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Abstract: For driving safely and comfortably, the long-term trajectory prediction of surrounding
vehicles is essential for autonomous vehicles. For handling the uncertain nature of trajectory
prediction, deep-learning-based approaches have been proposed previously. An on-road vehicle must
obey road geometry, i.e., it should run within the constraint of the road shape. Herein, we present
a novel road-aware trajectory prediction method which leverages the use of high-definition maps
with a deep learning network. We developed a data-efficient learning framework for the trajectory
prediction network in the curvilinear coordinate system of the road and a lane assignment for the
surrounding vehicles. Then, we proposed a novel output-constrained sequence-to-sequence trajectory
prediction network to incorporate the structural constraints of the road. Our method uses these
structural constraints as prior knowledge for the prediction network. It is not only used as an input to
the trajectory prediction network, but is also included in the constrained loss function of the maneuver
recognition network. Accordingly, the proposed method can predict a feasible and realistic intention
of the driver and trajectory. Our method has been evaluated using a real traffic dataset, and the results
thus obtained show that it is data-efficient and can predict reasonable trajectories at merging sections.

Keywords: trajectory prediction; high-definition maps; highway driving; curvilinear coordinates;
lane assignment

1. Introduction

Driving situation awareness is a fundamental requirement for an intelligent vehicle, since
high-level decision making, trajectory planning, and tracking control are based on this information [1,2].
In particular, trajectory prediction of surrounding vehicles is one of the key elements for understanding
driving situations [3]. Furthermore, long-term trajectory prediction has certain advantages; for example,
a vehicle equipped with trajectory prediction can not only avoid an accident, but also generate evenly
distributed control input sequences, such as a jerk-minimizing acceleration, by reacting in advance.
However, this is a challenging task since an autonomous vehicle cannot directly measure the intention
of a driver using sensors [4] and each driver has different driving characteristics. Thus, an accurate
prediction algorithm is required to take this uncertain nature of the future into consideration.

The commonly used classical method for predicting the state of a vehicle was the Kalman filter
(KF) [5,6]. KF-based approaches still exhibit good performance for short-term prediction. However,
the longer the prediction horizon, the lower is its accuracy, since KF does not account for the uncertain
nature of the driver’s maneuvering. To tackle this limitation, many studies have adopted learning-based
approaches, such as recurrent neural network (RNN) variants [7–9] and a combinatorial model of a
variational autoencoder (VAE) and an RNN encoder–decoder structure, to improve the prediction
accuracy [10–12] of the employed network.
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On the contrary, an on-road vehicle motion is constrained to the road shape. In other words,
the vehicle should run along the roadway while obeying the structural constraint of the road
(see Figure 1). Due to this characteristic, high-definition maps (HD maps), which contain detailed road
information, have recently been used as a useful element in various autonomous driving applications
such as vehicle localization [13] and on-road vehicle tracking [14,15]. Despite a wide variety of benefits,
the use of road information in the field of trajectory prediction is very limited. Therefore, we propose a
novel methodology for maximizing the usage of HD maps for trajectory prediction on highways.
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along roadway while obeying the structural constraints of the road.

The contributions of this study are as follows:

• We have developed a practical data-efficient method for trajectory prediction on highways using
the curvilinear coordinate system and lane assignment. It is inevitable to collect a real dataset
by driving along a roadway. However, it is also impossible to collect all the necessary data that
can cover the whole range of the sensor. To mitigate this practical problem, we have proposed a
data-efficient learning method to make the dataset compact. In addition, this approach enables
the prediction network to learn efficiently and maintain a consistent performance even in different
road segments. The details of this problem are discussed in Section 3.1.

• We have proposed a road-aware, sequence-to-sequence trajectory prediction network. Using the
fact that a vehicle naturally runs along the shape of the road, we have developed an output
constrained prediction network. By combining a deep learning network with the prior knowledge
of the roadway, the structural limitations of the roadway have been incorporated in the network.
Consequently, the proposed trajectory prediction network is able to predict a feasible and realistic
intention of a driver and trajectory of the surrounding vehicles.

The remainder of this paper is organized as follows: a description of previous studies is presented
in Section 2. The methodology developed in this work according to the primarily investigated problem
statement is described in Section 3. Details of the experimental results, which prove the superior
performance of the proposed method, are presented in Section 4. Conclusions from the present work
along with aspects of future work are given in Section 5.

2. Related Work

Before learning-based approaches were applied, the commonly used classical method for predicting
the state of a vehicle was KF. This method exhibits good performance in the application of on-road
tracking and short-term prediction [5,6]. However, it has limitations in long-term predictions since it
does not consider the future transitions of a driver’s intention. To improve the long-term accuracy
of KF, it was combined with maneuver recognition techniques such as the hidden Markov model
(HMM) [16] and the dynamic Bayesian network (DBN) [17]. However, it is difficult to derive all
models of KF corresponding to the different maneuvers. Meanwhile, due to the excellent performance
of deep-learning-based approaches, significant improvements in trajectory prediction were made.
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The long short-term memory (LSTM) encoder–decoder structure [8] with an occupancy grid map was
first proposed for probabilistic trajectory prediction on highways. In addition, a few studies [18,19]
showed that trajectory prediction can be improved by handling multi-modal uncertainty with maneuver
recognition such as lane change left (LCL), lane change right (LCR), and lane keeping (LK). Subsequently,
various deep learning structures have been proposed by combining the LSTM encoder–decoder with
conditional VAE [10–12] for generating diverse trajectories. These studies focus mainly on the deep
learning architecture to improve the prediction accuracy and to solve the uncertain nature of the
trajectory prediction problem. However, in such studies there is a possibility of the method predicting
an infeasible trajectory, since they do not consider road structure, and a practical use of road information
needs to be considered to learn a real dataset efficiently.

On the contrary, the use of road information in trajectory prediction has been known to be
significantly beneficial [14,15,17]. There have also been attempts to include road information in
applications employing deep learning techniques. A few studies [20,21] have proposed rasterizing a
vector layer of road information into an RGB space in order to incorporate the road features in the
prediction network. However, handling a road environment as a rasterized image is computationally
taxing, since it requires an additional convolutional neural network (CNN). In contrast to the
above-mentioned studies, our methodology extracts useful information in advance from the HD maps
and thus naturally reduces the network complexity and computational burden.

There are other related works that consider interactions between vehicles. However, our study
does not include these interactions for the following reasons: firstly, on a highway, the traffic runs
almost parallel, which causes sensor occlusion, and secondly, longitudinal inter-distance between
vehicles is relatively larger than in an urban environment. Therefore, it is realistically difficult to apply
the interactions between vehicles to the prediction algorithm while applying it to highway traffic.
Although several studies have considered these interactions, these works have been performed at an
uncontrolled intersection [11,21] where an interaction could be easily captured or evaluated [22,23]
on the next-generation simulation (NGSIM) dataset [24]. The highway traffic in these cases has been
captured using a camera mounted on top of a building. In addition, these studies implicitly assume
that information on the state of a vehicle can be obtained regardless of the range and location of the
mounted sensors.

3. Problem Statement and Methodology

In this section, we describe the problem statement and propose the methodology to solve
this problem.

3.1. Practical Problem Statement of Trajectory Prediction

It is inevitable to collect a dataset by oneself for developing a deep-learning-based trajectory
prediction algorithm. However, one has to face certain practical problems in this regard. Firstly,
a dataset that covers the complete range of the sensor cannot be collected. For example, even if two
vehicles shown in Figure 2a change lanes in an almost identical manner, they are perceived differently
in the deep learning network because the measured position values of each vehicle are distributed
differently. In short, this implies that we must collect a dataset which contains every maneuver that
could happen within the entire range of the sensor. However, this requires an enormous amount
of manpower and time. Secondly, it is realistically difficult to collect lane change (LC) trajectories
because drivers do not frequently change their sane while driving on a highway. Therefore, a method
of using the sparsely collected dataset appropriately should be considered. A graphical description
and the expected result of such a dataset is shown in Figure 2a. Further, there could be a zigzagging
motion of a vehicle in a real traffic situation, and this can sometimes cause the maneuver recognition
network (MRN) to output an infeasible maneuver. However, an intelligent vehicle should be robust to
such unlikely maneuvers of surrounding vehicles. Figure 2b shows a typical example. To mitigate
these problems, we adopted the curvilinear coordinate system and lane assignment to represent the
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motion of a vehicle using HD maps. Consequently, this enables data-efficient learning and prediction
of feasible future trajectories.
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Figure 2. Practical problem statement. (a) If we represent trajectories of the surrounding vehicles in the
local curvilinear coordinate system, the data distribution becomes compact; (b) Wrong prediction is
caused by a zigzag motion of the vehicle without any road constraint.

3.2. Extracted Road Information from HD Maps

In Section 2, we mentioned that the performance of trajectory prediction can be improved by
using road information. In this section, we describe the steps adopted in this work for extracting road
information from HD maps and explain how these can be utilized for trajectory prediction.

HD maps usually include a point cloud for recording data from the surrounding environment of
a roadway and the position data of the probed vehicle, collected using a high-resolution light detection
and ranging (LIDAR) instrument and a high-precision global navigation satellite system/inertial
navigation system (GNSS-INS), respectively. The data are usually provided as a database. An example
of the data is shown in Figure 3a in which the highway road information is divided into segments and
each segment includes a line connecting the start and end points. Each line is called a link and each
point is called a node. Using this provided database, we extracted the following information via offline
processing:

• Reference curvilinear coordinates: B-spline parameters approximating the corresponding line;
• Additional information about the segment: the total number of lanes, the reference lane, and the

length of the segment;
• Feasible maneuver vector for each lane: the simplest way to generate a feasible maneuver vector

is the one-hot vector representing the possible maneuvers among LCL, LK, and LCR. For example,
in the case of the first lane in Figure 3b, it is [0 1 1] because a vehicle can only execute LK and LCR
owing to the road shape. However, it should be noted that any real values between 0 and 1 can
be inputted.
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Figure 3. Extraction of road information. (a) HD maps contain nodes and links and each component
is represented by points in the Cartesian coordinate system; (b) After extracting information via
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3.3. Data Processing

From this data processing, we assume that one can obtain adequately accurate tracking information,
and the necessary vehicle state tracking information are presented as follows (see Figure 4).

• Ego-vehicle states: global position, yaw angle, longitudinal velocity and lateral velocity;
• Target vehicle states: longitudinal relative displacement, lateral relative displacement, longitudinal

relative velocity and lateral relative velocity of centroid of 2D bounding box.
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of vehicle states.

In fact, the performance of the trajectory prediction is affected by sensor accuracy and tracking
algorithm. To obtain accurate tracking information, therefore, we used commercial sensors such as
high-precision GNSS-INS integrated system which ensures global position error within 1 cm and an
LIDAR sensor which ensure relative state tracking error of the target vehicle within 10 cm.

Data processing consists of four steps, which have been graphically represented in Figure 5,
as follows:

1. Step 1: We assume the global position of an ego vehicle to be
(
Xego, Yego

)
and obtain the relative

states of the surrounding vehicles using GNSS-INS and LIDAR, respectively. Then, we obtain
the global position (Xsurr., Ysurr.) of the surrounding vehicles. Next, we find the corresponding
segment on which the surrounding vehicle is located by using the position values of the “From”
and the “To” nodes. Here, we can search for it first within a range which spans from the back to
the front of the segment of the ego vehicle;

2. Step 2: Once the segment is found, it indicates that the B-spline parameters, which approximate
the reference roadway, have been obtained. Then, we can find the point (ssurr., nsurr.) which is
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the orthogonal and the nearest point to the segment (refer to the enlarged drawing in Step 1
of Figure 5.) The detailed algorithm to find this point is omitted here, since it not part of our
study’s contribution. However, readers can refer to Ref. [25] for further details. After obtaining
the curvilinear coordinates, we can assign the lane number to which the surrounding vehicle
belongs to. Lane assignment does not require real-time determination, however, it is sufficient
to use a simple threshold and a count algorithm with lateral displacement nsurr. in this step.
The converted curvilinear coordinates are stored in chronological order;

3. Step 3: All the sequential coordinates are transformed to the local curvilinear coordinate system in

which the curvilinear coordinates are translated by
(
ssurr., nlane_o f f set

)
. In this way, the trajectories

of all the surrounding vehicles are represented on the same frame of reference even though their
positions are different. We define this as the local curvilinear coordinates. After transforming
the position values, the velocities

( .
ssurr.,

.
nsurr.

)
in the local curvilinear coordinates are obtained

by simply projecting the velocities in the global Cartesian coordinates to the local curvilinear
coordinates. In this way, we can generate a compact dataset by carrying out the above-mentioned
procedure. Subsequently, the transformed sequential trajectory points are directly fed to the
trajectory prediction network as an input sequence. The detailed trajectory prediction network
architecture is described in Section 3.4;

4. Step 4: Step 4 follows the trajectory prediction network. Here, we simply reposition the predicted
trajectory to the curvilinear coordinate system. Following this, depending on the user’s purpose,
such as a collision assessment or trajectory planning, the predicted trajectory can be used as is or
translated to the Cartesian coordinates.
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Figure 5. Description of the data processing steps. Step 1: Global Cartesian coordinates; Step 2:
Transformation to the curvilinear coordinates; Step 3: Translation to the local curvilinear coordinates;
Step 4: Repositioning to the curvilinear coordinates.

Brief results and the effectiveness of data processing are shown in Figure 6 below. We chose
and visualized 200 arbitrary trajectories of lane change data. Figure 6a,b shows the results processed
by Step 3 without lane assignment and Step 3 with lane assignment (i.e., in the local curvilinear
coordinates), respectively. As can be seen from the figures, the data distribution in Figure 6b is compact.
In addition, all the lateral displacements of the data in Figure 6a have negative values. This indicates
that the trajectory prediction may fail if lane change occurs in the positive domain. On the contrary,
Figure 6b shows concise lane change trajectories because all data are represented in the local curvilinear
coordinates. With these data, the trajectory prediction network is able to learn the data more efficiently.
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Figure 6. Results obtained after data processing and comparison of trajectories before and after lane
assignment. For better visualization, in other words, we intend that one is not translated laterally,
and another one is completely translated to the local curvilinear coordinate. (a) shows the trajectories
transformed to the local curvilinear coordinates without lane assignment, whereas (b) shows the
trajectories transformed to the local curvilinear coordinates with lane assignment.

3.4. Road-aware Trajectory Prediction Network

In this work, the ultimate goal is to predict the long-term future trajectory ỹ =

[ỹt+1, ỹt+2, . . . , ỹt+Tp ] for a given past trajectory x̃ = [x̃t−Tb−1, x̃t−Tb , . . . , x̃t−1] and maneuver
constraints C = [c1, c2, c3]. Here, ỹi and x̃i are defined as ỹi = [si, ni] and x̃i = [si, ni,

.
si,

.
ni], and the

components of maneuver constraints vector C(see Figure 3b) are real values between 0 and 1. Note that
we do not include any feature to take interactions into account, as explained in Section 2. The trajectory
prediction module must be able to handle uncertainties, i.e., multiple futures. To this end, we adopted
a multi-maneuver and VAE-based encoder–decoder architecture [10,12]. The proposed architecture
consists of maneuver recognition and trajectory regression parts. Herein, maneuver recognition and
trajectory regression account for uncertain driver maneuver and sampling diverse learned trajectories
corresponding to each maneuver, respectively. Many researchers have proposed architectures similar
to ours [18,22]. However, our MRN considers the structural limitations of the road as constraints with
a constrained loss function. As a result, this naturally keeps the prediction module from predicting
an infeasible trajectory. It should be noted here that one could exploit other sequence-to-sequence
network variants since our data processing described in Section 3.3 simply modifies the input data to
maximize the efficiency of learning. We present a summary of the architecture details in Table 1. In our
architecture, to encode past trajectory and future trajectory, a gated recurrent unit (GRU) [26], which is
one of the RNN variants, was used, since this has a simpler structure than LSTM. Therefore, GRU takes
less time to train and is more efficient. VAE consisted of only fully connected layers. Column 4 and
6 in Table 1 present the input and output size of each layer, and the dimensionality was adjusted to
match the input and the output of the front and rear layer. Lastly, a rectified linear unit (ReLU) [27]
was selected as the activation function to take account for nonlinearity.
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Table 1. Details of the Road-Aware Trajectory Prediction Network.

Part Name Layer Type (Depth) Input Size Activation Output Size

MRN
(Classification)

GRU-encoder1 GRU (2) 4 ReLU 32

FCL2 Fully Connected (2) 35
16

ReLU
ReLU

16
3

Trajectory
(Regression)

GRU-encoder2 Same as GRU-encoder1
FCL1,3 Fully Connected (1) 32 ReLU 16

VAE
VAE-encoder1,2,3, Fully Connected (2) 16

8
ReLU
ReLU

8
2

VAE-decoder4,5,6 Fully Connected (2) 2
8

ReLU
ReLU

8
16

GRU-decoder GRU (2) 32 ReLU 16

FCL4,5,6 Fully Connected (2) 16
8

ReLU
ReLU

8
2

3.4.1. Maneuver Recognition Network

Our MRN was motivated by a weakly supervised learning used for medical image analysis.
H. Kervadec et al. [28] imposed inequality constraints for a weakly supervised semantic segmentation
of medical images. They proposed a differentiable loss function which handles inequality constraints
and accommodates standard stochastic gradient descent. Adopting this loss function, we realized a
constrained MRN. MRN consists of GRU-encoder2 and FCL2. GRU-encoder2 encodes past trajectory
of the target vehicle, and then the output of GRU-encoder is concatenated with prior knowledge, that is,
the structural constraints vector of the road, which we extracted via offline processing in advance as
mentioned in Section 3.2. Subsequently, this concatenated vector passed through the FCL2 and softmax
function, and finally we could obtain the output which is the estimated probability corresponding to
each maneuver. To realize constrained MRN, we finally constructed the constrained loss as follows

LossMRN =
N∑

i=1

3∑
m=1

pm,ilog(p̂m,i) + (1− pm,i)log(1− p̂m,i) + λconstraintB(p̂m,i), (1)

where pm,i and p̂m,i are the ground truth (GT) of the maneuver and the output of the MRN, respectively,
N is batch size, λconstraint is the weight parameter corresponding to the constraint, and the function
B(p̂m,i) is given by

B(ŷm,i) =

{
(p̂m,i − cm,i)

2, if pm,i ≥ cm,i
0, otherwise

. (2)

here, cm,i is the value of the aforementioned inequality constraint vector. By introducing the function
B(p̂m,i), LossMRN acts as a barrier to prevent an infeasible maneuver. The loss function in Equation (1)
is nothing but a typical cross-entropy loss function with a barrier function B. This acts like the
cross-entropy loss without the barrier function, but the barrier function would be active if the output of
MRN violated inequality constraints. For example, [1 1 0] indicates that the LCL and LK of maneuvers
could only happen according to the structure of road. Therefore, each value of the one-hot vector is
imposed to a loss function as an inequality constraint.

3.4.2. Trajectory Prediction Network

The trajectory prediction must have the ability to generate diverse trajectory samples, since different
drivers have different driving characteristics, even if the driving maneuver is the same. Similar to
other studies, our trajectory prediction network also adopts the generic encoder–decoder architecture
with a VAE, but a slightly different structure. We have divided the prediction part into three VAE-GRU
decoder networks to sample the trajectories which correspond to each maneuver (see the final outputs
in Figure 7). GRU-encoder1 encodes the future trajectory, while VAE-encoders are learned to model an
ideal distribution z, called a latent variable, to encode the future trajectory. The decoder generates
diverse trajectories combined with the GRU-decoder, where its hidden states are connected to hidden



Sensors 2020, 20, 4703 9 of 20

states of the GRU-encoder2. Here, the ideal distribution z is modeled as a two-dimensional Gaussian
distribution (i.e., z ~N(µz, σz)). Accordingly, in the inference phase, we remove the encoder parts of the
VAE and generate a diverse future trajectory by sampling the variable z from the learned distribution.
This sampled z passes through a decoder, and subsequently, the output of the decoder is concatenated
with the encoded input feature. Finally, after passing through the last fully connected layer, we obtain
the various trajectory samples (see the final output in Figure 7). Note that even though each of the
encoder–decoder networks have the same structure, they do not share their parameters. To optimize
this network, the trajectory prediction loss function is defined as follows

Losspath =
3∑

m=1

Im

 1
Tp

Tp∑
t=1

‖yt,m − ŷt,m‖2 + β·KLD[Q∅(zm|Y)]

, (3)

where Im is a binary indicator value, which is equal to 1 for the GT of the maneuver and 0 otherwise,
andKLD is the Kuller–Leibler divergence [29]. The first term on the right-hand side is the trajectory
regression loss and the second term makes the learned Gaussian model close to a Normal distribution.
This loss function is enabled to only update parameters of the corresponding network by a binary
indicator value, and we have also used the re-parameterization technique [30] to sample z, since it is
impossible to sample during backpropagation.
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Figure 7. Schematic of the trajectory prediction network.

4. Experimental Results and Analysis

4.1. Dataset

For large-scale evaluation and a proof concept, we chose a publicly available I-101 [24] dataset
which consists of images of the United States Interstate-101 freeway traffic captured by a camera,
mounted on top of a building, at a frequency of 10 Hz (see Figure 8). These images include a large
amount of real traffic trajectories as well as merging sections which are especially beneficial for
validating the feasibility of the predicted trajectories in this study. We extracted 199,477 trajectories
that consist of 170,494 LK and 28,983 LC trajectories, respectively.
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4.2. Results and Analysis

4.2.1. Effectiveness of The Local Curvilinear Coordinates

We mentioned in Section 3.1 that the trajectory prediction network can learn data efficiently when
the trajectories are represented in the local curvilinear coordinate system. In other words, because the
data are compactly arranged using the proposed method (see Figure 6), it requires less data and
less network capacity for predictions. To verify this aforementioned effectiveness, we split the entire
dataset from 5% to 80%, and the remainder 20% was used as a test dataset. We represented each
dataset using the two different coordinate systems, processed by Steps 2 and 3, respectively, of the data
processing described in Section 3.2. For conducting a fair comparison, we set all the parameters and
the network structure to be equal and carried out the test by gradually increasing the amount of data.
The quantitative test results are presented in Table 2, and results are presented graphically in Figure A1
of Appendix A for better visibility.

Table 2. Comparison of the weighted average displacement error (ADE) values between the proposed
local curvilinear coordinates and the curvilinear coordinates.

Weighted ADE (m)
(Local Curvilinear Coordinate/Curvilinear Coordinate)

Percentage (%) Total 1 s 2 s 3 s 4 s

5 1.53/9.52 0.61/8.34 1.39/8.05 2.29/9.44 3.21/12.29
10 1.26/7.26 0.57/5.72 1.20/6.57 1.80/8.06 2.43/10.54
15 1.24/5.49 0.58/4.22 1.18/4.73 1.75/6.15 2.40/7.39
20 1.17/5.25 0.49/4.70 1.10/4.33 1.68/5.45 2.36/6.69
40 1.15/3.56 0.49/3.07 1.11/3.18 1.64/3.85 2.28/4.67
60 1.14/3.70 0.52/3.24 1.08/3.28 1.64/3.81 2.23/4.68
80 1.13/3.30 0.49/3.00 1.05/2.90 1.63/3.41 2.22/4.23

The evaluation metric used in this case is the weighted minimum average displacement error
(WMADE) [11,32,33], which is the weighted sum of the predicted trajectories, corresponding to each
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maneuver, that are closest to the GT trajectory. This metric is well known for multiple future prediction
tasks, and it is expressed by the following equation

WMADE =
1
N

3∑
m=1

wmmin
k∈K

1
Tp

Tp∑
t=1

‖yt,m − ŷt,m‖, (4)

where the weights wm are outputs of the MRN and K is the sample number, set to 5.
The WMADE values for the total horizon are given in column 2 of Table 3. From Table 2, it can

be seen that for the proposed method, WMADE starts from 1.53 when 5% of the learning dataset is
used and ends with 1.13 when 80% of the learning dataset is used. Furthermore, the value seems to
be saturated for 60% dataset usage. On the contrary, the prediction for the curvilinear coordinates
starts from 9.52 at 5% of dataset usage and ends with 3.30 at 80% of dataset usage. The results for 4 s
are especially remarkable. The difference between the WMADE values at 5% and at 80% of dataset
usage for the proposed method is only 0.99, whereas the difference for the curvilinear coordinates is
8.06. This indicates that the coordinate transformation to the local curvilinear coordinates is reasonable
and efficient for representing the trajectories of an on-road vehicle. Furthermore, Figures A1 and A2
in Appendix A show the graphical results of the proposed method and the comparative method,
respectively. The difference between these results is quite clear. For our method, although the learning
result corresponding to 5% of the dataset looks deterministic as only 5% of the dataset does not contain
diverse trajectories, its prediction samples are not too far from the GT. As the amount of the learning
dataset increases, the diversity of the predicted trajectory samples corresponding to each maneuver
evidently improves. On the contrary, it is difficult to judge whether the results obtained from the
comparative method using only 5–15% of the learning dataset have been learned sufficiently, since the
shape of the predicted trajectory samples is not yet complete. The prediction result gradually converges
to the motion of a car, but the distribution of datasets is too wide to sample plausible trajectories. Thus,
we conclude that our method provides data-efficient learning in situations where fewer datasets are
available. This is an expected result because the road geometry of each lane is very similar to each
other, although the trajectory values themselves could be different.

Table 3. Comparison of root mean square error (RMSE) values between the proposed method and
comparative methods. The best is marked in bold and the second best is underlined.

RMSE (m)

Method 1 s 2 s 3 s 4 s

M-LSTM 0.58 1.26 2.12 3.24
MATF 0.67 1.51 2.51 3.71

MLS-LSTM 0.56 1.22 2.02 3.03
Ours 0.65 1.36 2.12 2.94

Now we compare our result to other related works. In this comparison, we report root mean
square error (RMSE) in order to utilize values in their works.

• NLS-LSTM [34]: This model is an encoder–decoder architecture that has local and non-local
operation to capture interaction;

• M-LSTM [18]: This model is an encoder–decoder architecture that considers adjacent six vehicles
of target vehicle and encode vehicle’s maneuver. This maneuver encoding vector is used to predict
multi-modal trajectory prediction;

• MATF [35]: This model is an encoder–decoder architecture that uses multi-agent tensor to
capture interaction.

It should be noted here that all of the other works consider interaction between vehicles, while
our method does not, as mentioned in Section 2.
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Although the proposed method is in the third place for 1 s and 2 s, the longer prediction horizon
the better our result is. Specifically, our result outperforms the other for 4 s. This suggests that
making a compact distribution of datasets through the proposed data processing has an advantage
in the form of a longer prediction horizon. Normally, though uncertainty increases for the longer
prediction horizon due to various and different driver characteristics, a unified representation of the
local curvilinear coordinate helps to improve learning efficiency. However, our methodology is not
just better, but the comparative methods can be improved by our data processing method and vice
versa. In fact, our proposed data processing can be applied to other sequence-to-sequence architecture.
For example, the local coordinate representation is combined with features to capture interaction,
and then this is injected to their prediction network as an input.

4.2.2. Feasible Trajectory Prediction at a Merging Section

Merging sections at freeways is especially useful for evaluating the effectiveness of the inequality
constraint. Because cars cannot execute LK as they approach the end of the merging section, this fact
naturally leads to the constraint of the LK maneuver, i.e., the maximum probability of LK. In this work,
we extracted trajectories at a merging section of NGSIM I-101. The statistical ratio of LK execution by
distance is shown in Figure 9. The statistical ratio by distance was set to the inequality constraint.
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Figure 9. Merging section of I-101 and inequality constraints. The upper plot presents the inequality
constraints setting as a function of the distance till the end of the merging section, whereas the lower
figure gives a graphical description of the merging section.

It should be noted here that the constraint is discrete and is a user-defined function by prior
knowledge. Therefore, it could be any function of distance till the end of the merging section, such as
a half-Gaussian-like function. For performing a quantitative evaluation of the effectiveness of the
constraint, we chose the Top1 ADE. This parameter is an average displacement error of the maneuver
that has the highest probability of MRN output. In fact, the most likely maneuver of the surrounding
vehicles is critical for motion planning, since their decision making is affected the most by this maneuver.

To conduct a fair evaluation, we equalized all network structures and learning parameters.
However, in one case, the constrained loss has been included in the MRN, whereas in the other case,
a typical cross-entropy loss was included in MRN. In this test, we set the sample number to 1 for better
visibility of results, as shown in Figure 10.
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Figure 10. Comparison of the trajectories predicted by the trajectory prediction network with (red line)
and without (blue line) constraint. (a–c) show that the trajectory prediction network without constraint
predict LCL as the most probable maneuver despite the road boundary on the left side of the car.
(d–f) show that the prediction network without constraint predict LK as the most probable maneuver
despite its proximity to the end of merging section while the trajectory prediction network with
constraint predict LCR.

As shown in Table 4, the prediction result with the constraint is superior to that without any
constraint. This indicates that it is reasonable to consider the road structure as a constraint because
vehicles are affected by the road structure. Moreover, Figure 10 shows a representative critical scene.
The result without the constraint corresponds to a realistically infeasible prediction. Nevertheless,
vehicles cannot run outside the roadway. The network predicts that the vehicle is going through a road
boundary. In addition, when the vehicle approaches the end of the merging section, it must merge
into the freeway in the near future by changing lanes, even though vehicles seem to maintain their
lanes. However, the network without a constraint cannot reflect this fact. In this case, the prediction
result could cause a severe accident. On the contrary, the network with a constraint is aware of the
road structure and thus can predict a reasonable trajectory. The networks never predict LCL as the
most likely maneuver and predict LCR in advance at the end of the merging section.

Table 4. Comparison of the Top1 ADE values corresponding to the prediction with and without
constraints at a merging section.

Top1 ADE (m)

Total 1.0 s 2.0 s 3.0 s 4.0 s

w/constraint 1.09 0.49 0.98 1.60 2.44
w/o constraint 1.20 0.52 1.07 1.77 2.69
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5. Conclusions and Future Work

In this work, we proposed a trajectory prediction network which especially maximizes the use
of road information. For data-efficient learning, we used the local curvilinear coordinate system to
represent the trajectories compactly using B-spline interpolation and lane assignment. The results have
been evaluated by increasing the amount of data, and for the first 5% of the dataset, our proposed
network shows a superior performance. In particular, the longer the prediction horizon, the more
remarkable was the difference observed. Thus, it can be concluded that a trajectory prediction network
that learns small amounts of data results in a prediction accuracy is comparable to the results obtained
using large amounts of data. In addition, we included inequality constraints in the trajectory prediction
network. Without the additional feature extraction network of the roadway, our trajectory prediction
network can be compliant with a road structure and shows superior performance especially in the
merging section. Moreover, even though the vehicle tends towards remaining in the LK mode,
the proposed MRN predicts LC at the end of the merging section. This helps in feasible trajectory
prediction as well as in making safe decisions.

On the other hand, our work has limitations that should be further discussed. First, various
critical experiments must be carried out for real application. An output of the prediction task should
be fed to a decision-making module. Therefore, we have to verify online inference performance with a
decision-making module in various cases. Additionally, for trajectory prediction tasks in an urban
environment, some works must be extended. For example, a unified representation of the complex
urban road network needs to be devised, and our network needs to be extended to cover a variety
of executable maneuvers such as U-turns, left turns, and right turns. Furthermore, inter-vehicle
interactions must be considered for an accurate future trajectory prediction.

Author Contributions: Conceptualization, Y.Y.; methodology, Y.Y. and H.L.; software, Y.Y. and T.K.; validation,
Y.Y. and T.K.; formal analysis, Y.Y.; investigation, Y.Y.; resources, J.P.; data curation, T.K.; writing—original draft
preparation, Y.Y.; writing—review and editing, J.P.; visualization, H.L.; supervision, J.P.; project administration,
J.P.; funding acquisition, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No. NRF-2019R1F1A1061283).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Graphical Results of the Trajectory Prediction Network

Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 

 

5. Conclusions and Future Work 

In this work, we proposed a trajectory prediction network which especially maximizes the use 
of road information. For data-efficient learning, we used the local curvilinear coordinate system to 
represent the trajectories compactly using B-spline interpolation and lane assignment. The results 
have been evaluated by increasing the amount of data, and for the first 5% of the dataset, our 
proposed network shows a superior performance. In particular, the longer the prediction horizon, 
the more remarkable was the difference observed. Thus, it can be concluded that a trajectory 
prediction network that learns small amounts of data results in a prediction accuracy is comparable 
to the results obtained using large amounts of data. In addition, we included inequality constraints 
in the trajectory prediction network. Without the additional feature extraction network of the 
roadway, our trajectory prediction network can be compliant with a road structure and shows 
superior performance especially in the merging section. Moreover, even though the vehicle tends 
towards remaining in the LK mode, the proposed MRN predicts LC at the end of the merging section. 
This helps in feasible trajectory prediction as well as in making safe decisions. 

On the other hand, our work has limitations that should be further discussed. First, various 
critical experiments must be carried out for real application. An output of the prediction task should 
be fed to a decision-making module. Therefore, we have to verify online inference performance with 
a decision-making module in various cases. Additionally, for trajectory prediction tasks in an urban 
environment, some works must be extended. For example, a unified representation of the complex 
urban road network needs to be devised, and our network needs to be extended to cover a variety of 
executable maneuvers such as U-turns, left turns, and right turns. Furthermore, inter-vehicle 
interactions must be considered for an accurate future trajectory prediction. 

Author Contributions: Conceptualization, Y.Y.; methodology, Y.Y. and H.L.; software, Y.Y. and T.K.; validation, 
Y.Y. and T.K.; formal analysis, Y.Y.; investigation, Y.Y.; resources, J.P.; data curation, T.K.; writing—original 
draft preparation, Y.Y.; writing—review and editing, J.P.; visualization, H.L.; supervision, J.P.; project 
administration, J.P.; funding acquisition, J.P. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the 
Korean government (MSIT) (No. NRF-2019R1F1A1061283) 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Graphical Results of the Trajectory Prediction Network 

 
(a) 

Figure A1. Cont.



Sensors 2020, 20, 4703 15 of 20Sensors 2020, 20, x FOR PEER REVIEW 15 of 20 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure A1. Cont.



Sensors 2020, 20, 4703 16 of 20Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 

 

 
(f) 

 
(g) 

Figure A1. Results of the trajectory prediction network in the local curvilinear coordinates. (a–g) are 
the results of learning by using 5%, 10%, 15%, 20%, 40%, 60%, and 80%, respectively, of the dataset. 
The bigger and more apparent the marker, the higher the confidence level of the maneuver. 
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