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Abstract: The article presents an original machine-learning-based automated approach for controlling
the process of machining of low-rigidity shafts using artificial intelligence methods. Three models of
hybrid controllers based on different types of neural networks and genetic algorithms were developed.
In this study, an objective function optimized by a genetic algorithm was replaced with a neural
network trained on real-life data. The task of the genetic algorithm is to select the optimal values of
the input parameters of a neural network to ensure minimum deviation. Both input vector values and
the neural network’s output values are real numbers, which means the problem under consideration
is regressive. The performance of three types of neural networks was analyzed: a classic multilayer
perceptron network, a nonlinear autoregressive network with exogenous input (NARX) prediction
network, and a deep recurrent long short-term memory (LSTM) network. Algorithmic machine
learning methods were used to achieve a high level of automation of the control process. By training
the network on data from real measurements, we were able to control the reliability of the turning
process, taking into account many factors that are usually overlooked during mathematical modelling.
Positive results of the experiments confirm the effectiveness of the proposed method for controlling
low-rigidity shaft turning.

Keywords: process control; machine learning; neural networks; genetic algorithms; turning;
low rigidity

1. Introduction

About half of all parts used in different types of machinery and mechanical devices are rotating parts.
They include gears, cylinders, bushings, discs, and hubs. Most of those rotating parts (approximately
40%) are various types of shafts, of which about 12% are low-rigidity shafts. There is no single accepted
definition of low-rigidity shafts; however, this category is commonly taken to include shafts with
a length-to-diameter ratio of no less than 10. This means that these parts have irregular, strongly
elongated shapes. Low-rigidity shafts are used in the electromechanical, tool-making, automotive, and
aerospace industries, as well as in precision mechanics and many other areas of application.

Rotating parts, including shafts, are most commonly machined by turning. During this type of
machining operation, the workpiece rotates at a certain angular velocity, which promotes vibration.
The lower the contact stiffness of the workpiece, the greater its susceptibility to vibrations, which means
that low rigidity shafts are particularly liable to chatter. The vibrations that occur during machining
of shafts reduce the reliability of the turning process, affecting in a negative way the dimensional
accuracy, waviness, and roughness of turned surfaces. Turning accuracy is commonly measured as
the deviation y expressed in millimeters. If we assume that deviation is a function of n-arguments
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y = f (x1, x2, . . . , xn), then controlling the turning process of low-rigidity shafts consists in minimizing
the deviation by appropriately selecting explanatory variables.

1.1. The Problem of Low-Rigidity Shaft Machining

The traditional methods applied in the machining of rigid shafts are not effective when machining
low-rigidity shafts. The effects of low rigidity of shafts can be mitigated using various solutions, such as
multi-pass machining, machining at a reduced rotational speed, use of additional supporting elements,
and even manual lapping [1]. These techniques, however, reduce the efficiency of production and
increase the technical costs of manufacturing shafts. Besides, none of them guarantee the repeatability
of the process parameters, and in many cases, the workpieces produced using these methods fail to
meet accuracy requirements.

The approaches described in the literature for controlling the process of turning low-rigidity shafts
are based on the assumption that the cutting tool moves relative to the workpiece in accordance with
the kinematics of turning and vibrates in the direction of the pressure of the cutting force element
and that the cutting edge imparts the profile of the tool bit tip onto the workpiece. Under the above
assumptions, deformations of machined surfaces can be described using mathematical functions;
however, an approach like this simplifies the problem under consideration. Utilitarian mathematical
models completely ignore other factors (disruptions) that also have an impact on the machining process.

Factors that make it impossible to precisely predict the parameters of low-rigidity shaft turning
can be divided into process-related, technological factors and workpiece-related, non-technological
(operational) factors [2]. The technological factors are associated with the variability of the environment,
variations in the cutting force, blunting of the tool bit, changes in the position of support reactions,
the work-holding method used, contact deformations, and machining conditions and parameters (e.g.,
temperature, changes in voltage supplied to the lathe, type of coolant used).

Operational factors are related to the uncertainty associated with the fact that it is difficult to
determine many properties, such as contact stiffness, which depends not only on the shape and initial
state of the surface of the workpiece, its dimensions, and the type of material used but also on many
other factors [3,4]. Due to the very large number of variables involved, the value of contact stiffness is
also very difficult to determine. Other non-technological factors that can lead to the deformation of the
surface of low-rigidity shafts during turning include: non-uniform workpiece material, dry and wet
friction, fatigue strength, resistance to vibration and corrosion, as well as the type of treatment that the
given part has previously been subjected to (e.g., heat treatment).

Mathematical models used to describe the turning of low-rigidity shafts ignore the disruptions
arising during measurements and the fact that the turning tool bit does not vibrate solely in the direction
of the cutting force vector. Other phenomena that mathematical models fail to capture include: the effect
of the temperature of the part and the tool bit on the quality of the surface obtained during turning,
the effect of wear of the tool bit tip on the reliability of turning, disruptions of turning kinematics
expressed as deviations and anomalies in the way the tool bit moves relative to the workpiece.

1.2. Automation of the Low-Rigidity Shaft Turning Process

Process automation is one of the key megatrends that drive Industry 4.0 [5]. This concept relates to
the use of the latest achievements in the fields of IT (Cloud Computing, Cloud Manufacturing, Internet
of Things), cybernetics, mechatronics, and production engineering [6]. In particular, this applies to the
integration and complete automation of control of production processes to the extent that decisions are
made by machines, with humans playing a supervisory role. Because Industry 4.0 is a challenge and
goal pursued by the world’s leading economies, there is large demand for research geared towards
improving existing and developing new methods of process automation.

Automation of solutions for the machining of high rigidity parts generally does not pose any
major difficulties. The real challenge is the automation of machining of parts with atypical dimensional
proportions, such as low-rigidity shafts [7]. When designing machine parts and the devices that
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are composed of those parts, it is necessary to take into account reliability, both in relation to the
production process and the operation and maintenance. These two spheres, though distinct from a
scientific point of view, complement each other in actual practice. To ensure high performance of a
machine, it is necessary to use high quality parts. There are many factors that determine the quality of
parts. They include, among others, high dimensional accuracy and low surface roughness. In order
to produce high quality parts on an industrial scale, companies need to ensure that the production
process meets high reliability standards, which can be achieved in conditions of high production
automation. Ensuring a high level of automation in the production of low rigidity shafts is still a
serious challenge, which is why there is a need for research aimed at developing effective and efficient
methods of machining this type of machine parts.

1.3. The Application of Artificial Intelligence in the Machining of Parts

The literature provides numerous examples of application of artificial intelligence methods in
controlling production processes. Most of them are solutions implemented in numerical machine
tools. Yu, Kabaldin, and Shatagin, for example, describe the use of artificial neural networks for the
classification of a point cloud in a 3D model of a workpiece, which allows to automatically analyze the
shape of the workpiece machined in the working space of a CNC machine tool [8]. In turn, Moreira et
al. applied fuzzy logic and neural networks to develop a controller for adjusting milling parameters
in real time [9]. Mironova describes an intellectual system based on functional semantic network
technologies, developed to ensure the accuracy of machining with point tools [10]. She found that axial
misalignment of openings machined with high-speed steel drills depended on/was caused by tool
advance and its rotational frequency. Sharma, Chawla, and Ram describe machine learning algorithms,
namely support vector machine (SVM), restricted Boltzmann machine (RBM), and deep belief network
(DBN), for the automatic programming of a computer numerical control machine [11]. Yusup et al.
estimated optimal abrasive waterjet machining control parameters using artificial bee colony [12].
Fang, Pai, and Edwards developed a model for predicting roughness of machined surfaces. They used
multilayer perceptron (MLP) neural networks to process multidimensional signals generated during
metal machining operations, including three-dimensional cutting force signals and three-dimensional
cutting vibration signals [13]. Naresh, Bose, and Rao report the results of a comparative study of
artificial neural network (ANN) and adaptive neuro-fuzzy inference system models for the improved
prediction of wire electro-discharge machining responses, such as material removal rate and surface
roughness of a Nitinol alloy [14].

These examples indicate that machine learning methods can be used as effective predictive tools in
controlling machining processes. Optimization methods can also be successfully used as components
of production process control, as evidenced by various publications [6,15–19].

1.4. Innovative Aspects of the Proposed Approach

Increasing the level of automation of CNC machine tools can be obtained by the dynamic
methods of machining control application. Yusuf Altintas presents many examples of open-loop and
closed-loop robust nonlinear control systems in his book [20]. Modern control of such systems is based
on adaptive methods such as feed drive control system, sliding mode controller with disturbance
estimation, or intelligent machining module. With intelligent machining, tasks such as adaptive control,
tool condition monitoring, and process control can be performed. Taking into account the diversity of
tasks that are realized simultaneously during the modern automated CNC machining process, it must
be mentioned that machining dynamics analysis methods can be used for the control of low-rigidity
shafts turning process as supplemental ones. The combination of different control methods gives the
possibility of reaching a synergy effect. However, such hybrid solutions need additional research in
defined areas of CNC machining.
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The chatter can be detected by continuously monitoring the amplitude of the sound spectrum.
It can be measured by a microphone. Vibrations can be reduced by adjusting the cutting speed.
However, it causes a reduction in the efficiency of the machining process.

Wang at al. [21] described an adaptive intelligent control system based on the constant cutting
force and a smart machining tool. The smart cutting tool developed by the authors provided data on
cutting force measurement, with a plug-and-produce feature, rendering a simple and compact low-cost
sensing tool configuration. The authors state that the development of adaptive smart machining based
on using smart cutting tools and the associated smart algorithms minimizes the machining time and
improves surface roughness. The results presented in this paper completely prove this thesis.

The goal of this article is to present an original method for the adaptive control of turning
low-rigidity shafts based on artificial intelligence and machine learning methods. A predictive
controller algorithm was developed in which neural networks and genetic algorithms (GA) were
implemented. The neural network generates the value of deviation y on the basis of two input variables:
Fx1—moving tensile force and e—eccentricity of tensile force under tension. In mathematical terms,
the neural network, treated as a black box, plays the role of an optimized fitness function given by the
general Formula (1).

y = min
Fx1,e

f (Fx1, e). (1)

In the next step, the objective function (1) is optimized using a GA. The GA minimizes the
deviation y by appropriately selecting force Fx1 and eccentricity e. The novelty of the presented concept
lies in the proper training of the neural network, which, once it acquires the ability to generalize,
can effectively convert input data into deviation. Owing to the fact that the neural network was trained
using real-life data, the measurements take into account the impact of many interfering factors, which,
in the case of machine learning, unlike in mathematical methods, are not known. Actually, all the
necessary information is contained in the learning data set. The use of a neural network as an objective
function for a GA is also a novel idea. By replacing the classic objective function, which is given
by a detailed mathematical formula, with a neural network, we solved the problem of disruptions
and difficult-to-define factors affecting the turning process. The level of process automation was
also increased.

The article comprises four sections. Section 1 presents the theoretical aspects of turning low-rigidity
shafts and a review of the relevant literature. Section 2 describes the key aspects of modelling the
machining process and the application of algorithmic methods. Section 3 reports the results obtained
using the algorithmic methods developed in this study and compares them to verify the effectiveness
of the network methods used. The article concludes with Section 4, which contains observations and
reflections made during the experiments, analyses, and modelling.

2. Materials and Methods

Figure 1 shows how the low-rigidity shaft was secured in the turning machine. The line defining
the elastic limit of the workpiece is marked in red. There exist numerous theoretical methods for
controlling the accuracy of machining elastically deformable shafts [22]. The accuracy of machining
low-rigidity shafts can be effectively improved by increasing their stiffness via an oriented change in
the elastic-deformable state [23]. This type of process control can be exerted by applying a tensile force
to the workpiece, which, combined with the cutting force, produces longitudinal-transverse loads.
Additionally, one can control the rotation angle of the cross-section of the workpiece at the holding point
by applying a tensile force displaced relative to the axis of the lathe centers [24]. This work-holding
solution can be depicted as a movable rotary support (Figure 1). The present experiments were carried
out using this method of controlling the machining of low-rigidity shafts.
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Figure 1. Work-holding method for securing the low-rigidity shaft specimen in the turning machine. 
Notation: Fbe—bending force exerted by the cutting tool bit, Fx—tensile force along the x axis. x2, y1, 
y2—current coordinates at each section of the workpiece, a—distance from spindle to the tip of the 
cutting tool bit, L—length of shaft, M0, Q0—initial parameters: moment and transverse force at the 
holding point, respectively, M1—moment generated by the axial component of cutting force, 
M2—moment generated at the holding point at which the part is secured to the tailstock of the 
turning machine. 
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a measure of the quality of turning), which had a direct impact on the quality of the surface of 
machined shafts. 

Figure 2 shows photographic images of the test stand used in the experiments. The spindle of 
the turning machine shown in the images is equipped with a rotary collet vise which allows to 
stretch the shaft secured in it. Apart from that, the position of the turning tailstock can be adjusted to 
change the angle of rotation of the shaft cross-section at the holding point by applying a tensile force 
displaced relative to the axis of the lathe centers. In this setup, the application of one controllable 
force factor (eccentric stretching) allows to produce two force factors in any pre-defined section of 

Figure 1. Work-holding method for securing the low-rigidity shaft specimen in the turning machine.
Notation: Fbe—bending force exerted by the cutting tool bit, Fx—tensile force along the x axis. x2,
y1, y2—current coordinates at each section of the workpiece, a—distance from spindle to the tip of
the cutting tool bit, L—length of shaft, M0, Q0—initial parameters: moment and transverse force
at the holding point, respectively, M1—moment generated by the axial component of cutting force,
M2—moment generated at the holding point at which the part is secured to the tailstock of the
turning machine.

Formulas (2)–(4) specify the loading conditions of the shaft shown in Figure 1.

M1 = Fx
d
2 ,

M2 = Fx1·e
(2)

where: d—shaft diameter; e—eccentricity.

y1(x1) =

(
Q0

Fx1 − F f
α

)
(sinhα1x1) +

(
M0

Fx1 − F f

)
(coshα1x1 − 1), (3)

where: F f —axial component of cutting force.

y2(x2) =
Q0 coshα1+M0α1sinhα1a+Fbe

α2Fx1
(sinhα2x2 − α2x2)

+

 sinhα
(

Q0
α1

)
+M0sinhα1+M1

Fx1

(coshα2x2 − 1).
(4)

Because the kinematic functions describing shaft turning do not take into account all the factors
involved in the process, they are not sufficient to ensure an optimal level of control. In the present
model, the turning process was optimized by minimizing the deviation function (where deviation
is a measure of the quality of turning), which had a direct impact on the quality of the surface of
machined shafts.

Figure 2 shows photographic images of the test stand used in the experiments. The spindle
of the turning machine shown in the images is equipped with a rotary collet vise which allows to
stretch the shaft secured in it. Apart from that, the position of the turning tailstock can be adjusted to
change the angle of rotation of the shaft cross-section at the holding point by applying a tensile force
displaced relative to the axis of the lathe centers. In this setup, the application of one controllable
force factor (eccentric stretching) allows to produce two force factors in any pre-defined section of the
specimen (particularly in the machining zone): longitudinal force Fx1 and bending moment M2 = Fx1·e,
which counteracts cutting forces.
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Figure 2. (a) Roughness measuring instrument; tailstock collet assembly for machining
elastic-deformable shafts: (b) idle position, tensile force of 2 kN; (c) view of the test stand with
the shaft secured in the lathe (Ø6, L = 300 mm); (d) specimens.

2.1. Data Preparation

Data for neural network training were collected during test stand experiments. A mechanical
system was developed in which the process of machining a low rigidity shaft was controlled using two
types of regulatory impacts—tensile force Fx1 and eccentricity e. An optimization problem described
by the objective function (5) was formulated.

y = min
Fx1,e

(d.L, F f , v, ap, f , a, x, Fx1, e) (5)

where d—shaft diameter [mm]; L—shaft length [mm]; Ff —axial component of cutting force [N];
v—cutting (feed) rate [mm/min]; a—distance from the cutting edge to the point at which the workpiece
is secured in the spindle [mm]; ap—depth of cut [mm]; f —feed [mm/revolution].

It was assumed that all values of the parameters of the objective function (5), except for Fx1

and e, remained constant during turning. A shaft with a length of L = 300 mm was subjected to
turning. Figures 3–6 show the curves of the objective function y, tensile force Fx1, and eccentricity e,
for predefined shaft diameters and cutting forces. Data collected during the tests were modelled using
a two-dimensional gradient descent search algorithm. The section of the shaft from 1 to 300 mm was
divided into 5981 0.05 mm long (parts corresponding to) measuring intervals. Fx10 is the initial value
of force Fx1.
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Figure 5. Curves of objective function y, tensile force Fx1, and eccentric e for d = 8 mm, Fbe = 147 N,
Fx10 = 980 N, L = 300 mm, Ff = 196 N.

The data given above were used to train three types of neural networks: a shallow MLP
ANN, a flat nonlinear autoregressive network with exogenous input (NARX) designed for the
prediction of multidimensional time series and signals, and a long short-term memory (LSTM) neural
network, which is a recurrent deep learning network. Algorithm 1 shows the workflow of the
neuron-genetic controller.
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Algorithm 1 Two-dimensional gradient descent search algorithm

1. determine the initial conditions by performing a turning operation to produce one low rigidity shaft:

a. determine shaft diameter d
b. determine bending force Fbe

c. determine cutting force component Ff

d. determine the initial distance from the cutting edge to the point at which the workpiece is secured
in the spindle a0

e. determine initial axial force Fx10

f. determine initial eccentricity e0

2. record measurements of Fx1, e and deviation y every 0.05 mm by changing the values of parameters Fx1
and e within the pre-defined range

3. use the measurement data to train an ANN to predict y = f (Fx1, e)
4. minimize deviation y, which is the output value of the neural network which serves as the objective

function y = min Fx1,eφ(d, L, F f , v, ap, f , a, x, Fx1, e) for the GA

2.2. Shallow Neural Network

In the first variant of the experiment, an MLP ANN was developed (Figure 7). This network has
three inputs: a, Fx1, and e, one hidden layer containing 10 neurons and one output layer with a single
y output representing deviation, which is a measure of the roughness of the machined shaft surface.
A hyperbolic tangent sigmoid transfer function was used in the hidden layer, and a linear transfer
function was used in the output layer.
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Two measures of the quality of the trained network were used—mean square error (MSE) and
regression R. Formula (6) gives the method of calculating MSE:

MSE =
1
n

n∑
i=1

(y′i − y∗i )
2 (6)
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where n—number of cases in a given set; y′i —reference value for the i-th shaft section; y∗i —predicted
value for the i-th shaft section.

The method of calculating the regression coefficient R is given by Formula (2):

R(y′, y∗) =
cov(y′, y∗)
σy′σy∗

R ∈ 〈0, 1〉 (7)

where σy′—standard deviation of reference values, σy∗—standard deviation of predicted values.
In Table 1, the data set with 5981 cases is divided into three subsets: a training subset, a validation

subset, and a test subset in a ratio of 70:15:15. Table 1 also shows MSE and R values determined for
variant (I) data, which are visualized in Figure 3.

Table 1. Training results for the multilayer perceptron (MLP) artificial neural network (ANN) by
data subset.

Data Subset Number of Cases in Set Mean Square Error (MSE) Regression (R)

Training set (70%) 4187 1.5059 × 10−5 0.99886
Validation set (15%) 897 1.5775 × 10−5 0.99880

Testing set (15%) 897 1.4976 × 10−5 0.99878

The generalization capacity of a trained neural network is better the lower the value of MSE and
the higher the value of R. Figure 8 shows a plot of MSE over training epochs. The learning curve
(Figure 8a) has a regular hyperbolic shape, which testifies to the high quality of the trained network.
The high degree of overlap between the curves for the training, validation and test subsets also confirms
that the network has a high ability to generalize predictions and that there is no overfitting.
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Figure 8. Best validation performance is 1.5775 × 10−5 at epoch 20: (a) general view, (b) enlarged view
of the terminal part of the curve.

To prevent overfitting of the ANN, the early stopping technique was used. The method consists
in monitoring the validation error in the individual epochs. If the error did not decrease for six
consecutive epochs, training was terminated. Network training was also constrained by setting a
limit on the maximum number of epochs. In the case under consideration, this limit was 20 epochs.
The ANN was trained using the Levenberg–Marquardt (LMA) optimization algorithm, which includes
finding the zeros of Newton’s function. This type of algorithm, also known as a back error propagation
algorithm, is characterized by high speed and high memory requirements. Two important parameters
of LMA are gradient and momentum (Mu). Figure 9b shows a graph of gradient values during
ANN training. The lack of clear fluctuations and the downward trend demonstrate that the training
procedure worked well.
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Figure 9c shows a graph of Mu values. The momentum decreases and is analogous to the inertia
of the search for the minimum point of the objective function; therefore, the closer to the minimum
sought, the lower the Mu. Figure 9a shows an error histogram. The fact that the shape of the histogram
resembles a normal distribution curve and that the largest number of errors has the lowest values
demonstrates that the trained network is good quality and that there are no symptoms of overfitting.

2.3. NARX Neural Network

In the second variant of the experiment, we used a NARX with feedback connections. NARX
are recurrent dynamic neural networks designed to predict single or multiple time series. Prediction
can be made in the so-called closed-loop model, which means that the output values are passed back
to the input, thus supporting the prediction. In the case at hand, NARX network inputs included
components Fx1 and e, and also, in the variant with a closed-loop NARX, the previously obtained
actual value of deviation yt-1. The equation that defines the operation of the NARX network is given
by Formula (8) [25]:

y(t + 1) = F(y(t), y(t− 1), y(t− 2), . . . , y(t− ny), x(t + 1)x(t), x(t− 1), x(t− 2), . . . , x(t− nx)) (8)

where F(·)—mapping function; y(t − 1)—output of NARX at moment t for moment t + 1; y(t),
y(t − 1),. . . , y(t − ny)—actual past values of the signal; (t + 1)x(t), x(t − 1), . . . , x(t − nx)—sequential
values of the NARX input signal; ny—number of outputs; nx—number of inputs. According to Formula
(8), the next value of output signal y(t) is regressed on previous values of the input signal and previous
values of the output signal.

Figure 10 shows the structure of the NARX network. The network has two inputs, which are
signals with values Fx1 and e. The hidden layer contains 10 neurons, and the output layer consists
of a single deviation signal y. The network was created and trained in open-loop form as shown in
Figure 10a. Open loop (single-step) training is more efficient than closed loop (multi-step) training.
An open loop allows the network to be fed with the correct previous output values to produce the
correct current outputs. After training, the network is converted to a closed-loop form required by
the application.

Table 2 shows data divided into training, validation, and test subsets, as well as the results
of training the NARX open-loop network. It is worth noting that although the training results
are better than for the shallow ANN, they are not final results yet. The actual quality of a NARX
network is measured by calculating MSE and R parameters after it has been transformed into a
closed-loop network.
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Figure 10. Structure of nonlinear autoregressive network with exogenous input (NARX) neural network:
(a) open-loop architecture; (b) closed-loop architecture.

Table 2. Training results for the open-loop NARX by data subset.

Data Subset Number of Cases in Set Mean Square Error (MSE) Regression (R)

Training set (70%) 4187 3.7450 × 10−8 0.999
Validation set (15%) 897 3.9897 × 10−8 0.999

Testing set (15%) 897 3.8548 × 10−8 0.999

Figure 11a,b confirm the high quality of NARX training. The MSE curves for the training,
validation, and test subsets are almost identical. Training was terminated after 20 epochs.

Similar to ANN, early stopping was used to protect the NARX network against overfitting. The,
L.M.A. algorithm was used to train the NARX network.

Figure 12a–c also confirms the high quality of the training process. The explanations and
conclusions that can be drawn from the analysis of the data shown in those figures are analogous to
those for Figure 9a–c.

Table 3 shows the results obtained after the open-loop NARX network had been converted into
a closed-loop network. It can be seen that the NARX network which predicts results a step ahead,
shows excellent performance. The quality of the prediction for the whole sequence is much worse;
however, this was not important in the context of the present study, because predictions were not made
here for horizons longer than one step. For this reason, indicators of quality of closed-loop NARX for
whole sequence prediction were not taken into account when assessing the performance of the neural
networks for controlling the process of turning low-rigidity shafts.
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Figure 11. Best validation performance is 3.9897 × 10−8 at epoch 20: (a) general view, (b) enlarged view
of the terminal part of the curve.
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Figure 12. (a) Error histogram with 20 bins, (b) gradient curve, (c) Mu curve.

Figure 13 shows regression statistics for the closed-loop step-ahead NARX for all cases from the
training, validation, and test subsets. Figure 13a shows regression for the entire set, which is close to 1.
Figure 13b shows data for 16 randomly selected cases, allowing to observe deviations of predictions
from the reference value (target). For this set of 16 cases, R = 0.99946, which is confirmed by the high
degree of overlap of measuring points and a fit line with the ideal prediction line Y = T.
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Figure 13. Regression statistics for closed-loop step-ahead NARX: (a) R ≈ 1 for whole set of 5980 cases,
(b) R = 0.99946 for the subset of 16 cases.
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Table 3. Closed-loop NARX training results.

Closed-Loop NARX Mean Square Error (MSE) Regression (R)

step-ahead prediction 3.7982 × 10−8 0.9999
whole sequence prediction 9.7246 × 10−3 0.5506

2.4. Deep Network LSTM

In the third variant of the predictive model for controlling the process of turning low-rigidity
shafts, we used a deep LSTM neural network. LSTM is a recurrent network. It has a more complex
structure than MLP, which endows it with special properties for learning long-term relationships
between individual sequential cases. Figure 14 shows the workflow of the LSTM network [26].

Sensors 2020, 20, x FOR PEER REVIEW 13 of 23 

 

2.4. Deep Network LSTM 

In the third variant of the predictive model for controlling the process of turning low-rigidity 
shafts, we used a deep LSTM neural network. LSTM is a recurrent network. It has a more complex 
structure than MLP, which endows it with special properties for learning long-term relationships 
between individual sequential cases. Figure 14 shows the workflow of the LSTM network [26]. 

g

ct

htht-1

ct-1
Forget Update Output

xt

i of

 

Figure 14. Structure of a long short-term memory (LSTM) layer [26]. 

Each of the LSTM layers contains two states, where ht is the hidden (initial) state at moment t 
and ct is the cell state at moment t. The cell state contains information learned in previous time steps. 
At each stage, each LSTM layer adds or removes information from the cell state. Information is 
updated using gates. The gates have the task of controlling the level of cell state: f—reset (forget), 
(i)—the input gate (update) controls the level of cell state update, g—candidate cell (update), 
(o)—output gate. 

Equations (9) describe the components of the LSTM layer at time step t  

 )( 1 ftftfgt bhRxWf ++= −σ  

 )( 1 gtgtgct bhRxWg ++= −σ  

 )( 1 ititigt bhRxWi ++= −σ  

 )( 1 ototogt bhRxWo ++= −σ  

(9) 

where W—weights, R—recurrent weights, b—biases, σ—sigmoidal gate activation functions 
expressed by 1)1()( −−+= xexσ , th —hidden state at time step t described as )( tctt coh σ= , 
where σc is the state activation function. The cell state at a given time step t is described by 

ttttt gicfc  += −1 where   denotes element-wise multiplication of vectors.  
The architecture of the LSTM network used in this study is shown in Table 4. As in the NARX 

network, the input layer of the LSTM network consists of variables Fx1, e and the y value imported 
from the input. Accordingly, there are three activations in the input layer. The second layer is a 
bidirectional LSTM layer (BiLSTM) with 200 activations. It learns bidirectional long-term 
dependencies between steps of sequences. Such dependencies can be useful when the network 
should learn from full time series at each stage. The next layer is a fully connected layer with one 
activation. The last layer is the regression output variable y. 

Figure 14. Structure of a long short-term memory (LSTM) layer [26].

Each of the LSTM layers contains two states, where ht is the hidden (initial) state at moment t
and ct is the cell state at moment t. The cell state contains information learned in previous time steps.
At each stage, each LSTM layer adds or removes information from the cell state. Information is updated
using gates. The gates have the task of controlling the level of cell state: f—reset (forget), (i)—the input
gate (update) controls the level of cell state update, g—candidate cell (update), (o)—output gate.

Equation (9) describe the components of the LSTM layer at time step t:

ft = σg(W f xt + R f ht−1 + b f )

gt = σc(Wgxt + Rght−1 + bg)

it = σg(Wixt + Riht−1 + bi)

ot = σg(Woxt + Roht−1 + bo)

(9)

where W—weights, R—recurrent weights, b—biases, σ—sigmoidal gate activation functions expressed
by σ(x) = (1 + e−x)−1, ht—hidden state at time step t described as ht = ot ◦ σc(ct), where σc is the state
activation function. The cell state at a given time step t is described by ct = ft ◦ ct−1 + it ◦ gt where ◦
denotes element-wise multiplication of vectors.

The architecture of the LSTM network used in this study is shown in Table 4. As in the NARX
network, the input layer of the LSTM network consists of variables Fx1, e and the y value imported from
the input. Accordingly, there are three activations in the input layer. The second layer is a bidirectional
LSTM layer (BiLSTM) with 200 activations. It learns bidirectional long-term dependencies between
steps of sequences. Such dependencies can be useful when the network should learn from full time
series at each stage. The next layer is a fully connected layer with one activation. The last layer is the
regression output variable y.
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Table 4. Layers of the LSTM after feature extraction.

# Layer Description Activations Learnable Parameters (Weights and Biases)

1 Sequence input with 3
dimensions 3 –

2 BiLSTM with 200 hidden units 200 Input weights: 800 × 2;
Recurrent Weights: 800 × 200; Bias: 800 × 1.

3 One fully connected layer 1 Weights: 6 × 200;
Bias: 1 × 1.

4 Regression output – –

The LSTM network was trained using the adaptive moment estimation optimization method
(ADAM), for which: regularization factor L2 = 1 × 10−4, initial learning rate 0.05, learn rate drop factor
0.1, learning period 10, momentum 0.9. The learning conditions included a maximum of 5 epochs and
a minimum batch size of 64. Two measures of learning quality were used—RMSE and loss. RMSE is
the rooted MSE (10).

RMSE =

√√
1
n

n∑
i=1

(y′i − y∗i )
2 (10)

The loss function is given by Equation (11):

Loss = −
n∑

i=1

y′i log(y∗i )/m (11)

where m—number of observations, n—number of responses, y′n—reference values, y∗n—response values.
The learning effectiveness of LSTM is illustrated in Figures 15 and 16. The RMSE and loss curves

are similar and they both show that the learning process proceeded in a correct manner. The initially
high error values and losses decreased quickly to eventually stabilize at a constant level. Then, network
training was terminated.
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Table 5 presents additional parameters illustrating the learning process. Mini-batch RMSE
stabilized after the first epoch, while mini-batch loss stabilized after the second epoch. The base
learning rate was 0.05 throughout the entire learning process.
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Table 5. Layers of the LSTM after feature extraction.

Epoch Iteration RMSE Mini-Batch Mini-Batch Loss Base Learning Rate

1 1 1.06 0.6 0.05
1 50 0.07 2.1 × 10−3 0.05
2 100 0.01 1.0 × 10−4 0.05
2 150 0.01 8.9 × 10−5 0.05
3 200 0.01 7.9 × 10−5 0.05
3 250 0.01 1.1 × 10−4 0.05
4 300 0.01 8.7 × 10−5 0.05
4 350 0.01 8.7 × 10−5 0.05
5 400 0.02 1.1 × 10−4 0.05
5 450 0.01 7.0 × 10−5 0.05

Table 6 presents the results of training the LSTM network. Step-ahead prediction was very
effective, although the MSE parameter was slightly lower than in the case of NARX. Whole sequence
prediction was much less effective. This, however, was of no consequence for the present experiments,
because this type of prediction was not used in controlling the accuracy of the machining of shafts.

Table 6. Training results for the closed-loop LSTM.

Closed-Loop LSTM Mean Square Error (MSE) Regression (R)

step-ahead prediction 1.4067 × 10−4 0.9999
whole sequence

prediction 2.6045 × 10−2 0.5506

2.5. GA-Based Controller

GA are based on natural evolutionary processes. In nature, individuals that are best adapted
to specific conditions have the best chances of survival and reproduction. As a result, subsequent
generations are even better adapted than the previous ones, because they have inherited the best
traits (ones that are best suited to their living conditions) from their parents. The same idea is used in
evolutionary computational algorithms. GA are able to solve optimization problems with both real
and integer types of constraints. They are based on a stochastic, population algorithm that searches
randomly by mutation and crossover among elements of the population. Each population consists of a
set of chromosomes, and each chromosome is a vector composed of genes. Genes have binary values
of 0 or 1. The computational process for a classical GA comprises six stages: encoding, evaluation,
selection, crossover (reproduction), mutation, and decoding.

Encoding consists in stochastically generating the initial population. In the next step, the degree
of fit of each chromosome is evaluated by calculating the fitness function value for each chromosome.
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In the present case, a neural network plays the role of fitness function. The higher the value of the
objective function for a given chromosome, the better suited it is to solve the problem described by
the objective function. The evaluation parameters assigned to chromosomes determine the likelihood
that a given chromosome will be carried to the next stage (mutation). Mutation is the transformation
Om : D(P)→ D(P) which randomly alters the l-th component of the solution (chromosome) Xt

i at
a predefined probability: Om(Xt

i) = Xt+1
i , where: Xt

i = (x1, . . . , xi, . . . , xn), Xt+1
i = (x1, . . . , xi, . . . , xn).

Crossover Ok is the transformation Ok : D(P) ×D(P)→ D(P) ×D(P) , where Xt
i = (x1, . . . , xn),Xt+1

i =

(x1, . . . , xi, vi+1, . . . , vn) and Xt
j = (v1, . . . , vn),Xt+1

i = (v1, . . . , vi, xi+1, . . . , xn). Figure 17 shows a general
scheme of the neural-genetic controller.
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Figure 17. Neural-genetic controller.

A genetic minimizer was used to control the machining of low-rigidity shafts. The optimization
problem can be formulated as minx f (X), where X—vector of input variables. Figure 18 shows the best
fitness plot of the GA. It plots the best function value in each generation compared to the iteration
number. In the present optimization, the best fitness function value was 0.35655, and the mean value
was 0.356526.
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3. Results and Discussion

As previously mentioned, the main task of the predictive controller algorithm is to minimize the
deviation function (1). The deviation y is directly correlated with the surface roughness of a machined
shaft, and it is a measure of the quality of turning. The quality of the neural network prediction is
expressed by means of the MSE and R indicators (Table 7). The more accurate the prediction of the
neural network and the higher the level of optimization of the fitness function performed by the genetic
algorithm, the smaller the deviation y that expresses the quality of turning.
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Table 7. The results of neural network tests.

Neural Network Type MSE R

Deep LSTM (step-ahead prediction) 1.5456 × 10−5 0.9999
Shallow MLP ANN 2.3984 × 10−4 0.9997
NARX (step-ahead prediction) 1.8819 × 10−5 0.9999

In order to best assess the quality of the neural networks used, a number of cases were extracted
from the training subset before training, which were later used to test the individual network variants.
Table 7 shows the results of tests determining the performance of the individual types of neural
networks in controlling the machining of low-rigidity shafts.

An analysis of the data given in Table 7 indicates that the best results for the tested data set were
obtained using the LSTM network. It is worth noting that the differences in MSE and R between the
three types of networks are negligible. When MSE and regression R are considered, even the results of
the least effective network (MLP ANN) are sufficient to control the process of turning low-rigidity
shafts. LSTM and NARX are all the more suitable for this purpose.

3.1. Shallow MLP Network

An MLP ANN is fundamentally different from a NARX and LSTM. It not only has a distinct
structure and lacks feedback and recurrent solutions, but, above all, it does not take into account the
order of occurrence of the individual measurements on the time axis. For this reason, ANNs are rarely
used to predict time sequences or event sequences. This does not mean, however, that they cannot be
used for those purposes.

Parametric data collected during the turning of shafts constitute a certain sequence. To provide
sequencing information, the value of parameter a (distance from the cutting edge to the point at which
the workpiece is secured in the spindle) was entered into the MLP ANN input data vector (Figure 1).
As a result, each three-component MLP ANN input vector, consisting of variables a, Fx1, and e, now had
a specific index (variable a). This allowed to extract the test subset from the 5981-element data set,
by first randomly mixing the cases, and then cutting off cases 1 to 5500 for the training set and cases
5501 to 5981 for the test set. The test subset obtained in this way contained 481 cases. This means that
ANN was trained on a set which was unordered but indexed by the value of a. Owing to this, training
produced very good results. Figure 19 shows the differences between predicted values and reference
values of deviation y. Figure 20 shows a detail of Figure 19 to better visualize the deviations between
the prediction line and the reference line. The 481 measurements were plotted on the horizontal axis in
such a way that this axis corresponded to the total length of the machined shaft L = 300 mm.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 23 

 

prediction of the neural network and the higher the level of optimization of the fitness function 
performed by the genetic algorithm, the smaller the deviation y that expresses the quality of turning. 

In order to best assess the quality of the neural networks used, a number of cases were extracted 
from the training subset before training, which were later used to test the individual network 
variants. Table 7 shows the results of tests determining the performance of the individual types of 
neural networks in controlling the machining of low-rigidity shafts. 

Table 7. The results of neural network tests. 

Neural Network Type MSE R 
Deep LSTM (step-ahead prediction) 1.5456 × 10−5 0.9999 
Shallow MLP ANN 2.3984 × 10−4 0.9997 
NARX (step-ahead prediction) 1.8819 × 10−5 0.9999 

An analysis of the data given in Table 7 indicates that the best results for the tested data set 
were obtained using the LSTM network. It is worth noting that the differences in MSE and R 
between the three types of networks are negligible. When MSE and regression R are considered, 
even the results of the least effective network (MLP ANN) are sufficient to control the process of 
turning low-rigidity shafts. LSTM and NARX are all the more suitable for this purpose. 

3.1. Shallow MLP Network 

An MLP ANN is fundamentally different from a NARX and LSTM. It not only has a distinct 
structure and lacks feedback and recurrent solutions, but, above all, it does not take into account the 
order of occurrence of the individual measurements on the time axis. For this reason, ANNs are 
rarely used to predict time sequences or event sequences. This does not mean, however, that they 
cannot be used for those purposes. 

Parametric data collected during the turning of shafts constitute a certain sequence. To provide 
sequencing information, the value of parameter a (distance from the cutting edge to the point at 
which the workpiece is secured in the spindle) was entered into the MLP ANN input data vector 
(Figure 1). As a result, each three-component MLP ANN input vector, consisting of variables a, Fx1, 
and e, now had a specific index (variable a). This allowed to extract the test subset from the 
5981-element data set, by first randomly mixing the cases, and then cutting off cases 1 to 5500 for the 
training set and cases 5501 to 5981 for the test set. The test subset obtained in this way contained 481 
cases. This means that ANN was trained on a set which was unordered but indexed by the value of 
a. Owing to this, training produced very good results. Figure 19 shows the differences between 
predicted values and reference values of deviation y. Figure 20 shows a detail of Figure 19 to better 
visualize the deviations between the prediction line and the reference line. The 481 measurements 
were plotted on the horizontal axis in such a way that this axis corresponded to the total length of 
the machined shaft L = 300 mm. 

 

Figure 19. Machining quality prediction using MLP ANN. 
Figure 19. Machining quality prediction using MLP ANN.



Sensors 2020, 20, 4683 18 of 23Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

 

Figure 20. Machining quality prediction using MLP ANN—detail of the process for L = 154 ÷ 165 mm 
in Figure 19. 

3.2. NARX Neural Network 

In the case of NARX, it was impossible to apply the method of extraction of the test set used for 
ANN. This was because NARX had no index in the input vector. To preserve the order of the 
sequence, NARX was designed to include feedback connections, where the previous input value of 
deviation y-t 1 was provided as a third input vector component, beside Fx1 and e. Figure 21 shows the 
deviation of predicted values from reference values for the NARX network. As in the case of ANN, 
481 measurements were plotted on the horizontal axis so that this axis corresponded to the total 
length of the machined shaft L = 300 mm. Figure 22 shows the machining quality prediction (a detail 
of Figure 21) to better visualize the deviations between the prediction line and the reference line 

 
Figure 21. Machining quality prediction using NARX. 

 
Figure 22. Machining quality prediction using NARX—detail of the process for L = 154 ÷ 165 mm in 
Figure 21. 

Figure 20. Machining quality prediction using MLP ANN—detail of the process for L = 154 ÷ 165 mm
in Figure 19.

3.2. NARX Neural Network

In the case of NARX, it was impossible to apply the method of extraction of the test set used
for ANN. This was because NARX had no index in the input vector. To preserve the order of the
sequence, NARX was designed to include feedback connections, where the previous input value of
deviation y-t 1 was provided as a third input vector component, beside Fx1 and e. Figure 21 shows the
deviation of predicted values from reference values for the NARX network. As in the case of ANN,
481 measurements were plotted on the horizontal axis so that this axis corresponded to the total length
of the machined shaft L = 300 mm. Figure 22 shows the machining quality prediction (a detail of
Figure 21) to better visualize the deviations between the prediction line and the reference line.
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3.3. Deep LSTM Network

The data for training LSTM were prepared in the same way as for NARX. The input vector was
also the same for both networks. A comparison of the deviations of the LSTM network shown in
Figures 23 and 24 with the deviations of the NARX network show very large similarities in prediction.
This is associated with the similar nature of the two networks, which, due to the use of feedback yt-1,
are well suited for predicting time series and sequences and therefore can be employed for predicting
various types of processes.
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3.4. Neural-Genetic Controller

Figures 25 and 26 show examples of the results of applying the GA-based optimizer, in which a
neural network took over the role of the objective function. Figure 25 shows two cases for L = 300 mm
in which the controller adjusts the parameters e and Fx1 to minimize deviation y. In the first case,
optimization was performed for turning length a = 100 mm and in the second case for a = 200 mm.
As can be seen, there is a space between the two curves that allows to select parameters e and Fx1

within a certain range. The complex shape of the curves implies that the relationship between the two
parameters is characterized by a high level of complexity. There are also big differences in the course of
both curves, especially in the Fx1 range from 800 N to 1050 N.

Figure 25 shows a plot that is similar to that in Figure 24, but this time for a = 250 mm.
In Figures 25 and 26, there are many optimal pairs of parameters e and Fx1 for particular values of

turning length a. As a consequence, it is possible to fix one of these parameters for a defined constant
value that is not modified during the machining. At the same time, the second value can be adjusted.
It can happen that the controller issues a command to fix the value of parameter e or Fx1 beyond the
permissible range. In such cases, both of the parameters must be changed simultaneously.
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The tests showed that the quality of GA-based control of the turning process mainly depends on
the effectiveness of the objective function. Therefore, it can be assumed that the most effective variant
among the ones investigated in this study is the one that combines LSTM with GA.

4. Conclusions

This article presents an original approach to controlling the process of turning low-rigidity shafts
with the use of a hybrid neural-genetic controller. It was assumed that the use of an ANN in place
of a GA objective function would increase the effectiveness of control compared to other known
methods. Direct comparisons with other methods of controlling the machining of this type of shafts
are not possible without maintaining exactly the same material, machine and measurement conditions,
and parameters. For this reason, we compared three variants of machine learning algorithms we
developed especially for this study: MLP ANN, NARX, and LSTM.

The tests confirmed that properly prepared measurement data are of key importance for the
quality of the controller. A prerequisite for high-quality prediction, and thus for effective optimization
and ultimately control, is the use of a training set that includes measurements for the full range of
turning lengths. Hence, before starting the production of a new batch of products, a pilot process of
turning one reference shaft should be performed. This step is necessary for the acquisition of training
data. This study shows that improper division of measurement data into training and test subsets may
seriously reduce the quality of prediction and, consequently, the efficiency of control.

Because the best performing controllers used feedback, their performance might constitute a
crucial utilitarian problem. If the controller works too slowly, then either sampling has to be done less
frequently or the turning process must be slowed down. It should be stated that in the present case of
controlling the turning process, the quantity of data did not cause any efficiency problems. The neural
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networks were trained in a few seconds, and the results were generated in an even shorter time.
One limitation of the proposed solution is that the GA, being iterative, slowed down the optimization,
but it can be replaced by other, faster optimizers. It is all a matter of give and take between the speed
and effectiveness of optimization.

A clear advantage of the presented solution is that it allows to bring to light and take into account
many invisible but important factors that affect the effectiveness of control. Real-life data contain
information that, for obvious reasons of space, cannot be included in mathematical models. Although
all models, including both mathematical and neural models, constitute a simplified representation of
real objects, neural networks can reproduce real-life processes more accurately because they have the
ability to generalize and take into account large amounts of information contained in measurement data.
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Abbreviation

Symbol or Abbreviation Explanation
a distance from spindle to the tip of the cutting tool bit
e eccentricity of tensile force under tension
Fbe bending force exerted by the cutting tool bit
Fr reaction along the x axis
Fx tensile force along the x axis
Fx1 moving tensile force
L length of shaft
M0, Q0 initial parameters: moment and transverse force at the holding point, respectively
M1 moment generated by the axial component of cutting force

M2
moment generated at the holding point at which the part is secured to the
tailstock of the turning machine

R regression coefficient
x1, x2, y1, y2 current coordinates at each section of the workpiece
y′i reference value for the i-th shaft section;
y∗i predicted value for the i-th shaft section
σ′i standard deviation of reference values
σ∗i standard deviation of predicted values
ADAM adaptive moment estimation optimization method
ANN artificial neural network
BiLSTM bidirectional LSTM layer
DBN deep belief network
GA genetic algorithms
LMA Levenberg-Marquardt optimization algorithm

LSTM
long short-term memory neural network, which is a recurrent deep
learning network

MLP multilayer perceptron
MSE mean square error

NARX
flat nonlinear autoregressive network with exogenous input designed for the
prediction of multidimensional time series and signals

RBM restricted Boltzmann machine
RMSE rooted MSE
SVM support vector machine
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5. Cieśla, B.; Gunia, G. Development of integrated management information systems in the context of Industry
4.0. Appl. Comput. Sci. 2019, 15, 37–48.

6. Gola, A.; Kłosowski, G. Development of computer-controlled material handling model by means of fuzzy
logic and genetic algorithms. Neurocomputing 2019, 338, 381–392. [CrossRef]
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