Unlike the original
MPIIGaze protocol, the proposed protocol contains an additional enhancement module before the
gray scaling and histogram equalization module. The enhancement module recovers the appearance
of low-and dark-light eye images using a GAN-based framework. During the test phase, given a
low-light eye image, the appearance of the image is recovered by using the GAN-based framework,
following which gaze estimation is conducted. To simulate eye images with low-and dark-light
conditions, we constructed an additional dataset and used this dataset to observe the changes in
the performance of the original MPIIGaze protocol. Additional details on the enhancement module
are presented in Section 3.2. It should be noted that additional set-ups (e.g., hardware calibration,
more training samples, and training parameter optimization) are not required for the training phase.
Finally, we verified the extent to which the proposed approach affects the performance of the
original MPIIGaze protocol on gaze estimation under low-and dark-light conditions by carrying
out various experiments.

3.1. Dataset

In this study, we used the MPIIGaze dataset [17] to evaluate the gaze estimation performance
under various lighting conditions. This dataset contains a total of 213,659 images collected from
15 participants using conventional laptop webcams. For our experiment, the illuminance of the
images in the MPIIGaze dataset was programmatically adjusted to simulate low and dark illumination
conditions. According to the MPIIGaza protocol, 1500 images of left eyes and 1500 images of right eyes
per subject, for a total of 3000 images are randomly sampled. In total, 45,000 images were collected from
15 people. Based on this dataset, we constructed various test sets to evaluate the performance of the
original MPIIGaze pipeline and the proposed approach. The constructed test set includes eye images
with various lighting conditions as shown in Figure 3: (1) The original MPIIGaze test set (Normal),
(2) low and dark illuminated test sets (Lowi, Lowg, and Dark), and (3) low and dark illuminated images
with directional lights (Lowle f t, Lowright, Darkle f t, and Darkright).
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Figure 3. Examples of low and dark illuminated test sets.

The Lowi and Dark test sets were generated by uniformly decreasing the intensity of the Normal
image (i.e., decreasing the intensity value of each pixel in the images by 70 and 110, respectively).
The Lowg test set is an additional type of a low-illuminated image set generated by applying
gamma correction to Normal images. Here, a gamma-corrected output image O can be obtained
by O = I(1/G) × 255, where I is an input image and G is the gamma value. When the gamma value is
set to be greater than 1, the brightness of an image increases accordingly. Similarly, when the value
of gamma is less than 1, the image becomes darker. Figure 4 shows the extent to which gamma
correction at different levels (e.g., 0.1–0.5) affects the appearance of the original image. The closer the
gamma value is to zero, the more the eye becomes unrecognizable. As a result of gamma correction,
we found that the appearance of images with a gamma value of 0.1 and 0.2 is exceptionally dark and
that of images with a gamma value of 0.4 and 0.5 does not differ significantly from the Normal image.
Therefore, we constructed the Lowg test set by correcting the images with a gamma value of 0.3.

Figure 4. Examples of gamma-corrected images.

Finally, we constructed additional test sets to simulate the positional change of the lighting source.
The images in the Lowle f t and Darkle f t (Lowright and Darkright) were simulated as though the lighting
source is positioned to the left (right) of the subject. The Lowle f t and Lowright test sets were generated
by merging the Lowi test sets and binary gradient images that become darker either to the left or
the right, respectively. Similarly, the Darkle f t and Darkright test sets were generated by merging dark
illuminated images and binary gradient images. The merging process is shown in Figure 5. Similar to
the original MPIIGaze protocol, an image preprocessing pipeline consisting of histogram equalization
and gray scaling was also applied to our additional test sets before training and testing the network.
Examples of the binary images of the eye obtained after proceeding through the preprocessing pipeline
are presented in Figure 6. The binary images of the Lowi and Lowg test sets contain a certain amount
of noise, but the eye is still recognizable. However, the eyeball is hardly recognizable in the binary
images in the Dark test set. Finally, the binary images obtained from the low and dark illuminated
images with directional lights (i.e., Lowle f t, Lowright, Darkle f t, and Darkright) commonly contain a large
number of dark holes, which present yet another challenge for estimating the gaze directions.

Figure 5. Generating process of directional light images.
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Figure 6. Binary images of low and dark illuminated test sets.

To implement deep learning-based gaze estimation, we used the preactivation version of the
ResNet architecture, which consists of seven convolutional layers and a single fully connected layer [46].
The preactivation version of ResNet (see Figure 7a) is a variation of the original ResNet (see Figure 7b)
and is known to improve the performance of the original ResNet by placing an activation layer before
the weight layer.

(a) (b)

Figure 7. Comparison of (a) ResNet pre-act architecture and (b) original ResNet architecture.

As mentioned earlier, the input for the network used in this study is a binary image of the
eye, sized of 60 × 36, and processed by the MPIIGaze preprocessing pipeline (i.e., gray scaling and
histogram equalization). This input image was used together with a 3D head pose vector when training
or testing the network. Finally, the output produced by ResNet is a 3D gaze angle vector that includes
the yaw, pitch, and roll values of the gaze angle. We used the cosine angular distance as a loss function
that measures the difference between the ground-truth gaze angle vector and the predicted gaze angle
vector. This loss is referred to as the gaze angular error in the experimental section.

3.2. Enhancing Eye Images with GAN

To obtain usable images of the eye with low and dark illuminations without any additional
hardware set-up and training images, we propose using a GAN to recover near-original images of
the eye from the low and dark illuminated eye images. Our assumption is that the images recovered
by the generative approach would retain more informative data than images captured in low or dark
illumination, and that this would improve the gaze estimation performance. To this end, we exploited
the EnlightenGAN framework with the goal of improving the brightness of a low-light image by
training with normal-light images only (i.e., without requiring pairs of low-light and normal images).
The architecture of the EnlightenGAN framework is shown in Figure 8. Similar to standard GAN-based
architectures, EnlightenGAN has two components: a generator and a discriminator.

The generator of EnlightenGAN serves to perform image generation and enhancement with the
U-Net architecture [37] (see Figure 8a). The generator accepts the low-light image and its corresponding
attention map as its input. The attention map is simply generated based on the intensity of the
illumination of the input image. According to the U-Net architecture, EnlightenGAN first generates
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a set of feature maps in multiple scales. The attention map is resized to fit each feature map and
multiplied with all the intermediate feature maps. Subsequently, element-wise multiplication and
addition operations are conducted to generate the enhanced image. This image is then sent as input to
the discriminator of EnlightenGAN, which consists of both global and local discriminators to process
spatially varying light conditions. The global discriminator discriminates the entire image, whereas the
local discriminator discriminates a set of local and partial information of an image using random
patches cropped from the image. An illustrative example of the discriminator is shown in Figure 8b.

(a)

(b)

Figure 8. Architecture of EnlightenGAN framework: (a) generator and (b) discriminators.

Finally, the loss functions for the generator G and the global discriminator D are defined as
follows [36],

LGlobal
D = Exr∼Preal

[
(DRa(xr, x f )− 1)2

]
+Ex f ∼P f ake

[
DRa(x f , xr)2

]
, (3)

LGlobal
G = Ex f ∼P f ake

[
(DRa(x f , xr)− 1)2

]
+Exr∼Preal

[
DRa(xr, x f )

2
]

, (4)

where DRa is the function of the discriminator, and xr and x f are sampled from the real and fake
distributions. The loss functions for the local discriminator and generator are defined as follows,

LLocal
D = Exr∼Preal−patches

[
(D(xr)− 1)2]+Ex f ∼P f ake−patches

[
D(x f − 0)2

]
, (5)

LLocal
G = Exr∼P f ake−patches

[
(D(x f )− 1)2

]
. (6)

A new loss function LSFP was also introduced to preserve the self-feature of an image after the
enhancement [36], which is defined as follows,

LSFP(IL) = 1
Wi,j Hi,j

∑
Wi,j
x=1 ∑

Hi,j
y=1(φi,j(IL)− φi,j(G(IL)))2, (7)
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where IL is an input low-light image, G(IL) is the enhanced output of the generator, φi,j is a feature
map extracted from the pre-trained VGG-16 model [25], i denotes the ith max pooling, j denotes the
jth convolutional layer after the ith max pooling layer, and W and H are the width and height of the
extracted feature maps, respectively. The final loss of EnlightenGAN is then computed by

Loss = LGlobal
SFP + LLocal

SFP + LGlobal
G + LLocal

G . (8)

An example of an image from the furniture domain enhanced by the EnlightenGAN framework
is shown in Figure 9. As shown in the figure, the low-light image becomes more visually recognizable
after it was brightened by the EnlightenGAN framework. Previous experimental results [36] showed
that the EnglighenGAN framework was applicable to various domains, such as nature, buildings,
and faces. We expected the EnlightenGAN-based approach to be effective in the eye domain because it
was well generalized in various domains, even though the enhancement of images of eyes has never
been tried or validated yet. Therefore, we conducted various experiments to determine whether the
proposed approach with EnlightenGAN would be effective in the eye domain for images captured
under low-light conditions. The experimental results are reported in detail in Section 4.

Figure 9. Example of images in the furniture domain reconstructed by EnlightenGAN.

4. Experiments and Discussion

The experiments were designed to answer the following research questions.
(1) Can a method based on a deep neural network provide a good estimation of gaze points under

low-light and dark illumination conditions? We need to determine the extent to which low and dark
lighting conditions that are commonly found in current interactive environments affect the overall
performance of a deep learning-based gaze estimator. To answer this question, we compared the
performance of the MPIIGaze protocol in terms of its estimation accuracy for normal, low, and dark
illuminated images. As discussed in Section 3.1, the images captured under low/dark-light conditions
tend to have more noise than those captured under normal-light conditions. According to this
analysis, we expect that the performance of a conventional deep learning-based gaze estimation will
be degraded (H1).

(2) Could the proposed approach improve the performance of gaze estimation under low
illumination conditions? We then need to validate the feasibility of the proposed approach,
which adopts GAN-based image enhancement in the loop to process low-light conditions. As described
in Section 3.2, the proposed approach attempts to enhance the low-light eye images with a generative
approach to recover information loss. Therefore, we expect that the proposed approach will perform
better than the original MPIIGaze protocol (H2). Furthermore, we observed that much more
information loss (e.g., noise, dark holes, etc.) happens to dark-illuminated images as illustrated
in Figures 3 and 6. Therefore, we hypothesize that the dark images will benefit more from the proposed
approach than low-light images (H3).

(3) Would a GAN-based adaptive enhancement method be more effective than a simple method
involving manual brightness adjustment? Indeed, the brightness of an image can be easily adjusted
by manually correcting the intensity or gamma values as described earlier. Therefore, one would
imagine that increasing the intensity value would be sufficient to brighten the image and that adopting
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a deep learning-based solution for this purpose would be unnecessarily excessive. To address this
doubt, we demonstrate the difference between the proposed method and various baseline methods
and compare the performance of the proposed approach with those of these baselines. As introduced
in Section 3.1, the test sets contain eye images with various illumination conditions; however, manual
intensity or gamma correction methods cannot work in an adaptive way, which is expected to decrease
the performance. Based on this, we expect that the baseline methods will generally fail to effectively
estimate the gaze direction (H4). However, we also hypothesize that some of the baseline methods
can work better than the original MPIIGaze protocol which does not apply any image enhancement
method (H5).

The experiments were conducted on a high-end server equipped with two NVIDIA RTX 2080
Ti GPUs, 128 GB RAM, and an Intel i9-7920X CPU. We used the PyTorch [47] framework for the
implementation of the MPIIGaze and EnlightenGAN frameworks. The ResNet network was trained for
40 epochs with a batch size of 32 and an SGD optimizer. Image processing, such as intensity and gamma
correction, was carried out using the Python PIL library [48]. In our experiment, all the performance
evaluations were conducted based on leave-one-subject-out validation with ten repetitive experiments.

4.1. Deep Learning-Based Gaze Estimation under Low and Dark Illumination Conditions

In this section, we answer our first research question: Can a method based on a deep neural
network provide a good estimation of gaze points under low-light and dark illumination conditions?

First, we computed the gaze angular error of the MPIIGaze protocol on the Normal test set.
Afterward, we evaluated the performance of the MPIIGaze protocol using the various aforementioned
low and dark-illuminated test sets (i.e., Lowi, Lowg, Dark, Lowle f t, Lowright, Darkle f t, and Darkright).
In this experiment, an enhancement method was not applied when testing the network. The results of
this experiment would enable us to determine the effect of low and dark illumination conditions on
the performance of the gaze estimation method based on deep learning.

The performance of the MPIIGaze protocol on the low and dark illuminated test sets is reported in
Table 1. The reported values are the averaged angular error measured from all the participants in each
test set. The results in the table show that low and dark illumination conditions drastically degrade the
performance of the MPIIGaze protocol. Compared to the Normal test set (i.e., 5.76), the average gaze
angular error on the low illuminated sets increased to 9.71–10.4 degrees (i.e., 9.71 for Lowg, 9.9 for Lowi,
10.4 for Lowle f t, and 10.2 for Lowright). In addition, the mean angular error on the dark illuminated test
sets increased to approximately 10 degrees (i.e., 10.56 for Dark, 10.4 for Darkle f t, and 10.22 for Darkright).
This implies that low and dark illumination conditions cause the performance of ResNet to decrease
by as much as 80.5% (i.e., from 5.76 to 10.4 on Lowle f t) and 83.3% (i.e., from 5.76 to 10.56 on Dark),
respectively. From these results, we showed that H1 can be confirmed. Furthermore, the findings for
the test sets containing images with directional light reveal that the brightness level does not affect
the performance. For example, both Lowle f t and Darkle f t caused angular errors of 10.4. Similarly,
both Lowright and Darkright caused angular errors of 10.2. For these test sets, the direction of the light
mainly affected the gaze estimation performance.

By contrast, the performance on Lowi, Lowg, and Dark is largely dependent on the brightness level.
As indicated in Table 1, when tested with Lowi, Lowg, and Dark, the average angular error increased
by 4.14, 3.95, and 4.8 degrees compared to Normal, respectively. The MPIIGaze protocol experienced
the highest performance reduction on Dark. This result is consistent with our observation that, in the
binary images of the eye (Figure 6), the appearance of the eyeball in Dark is much more noisy and thus,
less recognizable than in Lowi and Lowg. Finally, considering the performance difference between
Lowi and Lowg (i.e., 9.9 on Lowi and 9.71 on Lowg), it can be inferred that gamma correction retains
more of the available gaze information.
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Table 1. Mean error of the MPIIGaze protocol under various lighting conditions.

Normal Lowi Lowg Dark Lowle f t Lowright Darkle f t Darkright

Mean Error 5.76 9.9 9.71 10.56 10.4 10.2 10.4 10.22
Diff to Normal - +4.14 +3.95 +4.8 +4.64 +4.44 +4.64 +4.46

4.2. Performance Improvement of the Proposed Approach

The next experiment was carried out to answer our second research question: Could the proposed
approach improve the performance of gaze estimation under low-illumination conditions? For this experiment,
we evaluated the performance of the proposed approach that applied GAN-based image enhancement
before the image preprocessing step and gaze estimation using ResNet (see Figure 2).

First, we describe the enhancement of low and dark illuminated images of the eye with the
GAN-based enhancement method. Illustrative examples of low-light eye images and their enhanced
versions are shown in Figure 10. As shown in Figure 10a, the images that were enhanced by the
generative approach definitely have brighter illumination with more well-defined eye and pupil
boundaries when compared with the original low and dark illuminated images shown in Figure 10b.
Figure 11 represents the difference between the binary images of the enhanced eye images (Figure 11a)
and the original low/dark illuminated images (Figure 11b). These results show that the binary images
of the original low/dark illuminated images are generally noisier compared to the binary images of
the enhanced eye images. Specifically, the binary versions of the original low and dark illuminated
images contain more dark holes, which may lead to the loss of additional information that would be
useful for gaze estimation. In particular, the binary image of the original image in Dark appears to be
partially cropped, with the result that the eye boundary is less well-defined compared to the binary
version of the enhanced image of the eye. A similar phenomenon is observed in the case of the binary
images of test sets with directional lights. Based on this qualitative analysis, gaze estimation using
images enhanced by the generative approach would be expected to yield superior performance.

Figure 10. Comparison of images of the eye: (a) Images enhanced by EnlightenGAN. (b) Original low
and dark illuminated images.

Figure 11. Comparison of binary images of the eye: (a) Images enhanced by EnlightenGAN.
(b) Original low and dark illuminated images.

Next, we present our quantitative analysis of the performance of the proposed approach.
The performance of the MPIIGaze protocol and that of the proposed approach on low and dark
illuminated test sets is compared in Table 2. First, as summarized in the third and fourth row of
the table, the performance of the proposed approach on Lowi, Lowg, and Dark sets improved by
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up to 4.53%–8.9% compared to that of the MPIIGaze protocol. Specifically, the proposed method
achieved a performance gain of 0.44–0.48 degrees (4.53%–4.8%) on the low illuminated test sets
(i.e., from 9.9 to 9.42 on Lowi and from 9.71 to 9.27 on Lowg) and 0.95 degree (8.9%) on the dark
illuminated test set (i.e., from 10.56 to 9.61 on Dark), which confirms H2. This also indicates that
the performance improvement with the proposed method increases as the illumination of images
decreases; therefore, our hypothesis H3 can be confirmed. This is consistent with our analysis of
the binary images of the eye obtained from the original images and those obtained from the images
enhanced by EnlightenGAN. As mentioned earlier, we found that the binary version of the original
image in Dark appears to be partially cropped, thereby rendering the appearance of the eye ambiguous
and incomplete. We believe that this adversely affected the performance of the MPIIGaze protocol.

Table 2. Comparison of the performance between the MPIIGaze protocol and the proposed approach.

Lowi Lowg Dark Lowle f t Lowright Darkle f t Darkright

Proposed 9.42 9.27 9.61 9.69 9.47 9.67 9.53
MPIIGaze 9.9 9.71 10.56 10.4 10.2 10.4 10.22

Improvement (deg) 0.48 0.44 0.95 0.71 0.73 0.73 0.69
Improvement (%) 4.8 4.53 8.9 6.8 7.15 7.01 6.75

Second, the proposed method was also able to effectively process the directional lighting test
sets. The proposed method achieved a performance improvement of 6.8%–7.15% for the low-light
directional sets (i.e., from 10.4 to 9.69 on the Lowle f t test set and from 10.2 to 9.47 on the Lowright
test set). In addition, a performance improvement of 6.75%–7.01% was obtained for the dark-light
directional sets (i.e., from 10.22 to 9.53 on the Darkright test set and from 10.4 to 9.67 on the Darkle f t test
set). These results validated our hypothesis H2; however, hypothesis H3 was not met. There was no
significant difference in performance improvement between low-light directional sets and dark-light
directional sets. Similar to the experimental result reported in Section 4.1, however, the performance
differs slightly depending on the direction of light. Similar to the MPIIGaze protocol, the proposed
method is more effective on the right directional test sets than the left directional test sets. As shown
by the results in Table 2, the mean angular error of the proposed method on the left directional test sets
is 9.67–9.69 degrees (i.e., Lowle f t and Darkle f t), which is larger than on the right directional test sets
of 9.47–9.53 degrees (i.e., Lowright and Darkright). This result implies that the binary image of the eye
of the right directional sets preserve more informative data than the left directional sets even though
the appearance of the eyeball is still not clear. Conversely, we also found that the brightness level
does not affect the performance of the proposed method on the directional light test sets. For example,
the proposed method has an angular error of 9.67–9.69 on Darkle f t and Lowle f t vs. 9.47–9.53 on Lowright
and Darkright. This result is also consistent with our previous observation that the performance of
the MPIIGaze protocol is not dependent on the brightness level when processing the directional light
test sets.

In summary, we found that the proposed method outperformed the MPIIGaze protocol under
various challenging conditions. The performance improvement can be attributed to the capability
of the proposed approach to recover missing information from low and dark images of the eye as a
result of enhancement in a generative way. More importantly, the performance improvement could be
achieved without any additional hardware set-up or training.

4.3. Comparison with Baseline Methods

In this section, we provide the answer to our final research question: Would a GAN-based adaptive
enhancement method be more effective than a simple method involving manual brightness adjustment?

Our experimental results showed that the gaze estimation performance can be improved under
challenging conditions when using the proposed method with EnlightenGAN, which can recover the
features of low and dark illuminated eye images. However, it would also be reasonable to consider
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simple image processing methods, such as intensity adjustment or gamma correction, to enhance
the low-light image. To address this consideration, we conducted experiments to compare the gaze
estimation performance between the proposed method and the baseline methods, with the latter
methods consisting of both intensity adjustment and gamma correction methods. The list of baseline
methods is as follows.

1. Gamma correction methods: Glow, Gmid, and Ghigh

- Set the gamma value to be 1.5, 2, and 3

2. Intensity adjustment methods: Ilow, Imid, and Ihigh

- Increase the intensity by 40, 70, and 110

Examples of images modified by the baseline methods can be seen in Figure 12. The illumination
of modified images of the eye has been changed; however, the quality of the result differs significantly
depending on the particular method that was used. For example, the images that were modified by
adjusting their intensity (i.e., Ilow, Imid, and Ihigh) are more blurry than those processed with gamma
correction (i.e., Glow, Gmid, and Ghigh). In particular, the images that were modified by adjusting
their intensity appear to be merely hazy, rather than brighten. Conversely, the gamma correction
methods successfully enhanced the images in Lowi and Lowg, such that the resultant images of
the eye contained little noise and had well-defined appearances (see row (1) and (2) in Figure 12).
However, these methods failed to enhance the images in the remaining test sets (see row (3)–(7) in
Figure 12). In addition, for all the gamma correction methods, the larger the gamma value the noisier
the appearance became. Based on this qualitative result, certain baseline methods would be expected
to have a chance to outperform the MPIIGaze protocol.

Figure 12. Examples of images modified by the baseline methods.

Next, we report the quantitative results of the comparative experiments. The performance of the
proposed method is compared with that of the baseline methods in Table 3. We first discuss the results
of the gamma correction methods and then analyze the performance of the intensity-based methods.
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Table 3. Comparison of mean errors between the proposed method and baseline methods.

MPIIGaze Glow Gmid Ghigh Ilow Imid Ihigh Proposed

Lowi 9.9 9.84 9.78 9.88 10.35 10.15 9.82 9.42
Lowg 9.71 9.62 9.63 9.56 10.04 9.94 9.71 9.27
Dark 10.56 10.48 10.39 10.47 11.66 11.14 10.54 9.61

Lowle f t 10.4 10.22 10.21 10.25 10.76 10.51 10.23 9.69
Lowright 10.2 10.13 10.10 10.14 10.72 10.51 10.09 9.47
Darkle f t 10.4 10.21 10.15 10.28 10.87 10.59 10.21 9.67
Darkright 10.22 10.36 10.16 10.25 10.86 10.46 10.19 9.53

Avg. 10.19 10.12 10.06 10.11 10.75 10.47 10.11 9.52

First, the average angular error of the baseline methods that employ gamma correction
decreased by 0.07–0.13 degrees compared with the results obtained by using MPIIGaze.
In particular, Gmid achieved the highest performance gain among the gamma correction methods.
However, it should be noted that the average angular error of the different gamma correction methods
does not vary much (i.e., the average error ranges from 10.06 to 10.12). In addition, as observed from
our qualitative analysis, the gamma correction methods performed well on the Lowi and Lowg test
sets (i.e., the angular error was in the range 9.56 to 9.88); however, these methods were ineffective
on the Dark test set (i.e., the angular was in the range of 10.39 to 10.48). The gamma correction
methods were similarly ineffective on the directional light test sets (i.e., the angular error was
10.1–10.36). Nevertheless, the methods based on gamma correction outperformed the MPIIGaze
protocol. Specifically, the average angular error decreased by 0.02–0.15 degrees, 0.08–0.17 degrees,
and 0.06–0.25 degrees for Lowi and Lowg, Dark, and the directional light test sets, respectively.

Even though the gamma correction methods slightly outperformed MPIIGaze, they still
performed worse than the proposed method. The proposed method achieved an average performance
improvement of 5.67%–6.3% over gamma correction methods for all the cases. For example,
gamma correction produced errors in the range 9.56 to 9.88 degrees on the Lowi and Lowg test sets,
whereas the errors of the proposed method were between 9.27 and 9.42. Furthermore, the performance
of the gamma correction method became much worse on the Dark and directional light sets
(i.e., 10.25 degrees on average), whereas the errors of the proposed increased slightly to 9.59 degrees
on average. This means that the proposed method can successfully recover information lost under
low-light conditions compared with the gamma correction methods.

Second, we discuss the performance of the methods based on intensity adjustment (i.e., Ilow, Imid,
and Ihigh). The results in Table 3 indicate that the methods based on intensity adjustment delivered the
lowest performance (i.e., the angular error was in the range 10.11 to 10.75) among the enhancement
methods. In particular, the proposed method outperformed the intensity adjustment methods with
decreased angular errors of 0.59–1.23 degrees (i.e., performance improvement of 5.83%–11.44%). In the
case of intensity-based methods, we found that the larger the intensity value, the lower the angular
error. Specifically, the performance of Ihigh (i.e., an error of 10.11) was comparable with that of Glow
and Ghigh (i.e., errors of 10.12, and 10.11, respectively). On the other hand, the performance of the
intensity adjustment method was also lower as the illumination became darker, similar to the other
methods. These results can be interpreted to mean that the intensity adjustment methods failed to
enhance the appearance of images of eyes, such that the overall gaze estimation performance was
degraded compared with the other enhancement methods. Finally, we could confirm our hypothesis
H4 that the baseline methods cannot be applied to practical use-cases, such as a digital gallery or
an art exhibition hall, where various lighting conditions are necessary. This is because the baseline
methods adjust the illumination in a fixed way (e.g., by increasing the intensity by a particular value),
compared to the proposed method which adaptively enhances the illumination of image.

Next, we provide subject-level details of the experimental results for each method. The error
score reported here is the mean angular error averaged across all test sets. Figure 13 presents the
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subject-level results of the MPIIGaze protocol and the proposed method. Overall, the proposed
method outperformed the MPIIGaze protocol for most of the subjects. However, significant differences
between the performance of the MPIIGaze protocol and the proposed method did not exist in the case
of subjects S2, S3, and S10 (i.e., the errors differ by approximately 0.12 degrees). For the remaining
subjects, the proposed method outperformed the MPIIGaze protocol with a moderate difference of
0.6–1.3 degrees. In the case of subject S15, the MPIIGaze protocol outperformed the proposed method
with a slight improvement (i.e., 10.23 for MPIIGaze vs. 10.38 for the proposed method).

Figure 14 presents the averaged mean angular errors of the gamma correction methods (referred
to as Gamma, the average of errors from Glow, Gmid, and Ghigh), the intensity adjustment methods
(referred to as Intensity, the average errors from Ilow, Imid, and Ihigh), and the proposed method.
The results closely resembled the findings presented in the previous Figure 13. First, similar to the
previous result, the proposed method outperformed the baseline methods for most of the subjects.
Second, significant performance differences did not exist between the baseline methods and the
proposed method in the case of subjects S2, S3, and S10 (the difference between the proposed method
and Gamma is 0.01–0.05, and between Intensity it is 0.06–0.18). For the remaining subjects, the proposed
method outperformed both Gamma and Intensity with a moderate difference of 0.77 and 1.23 degrees
on average, respectively. The baseline methods also outperformed the proposed method for subject
S15. The angular error of the baseline methods was lower than that of the proposed method with
differences of 0.12 (Intensity) and 0.21 (Gamma).

Figure 13. Mean gaze angular error for each subject of the MPIIGaze protocol and the proposed method.

Figure 14. Mean gaze angular error for each subject of the proposed and baseline methods.

Finally, we report the changes in the mean angular errors of each method according to training
epochs in Figure 15. In this figure, Normal denotes the performance of the original MPIIGaze protocol
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on the original MPIIGaze test set. The errors produced by all the methods gradually decreased during
the first 30 epochs and then converged. At the beginning of training, the MPIIGaze protocol and
the baseline methods (i.e., Gamma and Intensity) produced high errors of 14.12, 13.82, and 12.49,
respectively, whereas the error of the proposed method was relatively low (10.15). In the early stage
of training, the average error of Intensity was lower than that of Gamma. However, at the end of
training, Gamma outperformed both the MPIIGaze protocol and Intensity, as already summarized
in Table 3, which confirms our hypothesis H5. Another noteworthy result is that the error curve of
Normal and that of the proposed method behaved similarly. This can be interpreted to signify that
the appearance of an image enhanced by the EnlightenGAN framework closely resembles that of the
original normal-light images from the MPIIGaze data set.

Figure 15. Changes in mean angular error according to the number of epochs.

5. Conclusions

In this study, we proposed an approach based on a generative adversarial network to improve
the gaze estimation performance under low and dark light conditions. Our findings showed that
the appropriate use of various methods to enhance images of eyes was able to improve the gaze
estimation performance under low-light conditions. In particular, we validated that the performance
of the proposed method based on EnlightenGAN is superior to that of the baseline methods with
gamma correction or intensity adjustment. We conducted various experiments to demonstrate that
the EnlightenGAN-based approach was able to adaptively enhance the appearance of images of the
eye captured under low-light conditions and effectively recover the information of gaze features.
By contrast, the baseline methods tried to modify the brightness of an image of the eye using a
fixed intensity or gamma value. This caused the image to become hazy or noisy, which caused the
performance to degrade.

However, the proposed approach still has limitations that would need to be addressed.
First, the proposed method failed to perform effectively in certain cases (e.g., the low performance
on subject S15), which means that training networks, data preprocessing, and data collection would
have to be refined. Second, even though the average angular error of the proposed method is lower
than that of the MPIIGaze protocol under low-light conditions, the performance of the proposed
system is still insufficient to allow it to be successfully utilized in real-life environments and scenarios.
Third, as all the reported results are from the evaluations with the test sets containing artificially
darkened images only, the performance of the proposed approach in a more natural scenario, such as
interactive environments with low illumination, is still unknown.

In future, we will extend our work in the following directions. First, we plan to study more
advanced deep learning approaches to improve the gaze estimation performance under low-light
conditions. Second, We also aim to extend our approach to other domains such as a more natural
environment that would require a multiview setup or circumstances in which long-distance gaze
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estimation would be required. In this extended approach, we will introduce a multimodal approach
(i.e., RGB, depth, and infrared image) for enhanced multi-user gaze estimation. Finally, since the
previous datasets on gaze estimation mainly focus on daytime images, they are not suitable for
gaze estimation research targeting interactive environments. To address this limitation, we are
now studying how to collect images captured under more naturally low/dark-light conditions with
various reflections. Moreover, the constructed dataset will be publicly available as a novel benchmark
dataset that researchers can utilize to evaluate the performance of their own gaze estimators towards
challenging conditions.
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