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Abstract: The surface quality of aluminum ingot is crucial for subsequent products, so it is necessary
to adaptively detect different types of defects in milled aluminum ingots surfaces. In order to quickly
apply the calculations to a real production line, a novel two-stage detection approach is proposed.
Firstly, we proposed a novel mask gradient response-based threshold segmentation (MGRTS) in which
the mask gradient response is the gradient map after the strong gradient has been eliminated by the
binary mask, so that the various defects can be effectively extracted from the mask gradient response
map by iterative threshold segmentation. In the region of interest (ROI) extraction, we combine the
MGRTS and the Difference of Gaussian (DoG) to effectively improve the detection rate. In the aspect
of the defect classification, we train the inception-v3 network with a data augmentation technology
and the focal loss in order to overcome the class imbalance problem and improve the classification
accuracy. The comparative study shows that the proposed method is efficient and robust for detecting
various defects on an aluminum ingot surface with complex milling grain. In addition, it has been
applied to the actual production line of an aluminum ingot milling machine, which satisfies the
requirement of accuracy and real time very well.

Keywords: surface inspection; aluminum ingot; mask gradient response; Difference of Gaussian;
inception-v3

1. Introduction

Surface defect detection is a critical step of the metal industry. Since the technologies under
development are becoming more and more feasible, and the results are reliable enough for a decision,
the optical non-destructive testing (ONDT) has gained more and more attention in this filed. This is
mainly due to the development of the used tools: laser, cameras, and those faster computers that are
capable of processing large amounts of encrypted data in optical measurements [1]. A review has
been provided in [2], which is about the main ONDT technologies, including fiber optics [3], electronic
speckle [4], infrared thermography [5], endoscopic, and terahertz technology. The focus of this paper
is the digital speckle measurement method because of the use of CCD technology and advanced
computer vision technologies. For the high-quality inspection of various types of materials in all
kinds of environments, the advanced computer vision technologies have evolved into a mainstream
and replaced the conventional manual inspection method, improving on its inefficiency and high
labor intensity.
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Texture analysis provides a very powerful tool to detect defects in applications for visual inspection,
since textures provide valuable information about the features of different materials [6]. In computer
vision, texture is broadly divided into two main categories: statistical and structural. As shown in Figure 1,
statistical textures are isotropic and do not have easily identifiable primitives. In contrast, structural
(or patterned) textures are characterized by a set of repetitive primitives and placement rules, as shown in
Figure 2. Both the statistical and structural textures appear as homogeneous (Figure 1a,b and Figure 2a,b)
or inhomogeneous (Figure 1c,d and Figure 2c,d). It should be noted that Figures 1d and 2b are respectively
quoted from Reference [7] and Reference [8]. As can been seen, the milling surface we deal with features
structured homogeneous or inhomogeneous textures (Figure 2a,c,d).
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detection algorithm of bridge decks. A comprehensive analysis of multiple features (intensity-based, 
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patterns for hot-rolled steel strip surface defects recognition. Filtering-based methods commonly 
apply a filter bank to an image to calculate the energy of the filter response. To provide an efficient 
multi-scale directional representation of different defects, the shearlet transform is introduced in [14]. 
With the popularity of artificial intelligence in recent years, machine learning has been applied 
extensively in surface defect detection. Reference [9] used a supervised machine learning method 
called light gradient boosting machine (LightGBM) to detect cracks from the concrete surface imagery. 
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Figure 1. Statistical textures examples. (a) Hot-rolled steel strips surface, homogeneous; (b) Con-
casting slabs surface, homogeneous; (c) Con-casting slabs surface, inhomogeneous; (d) Bridge
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In order to enable automatic and non-destructive detection, visual inspection systems have found
wide applications in surface detection such as concrete structures [7,9–11] and metal surfaces [12–30].
In the field of concrete structure, there are lots of studies that try to inspect cracks from image
analysis [7,9–11]. In the field of metal surfaces, visual inspection systems have been applied in both
ferrous metal and nonferrous metal surface detection. For the nonferrous metals, methods to detect the
surface defects of various products such as aluminum strips [12–14], aluminum foils [15], and aluminum
profiles [16–18] have been well established. About the ferrous metal, the types of steel surfaces studied
for defect detection based on vision include slab [14,19,20], plate [21–23], hot strip [24–26], and cold
strip [27–29]. The comprehensive survey for typical flat steel products can be found in [30]. In general,
the above defect detection techniques can be roughly divided into three categories: statistical, filtering,
and machine learning.

The statistical method is to establish a mathematical model using probability theory and
mathematical statistics, which can be used to infer, predict, quantitatively analyze, and summarize
the spatial distribution data of pixels [31]. Reference [7] presents a multiple features-based cracks
detection algorithm of bridge decks. A comprehensive analysis of multiple features (intensity-based,
gradient-based, and scale-space) and multiple classifiers (random forests, support vector machines,
and adaboost) show a peak classifier performance of 95%. Reference [24] proposed a simple yet robust
feature descriptor against noise named the adjacent evaluation completed local binary patterns for
hot-rolled steel strip surface defects recognition. Filtering-based methods commonly apply a filter
bank to an image to calculate the energy of the filter response. To provide an efficient multi-scale
directional representation of different defects, the shearlet transform is introduced in [14]. With the
popularity of artificial intelligence in recent years, machine learning has been applied extensively
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in surface defect detection. Reference [9] used a supervised machine learning method called light
gradient boosting machine (LightGBM) to detect cracks from the concrete surface imagery. The features
are derived from pixel values and geometric shapes of cracks. In addition, spectral filtering approaches
are suitable for the defect detection of uniform textured images composed of basic texture primitives
with a high degree of periodicity [32]. Fourier transform (FT) was used in [33] to detect defects in
directionally textured surfaces. Nevertheless, the FT-based approaches are inadequate under the
circumstances that Fourier frequency components related to the background and defect areas are
highly mixed together [34]. Gabor wavelet was used in [30] to extract features of images with periodic
texture. Wavelet transform has been successfully applied in defect detection on statistical surfaces
such as cold-rolled steel strips [27] and hot-rolled steel strips [35], and it has also been well used for
homogeneous patterned surfaces [36]. Navarro et al. [6] present a wavelet reconstruction scheme to
detect defects in a wide variety of structural and statistical textures.

Recently, fine-designed deep convolutional neural networks have emerged as powerful tools
in a variety of computer vision tasks. Reference [10] proposed an improved You Only Look Once
(YOLOv3) with transfer learning, batch renormalization, and focal loss for concrete bridge surface
damage detection. The improved single-stage detector achieved a detection accuracy of 80% on a
dataset containing a total of 2206 inspection images labeled with four types of concrete damages.
Reference [11] proposed a crack detection method based on deep fully convolutional network (FCN)
semantic segmentation with the VGG16 backbone on concrete crack images. The FCN network is
trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images and achieves
about 90% in average precision. An end-to-end steel strip defect detection network model was outlined
in [28]; this system is based on the symmetric surround saliency map for surface defects detection
and deep convolutional neural networks (CNNs) for seven classes of steel strip defects classification.
To inspect the defects of a steel surface, Reference [23] presents a new classification priority network
(CPN) and a new classification network, multi-group convolutional neural network (MG-CNN).

However, these defect detection methods are primarily used for only crack defects on concrete
structures or metal surfaces with non-texture backgrounds. As far as we know, there is no literature
on the surface defect detection of aluminum ingots with a milling grain background. The surface of
aluminum ingot after milling always has multi-directional and multi-scale grinding texture patterns;
sometimes, the distribution of the grinding ridge is uneven. After milling, various surface defects
(Figure 3) will appear on the surface of aluminum ingot such as small local defects (Figure 3a),
distributed defects with complex texture and fuzzy boundaries (Figure 3b-d), longitudinal linear
defects throughout the whole picture (Figure 3e), and large-scale distributed defects with irregular
shapes (Figure 3f). In addition, there are many pseudo defects with various patterns on the surface
of aluminum ingot, such as aluminum chips (AC), mosquito (Mo) (Figure 3g), and the milling grain
(Figure 3h). These factors greatly increase the difficulty of defect detection and recognition. To handle
these problems, we propose a detection algorithm of aluminum ingot surface defects combining
traditional detection and deep learning classification, which has been applied to the production line of
an aluminum ingot milling surface.

The main contributions of the paper are summarized below:

1. In terms of ROI extraction in an aluminum ingot image, we design a novel mask gradient
response-based threshold segmentation algorithm to iteratively separate out defects of varying
significance. In addition, the combination of the mask gradient response-based threshold
segmentation (MGRTS) and Difference of Gaussian (DoG) can effectively improve the detection
rate of the above defects.

2. In the classification stage, we use the inception-v3 network structure with focal loss in the training
process and data augmentation technologies to overcome the class imbalance problem and realize
the accurate identification of various defects.
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3. Our method can make full use of central processing unit (CPU) and graphics processing unit
(GPU) resources in a workstation or server. Even if the server used in the production line is not
configured with GPU, the algorithm can still ensure the realization of rapid defect detection.

4. At the beginning of the project, even without a large number of labeled samples, the algorithm
can still deploy and detect the suspicious regions quickly owing to the improved ROI
detection algorithm.
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Figure 3. Samples of different defects: (a) Slag inclusion (SI); (b) Pitted slag inclusion (PSI); (c) Adhesion
aluminum (AA); (d) Scratches (Sc); (e) Crack (Cr); (f) Oxide film (OF); (g) Mosquito (Mo) and aluminum
chips (AC); (h) Texture background (Tb).

2. Materials and Methods

In this section, the proposed two-stage surface defects detection method will be introduced in
detail. Since there is no similar defect database, at the beginning of the project, we need to preliminarily
detect the area of interest and collect defect samples. Therefore, we cannot use the end-to-end network
which needs a large number of labeled defect images; instead, we design a two-stage target detection
method. As shown in Figure 4, the proposed method has two main components: (1) ROI extraction
based on the combination of MGRTS, DoG, and similar area merge, and (2) defect ROI classification.
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Figure 4. Overview of the defect detection method applied to a real production line. DOG: Difference
of Gaussian, MGRTS: mask gradient response-based threshold segmentation, ROI: region of interest.

2.1. ROI Extraction

In the region of interest (ROI) extraction stage, in order to ensure the detection rate of defects,
DOG and edge detection with the MGRTS are used to jointly complete the detection of suspicious
areas of defects, and special post-processing is adopted to merge similar areas that may be distributed
defects. In the proposed method, edge detection with MGRTS can iteratively segment most of the
suspicious regions of defects, while the DoG method is mainly used to detect large-scale defects that
cannot be completely segmented by MGRTS, and defects that can be missed by the MGRTS when the
background texture gradient is strong.
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2.1.1. MGRT-Based Iterative Threshold Segmentation

In the MGRTS, the mask gradient response is the gradient map after the strong gradient has been
eliminated by the binary mask, so that various defects can be effectively extracted from the mask
gradient response map by iterative threshold segmentation. The operation process is as follows.

Firstly, we calculate the horizontal gradient of the original image and get the gradient response
map of the Original Gradient (OG). Then, an adaptive threshold segmentation is used to get the binary
image of the OG. Next, the binary image is used as a mask to eliminate the strong gradient region on
the OG, thus obtaining the mask gradient response. As an iteration, we then repeat the first step on the
mask gradient response map. Finally, the binary images obtained by each iteration are combined to
obtain the segmentation results of different significant defects.

As shown in Figure 5, the original image (Figure 5a) contains aluminum chips and scratches,
and Figure 5b is the gradient response map based on the Sobel operator. By using iterative threshold
segmentation guided by mask gradient response maps, the defect areas (Figure 5f) are segmented from
the gradient map. In each iteration, adaptive threshold segmentation is realized by Equation (1) and
Equation (2).

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (1)

fbin(x, y) =

 1, f (x, y) >
[

f (x, y) ∗G(x, y) + λσg
]

0, f (x, y) ≤
[

f (x, y) ∗G(x, y) + λσg
] (2)

Equation (1) generates a Gaussian weight matrix of size m × m, where σ is the standard deviation.
Equation (2) combines local Gaussian weighted sum and global standard deviation σg to adapt to
local texture changes, so that the algorithm can better extract details and improve the detection of
non-obvious defects. The * denotes the convolution operator, and λ is the weight coefficient.
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map (Original Gradient, or OG); (c) response map of the first threshold segmentation; (d) mask gradient
(MG1) after the first threshold segmentation; (e) response map of the second threshold segmentation;
(f) the final segmentation result.

As can be seen from Figure 5, when obvious defects (aluminum chips) and slight defects (scratches)
exist at the same time, the slight defects cannot be completely segmented from the gradient map after
the first threshold segmentation (Figure 5c). Therefore, we adapt the iterative method and design the
termination conditions. Before the second threshold segmentation, the response graph of the first
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segmentation is reversed to obtain the mask. The mask is applied to the gradient map to eliminate
the region with strong gradient value that has been segmented in the first time, and the gradient map
(Figure 5d) for the second time is obtained. Figure 5e shows the response map of the second threshold
segmentation. Finally, by combining the response maps (Figure 5c, Figure 5e) of the two segmentations,
the final segmentation result (Figure 5f) is obtained.

The iteration termination conditions are made up of two parts: the maximum number of iterations
and the change degree of Masked Gradient (MG). As long as one condition is satisfied, the iteration
will be terminated. The maximum number of iterations is a super parameter N, and the change degree
of masked gradient is calculated by Equations (3)–(5):

gi= mean(MGi) + λstd(MGi) , i = 1, 2, . . . , N (3)

gi= mean(MGi) + λstd(MGi) , i = 1, 2, . . . , N (4)

Isover =
{

true, gi − gi−1 ≤ δ or i = N
f alse, gi − gi−1 ≤ δ or i < N

(5)

where mean (MG) calculates the mean value of the masked gradient map, and std (MG) calculates the
standard deviation. gi is used to describe the information distribution of the masked gradient map,
and it represents the information change of the gradient map after the i-th iteration. When i is equal to
1, MGi − 1 = MG0 is the original gradient OG. λ is the weight mentioned above, and δ is the threshold
of change degree. Figure 6 shows the histogram and statistical information of the gradient map in
different iterations. Figure 6a shows the histogram distribution and statistical information difference of
the Original Gradient (OG) shown in Figure 6b and the Mask Gradient (MG1) after the first threshold
segmentation shown in Figure 5d, where λ is set to 5 (We first set λ to 3, considering that at the value
of 3 sigma, the confidence probability of a normal distribution is 99.7%. To achieve better recall rate
and precision, we test the value range from 3 to 3.5 with a step of 0.5. According to the test results,
λ can be set within the range of [3.5, 5]. For relatively simple surfaces such as aluminum strip, it can be
set to 3.5).
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gradient (OG) and the mask gradient (MG1) after the first threshold segmentation; (b) the mask
gradients MG1 and MG2 after the second threshold segmentation; (c) the OG and the MG1 of another
test sample; (d) the OG; (e) the MG1.
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It can be observed that after the first threshold segmentation, the statistical information value g0
(red solid line in Figure 6a) of OG is very different from that (g1) of MG1 (green solid line in Figure 6a),
and g0 − g1 = 28.3, so the second threshold segmentation is needed. Figure 6b shows that after the
second threshold segmentation, the statistical information value g1 of MG1 (red solid line) and the
statistical information value g2 of MG2 (green solid line) have almost no difference, so the iteration
can be ended. Figure 6c shows the distribution of statistical information of another sample after the
first iteration of threshold segmentation. Figure 6d,e are the gradient map OG and MG1, respectively.
For this sample, one segmentation is enough, so the distance (5.78) between g0 and g1 in Figure 6c
provides a reference for the selection of the threshold.

2.1.2. Difference of Gaussians

Difference of Gaussian has been well used in Scale Invariant Feature Transform (SIFT) [37] to
identify potential interest points that are invariant to scale and orientation. First, the scale space of
an image is defined as a function, L(x, y, σ), that is produced from the convolution of a variable-scale
Gaussian, G(x, y, σ) (defined in Equation (2)) with the input image f(x, y),

L(x, y, σ) = G(x, y, σ) ∗ f (x, y). (6)

Then the result image of DoG can be the Difference of Gaussian function convolved with the image,
D(x, y, σ), which can be computed from the difference of two nearby scales separated by a constant
multiplicative factor k,

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ f (x, y)
= L(x, y, kσ) − L(x, y, σ)

. (7)

Considering the time consumption and defect scale, only two scales σ = 0 (the original image) and
σ = 7.1 (the corresponding window size is 45) are used, and the result of DoG is

D(x, y) = G(x, y, 7.1) ∗ f (x, y) − f (x, y). (8)

The construction of D(x, y) for a surface defect image of aluminum ingot is shown in Figure 7. Figure 7a
is the original image with an oxide film defect. Figure 7b is the fuzzy effect image after convolution
of the Gaussian function with an original image. The Gaussian window is set as 45 according to the
experiment. Figure 7c is the response map of the DoG calculated by Equation (8). In the collected image
of an aluminum ingot surface, the gray value of the defect area is lower than the texture background
in varying degrees, so this paper uses G(x, y, 7.1) ∗ f (x, y) − f (x, y) to reduce the influence of the
background. Figure 7d shows the result of f (x, y) −G(x, y, 7.1) ∗ f (x, y), which introduces a part of the
texture response compared with Figure 7c. Figure 7e is a binary image after segmentation with a fixed
threshold, and it will be combined with the result image of MGRTS by a logical OR operator.

2.1.3. Similar Areas Merge

The segmentation results of MGRTS and DoG are merged, and the enclosing rectangle of each
defect area is obtained by contour extraction after morphological expansion. In this way, we can
locate the bounding box of defects with clear boundaries, but for the distributed defects without
clear boundaries, we need to further integrate the similar region, so as to obtain the bounding box of
distributed defects more completely. For each defect ROI, the mean value and standard deviation of
the original image (src1) (Figure 8a) and the gradient map (OG) (Figure 8b) are calculated respectively,
and an information distribution descriptor v with a length of 4 is obtained. Figure 8 shows the examples
of a similar region (red box) and dissimilar region (green box) in the original image and gradient
image. As shown in Figure 9, for two dissimilar regions, the gray distribution histogram and statistical
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information (mean, standard deviation) of their original image and gradient image are different to
some extent. However, for two similar regions, the difference is very small, as shown in Figure 10.
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As shown in Figure 11, when iterating through the extracted candidate regions, we can decide

whether to merge them into one window by calculating the spatial distance of two windows and the
Euclidean distance of their information distribution descriptors.

If the two windows overlap, or the spatial Euclidean distance ds (refer to Equation (9)) between
their center points (p, q) is very close and less than the threshold δs, the information distribution vectors
v1, v2 will be extracted, and the Euclidean distance dv (refer to Equation (10)) will be calculated.

ds =

√
(px − qx)

2 +
(
py − qy

)2
(9)
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dv(v1, v2) =

√√√ 4∑
i=1

(v1i − v2i)
2 (10)
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Figure 11. Schematic diagram of similar areas merging.

If the distance is less than the threshold δv, the two windows will be merged. After testing the
effect of different values on the merge results from similar areas, we set δs to 150. As shown in Figure 12,
the similar areas merge results are insensitive to the value of δs. For the pitted slag inclusion defect in
this paper, it is better to set the threshold to 150. It is recommended to set the δs higher, as it ensures that
similar areas will merge together as much as possible. Thus, defect ROIs can be completely detected,
and the reduction of the ROI number will help to improve the speed of subsequent classification.

As for the value of δv, we calculate the Euclidean distance of v1, v2 extracted from 31,304 pairs of
similar areas (Figure 13a) and 13,137 pairs of dissimilar areas (Figure 13b). As shown in Figure 13a,
the profile of the histogram (H) is approximately normal distribution. According to the 3 sigma principle
of normal distribution and the observation of the two histograms, we set δv = 1 (3*std(H) = 0.082).
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2.2. Defect ROI Classification

In the classification stage, considering the strong feature extraction and representation ability of
the CNN network, we use the inception-v3 [38] network structure to realize the accurate identification
of various defects with large intra-class variations and high inter-class similarity.

Inception [39] is a popular convolutional neural network model proposed by Google. Its unique
and detailed inception block design makes the model increase the depth and width of the network
while maintaining the same amount of calculation. The inception-v3 network is the third version.
The biggest change of v3 version is to decompose the 7 × 7 convolution kernel into two 1 × 7 and
7 × 1 one-dimensional convolution kernels. In this way, the calculation can be accelerated, and one
convolution layer can be divided into two, which can further increase the depth of the network and
strengthen the nonlinearity of the network. Since the data set of aluminum ingot surface defects used
in this paper is quite different from the data set of ImageNet [40], the method of fine tune is adopted to
train the model parameters.

The aluminum ingot defect samples used in this paper are collected from an aluminum ingot
production line in China. The data set has the problem that the number of real defect samples is
very small, and the number of false defect and texture background samples is very large. In order
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to overcome the class imbalance problem and improve the accuracy of defect classification, we use
data augmentation technology to preprocess the sample set and introduce the focal loss into the
loss function.

2.2.1. Data Augmentation

Based on the analysis of the difficult cases in online application, we use basic image transformation
such as flipping, contrast enhancement, sharpening, etc. to create a larger data set. Figure 14 shows
the original defect images and the corresponding transformed images.
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2.2.2. Focal Loss for Multi-Class

The focal loss [41] was designed by Lin et al. to address the one-stage object detection scenario in
which there is an extreme imbalance between foreground and background classes during training.
The focal loss for binary classification has been be given by Equation (11),

FL(pt) = −(1− pt)
γ log(pt), (11)

where pt ∈ [0, 1] is the estimated probability of the model for the class with label y = 1. (1− pt)
γ is

a modulating factor with a tunable focusing parameter γ ≥ 0 to down-weight easy examples and
thus focus training on hard negatives. Similarly, for k-class classification, the formula of focal loss for
multi-class (FLM) is as follows,

FLM(Pk×1) = −Yk×1(1k×1 − Pk×1)
γYk×1 log(Pk×1), (12)

where Yk×1 is a one-hot label vector with k elements and Pk×1 is the model’s estimated probability
vector. The multiplication and logarithm here are all operations at the element level within a vector.

3. Results

The algorithm proposed in this paper is a two-stage target detection algorithm, so corresponding
experiments are carried out to analyze and evaluate the performance of the ROI extraction and ROI
classification algorithms. Finally, the performance of the whole algorithm is evaluated.

3.1. Evaluation Metric

In the actual production, the impact of defect missing detection is much more serious than that
of false detection. Therefore, it is necessary for a surface defect detection system to have a high
recall rate for real defects and ensure a high accuracy rate. In the experiments, the precision, recall,
and F1-score are used to evaluate the system performance, and the accuracy is used to evaluate the
classifier performance. These three metrics are defined as follows,

precision =
TP

TP + FP
, recall =

TP
TP + FN

, F1-score =2 ∗
precision ∗ recall
precision + recall

, (13)

acc =
TP + TN

TP + FN + FP + TN
, (14)

where TP represents the number of true positives, FP represents the number of false positives,
FN represents the number of false negatives, and TN represents the number of true negatives.
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3.2. Experimental Analysis of ROI Extraction Algorithm

In the MGRTS, the maximum number of iterations N and the change degree threshold are set to 5
and 6, and the Gaussian weight matrix size m in adaptive threshold segmentation is set to 25. In the
DOG, we did experiments to choose the most appropriate Gaussian window size, which is related to
the texture scale. We set the window sizes to 25, 35, 45, and 55 respectively to test the effect of DoG.
The experiment result (Figure 15) shows that when the window size is 45, the effect is the best; that is,
the DoG not only highlights the defect structure, but also suppresses most of the texture background.
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where 1kY ×  is a one-hot label vector with k elements and 1kP ×  is the model’s estimated probability 
vector. The multiplication and logarithm here are all operations at the element level within a vector. 

3. Results 

The algorithm proposed in this paper is a two-stage target detection algorithm, so corresponding 
experiments are carried out to analyze and evaluate the performance of the ROI extraction and ROI 
classification algorithms. Finally, the performance of the whole algorithm is evaluated. 

3.1. Evaluation Metric 

In the actual production, the impact of defect missing detection is much more serious than that 
of false detection. Therefore, it is necessary for a surface defect detection system to have a high recall 
rate for real defects and ensure a high accuracy rate. In the experiments, the precision, recall, and F1-
score are used to evaluate the system performance, and the accuracy is used to evaluate the classifier 
performance. These three metrics are defined as follows, 
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where TP represents the number of true positives, FP represents the number of false positives, FN 
represents the number of false negatives, and TN represents the number of true negatives. 

3.2. Experimental Analysis of ROI Extraction Algorithm 

In the MGRTS, the maximum number of iterations N and the change degree threshold are set to 
5 and 6, and the Gaussian weight matrix size m in adaptive threshold segmentation is set to 25. In the 
DOG, we did experiments to choose the most appropriate Gaussian window size, which is related to 
the texture scale. We set the window sizes to 25, 35, 45, and 55 respectively to test the effect of DoG. 
The experiment result (Figure 15) shows that when the window size is 45, the effect is the best; that 
is, the DoG not only highlights the defect structure, but also suppresses most of the texture 
background. 
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Figure 15. Cropped DoG results with different window sizes: (a) Original image; (b) DoG image with
window size (ws) 25; (c) DoG image with ws 35; (d) DoG image with ws 45; (e) DoG image with ws 55.

We also experimented to test the ROI extraction effectiveness of MGRTS and DoG, and the
performance of the algorithm that merges similar areas. Figure 16 shows a few representative results
of different defects including oxide film (Figure 16a,b), oil stain (Figure 16c), pitted slag inclusion
(Figure 16d), and crack (Figure 16e). The first line of Figure 16 is the binary response map of the
MGRTS, the second line is the binary response map of DoG, and the third line is the result of adding
the response map of MGRTS and DoG. As shown in Figure 16b, the MGRTS failed to segment the
large-scale defect completely, and MGRTS also failed to detect the oil stain in Figure 16c, which is
mixed in a dense texture background, but the DoG algorithm makes up for these two disadvantages.
The fourth line of Figure 16 shows the enclosing rectangle of each defect area obtained by contour
extraction after morphological expansion, and the last line is the final ROI bounding box after merging
similar regions. It can be seen that for large-scale defects (Figure 16a,b) and distributed defects without
obvious boundaries (Figure 16d), the similar region merging algorithm can integrate local regions to
obtain a complete bounding box, which also reduces the number of ROI windows and improves the
classification efficiency and accuracy.

Table 1 shows the quantitative evaluation of MGRTS and DoG, and the combination of MGRTS
and DoG in terms of recall and precision. We tested on a defective images data set captured in an
aluminum ingot milling machine production line. The data set consists of 180 images with the size
of 4096 × 1024, including 153 defects such as oxide film, oil stain, crack, slag inclusion, and pitted
slag inclusion. It can be seen that the combination of MGRTS and DoG boosts the ROI extraction
performance, especially the recall rate, which is more important to the production line.

Table 1. Comparison of MGRTS, DoG, and the combination of both.

Method Recall Precision

MGRTS 97.4% 56.2%
DoG 54.9% 93.3%

MGRTS + DoG 99.3% 56.7%

3.3. Experimental Analysis of Defect ROI Classification

In the classification experiment, we used 32,665 defect ROI images of aluminum ingot, among which
10% sample images are selected randomly respectively as validation and training sets; the remaining
80% sample images are used as the training set. The specific number of each type of defect is
shown in Table 2. It can be seen from the table that the sample number of each type of defect is
extremely imbalanced.
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Table 2. Specific of each type of defect used in the classification experiment.

Defects SI PSI Cr AA Sc OF Mo Tb Total

Total 3709 5413 5204 347 1932 6062 902 9096 32,665
Train 2969 4331 4164 249 1546 4850 722 7278 26,139

Validation 370 541 520 34 193 606 90 909 3263
Test 370 541 520 34 193 606 90 909 3263
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In order to verify the ability of focal loss to deal with sample imbalance, we compared the
classification effect of using cross entropy loss and using focal loss in an inceptions-v3 network.
Figure 17 shows the recall curve of the two methods for each type of defect on the test set. From the
green curve in the figure, it can be seen that inception-v3 with focal loss significantly improved the
recall rate of adhesion aluminum and mosquito defects with a relatively small number of samples.
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Figure 17. The recall curve of the two methods for each type of defect.

We also compared the improved inceptions-v3 network with the traditional machine learning
method proposed in [42]. As described in [42], we also extracted seven features including anisometry,
circinal rate, ratio between the width and area, compactness, rectangularity, elongation, and ratio
between area and perimeter. Furthermore, the Artificial Neural Networks (ANN) was trained with the
features extracted from the aluminum ingot defect images. The classification accuracy comparison
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is listed in Table 3. The ANN with extracted geometric features failed to recognize the AA and Mo,
because the AA defects are similar with PSI, while the Sc and the Mo defects are similar with the SI in
geometry. These seven features cannot distinguish them well.

Table 3. Classification accuracy of Artificial Neural Networks (ANN), inceptions-v3, and inceptions-v3
with focal loss.

Defects SI PSI Cr AA Sc OF Mo Average

ANN 83.0% 89.0% 84.0% 0.0% 59.0% 42.0% 0.0% 51.0%
inceptions-v3 99.1% 99.9% 100.0% 97.3% 98.1% 99.0% 99.6% 99.0%
inceptions-v3
with focal loss 99.1% 99.7% 99.8% 100.0% 98.5% 98.4% 100.0% 99.4%

3.4. Overall Performance Analysis of the Proposed Algorithm

We test the overall performance of our algorithm using the database of 180 defective images
described above. On the premise that the detection resolution meets the needs of the industrial field,
we down-sample the image as half of the original image to improve the processing speed.

As a contrast, we also test three one-stage target detection algorithms: YOLOv3 [43], RetinaNet [41],
and YOLOv4 [44]. In order to match the network structure, improve the detection accuracy, and reduce
the loss of large-scale sampling, we preprocess the original annotation image. First, the original image
is down-sampled to half of the original image size, and then the aluminum ingot area image after
boundary detection is divided into two parts, and finally, it is normalized to 512 × 512 for network
training. Due to the small sample size of the original image, we augment the defective image to three
times that of the original; 2/3 of it is used as the training set, and the remaining 1/3 is used as the test set.

Figure 18 shows the detection effect of the four methods for different defects. In order to prevent
some small defects from being covered by the bounding boxes, we show the detection results of the
four methods on four images. The detection results of YOLOv3, Retina Net, YOLOv4, and our method
are shown from left to right in each group of comparison images. YOLOv3 uses multi-scale features to
detect objects, and it shows a good ability to identify defects such as large-scale oxide film (Figure 18d),
crack (Figure 18e,f), and small-scale slag inclusion (Figure 18c), even though the sample data set used in
this paper is small. However, for the distributed pitted slag inclusion (Figure 18a,g) and the scratches
(Figure 18b) with low contrast, the effect is poor, especially for the scratch defect, and the recall rate
is very low. In contrast, our algorithm can detect scratches and pitted slag inclusion well because of
using an iterative threshold segmentation of a masked gradient response map and the merging of
similar regions.

Table 4 compares the recall (R), precision (P), and F1-score (F1) of the four methods for each
type of defect. At the same time, the reasoning time of each algorithm is also listed. In experiments,
the top-1 strategy was used in the statistics of detection results, and no threshold was set for the score.
The average recall rate and precision of the algorithm in this paper are over 92.0%, but when influenced
by a scratch defect, the average recall rate of YOLOv3 is only 66.1%. Meanwhile, RetinaNet is worse in
detecting Cr defects. On the whole, the metrics of YOLOv4 are high, but similar to YOLOv3, the recall
rate of scratch defects is low. Our algorithm has a relatively low recall and precision for the defects of
pitted slag inclusion. The reason is that the resolution of some defects in the image is low, which affects
the accuracy of defect classification. It can be seen from Table 4 that our algorithm achieves the highest
F1-score and the shortest inference time.
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detection results of YOLOv3, RetinaNet, YOLOv4, and our method are shown from left to right in 
each group of comparison images. 
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Figure 18. Detection effect of different methods: (a) PSI; (b) Sc; (c) SI; (d) OF; (e) Cr; (f) Cr; (g) PSI.
The detection results of YOLOv3, RetinaNet, YOLOv4, and our method are shown from left to right in
each group of comparison images.

Table 4. Performance comparison of the four methods for each type of defect.

Method Our Method YOLOv3 Retina Net YOLOv4

Metric
R P F1 R P F1 R P F1 R P F1

(%) (%) (%) (%)

Sc 96.7 93.8 95.2 3.6 66.7 6.8 71.4 93.0 80.8 75.9 100.0 86.3
OF 95.7 98.2 96.9 90.5 93.5 92.0 87.4 86.5 87.0 88.4 97.9 92.9
Cr 98.6 98.6 98.6 88.9 92.3 90.6 15.9 81.3 26.5 100.0 98.8 99.4
SI 94.1 91.9 94.0 76.9 69.0 72.7 57.7 62.5 60.0 84.6 100.0 91.7

PSI 88.6 85.2 86.9 70.3 95.5 81.0 91.9 85.3 88.5 82.8 98.7 90.1
Average 94.7 93.5 94.3 66.1 83.4 68.6 64.8 81.7 68.5 86.3 99.1 92.1

Time
(ms) 512 × 512 103 233 304 167

In order to test the robustness of the algorithm to illumination changes, we enhanced and reduced
the brightness of the original image to simulate the change of light source brightness. As shown in
Figure 19, the brightness changes of the original image are –40%, –20%, 20%, and 40%, respectively.
The detection performance of the algorithm for each defect is basically not affected by illumination.
This is due to the following two points: (1) ROI extraction is based on the gradient difference, which is
not affected by the overall brightness change of the image. (2) As a result of the data augmentation
technology mentioned in Section 2.2.1, ROI classification has a certain robustness to illumination change.
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Figure 19. Detection effect of different brightness: (a) PSI; (b) OF; (c) PSI; (d) Sc. From left to right,
the brightness of the image is reduced by 40%, reduced by 20%, unchanged, increased by 20%, and
increased by 40%.

We also analyzed the reason that led to the failure cases (shown in Figure 20) of our method.
Figure 20a shows that our method produce false negatives of Sc defect, which are mainly caused by the
low contrast and the horizontal distribution similar to the milling grain background. Similarly, some
small PSI defects with low contrast are missed in Figure 20c. There were no corresponding samples
in the classification network training, so the pitted oil areas are incorrectly detected as PSI defects,
as shown in Figure 20b. For the large-scale oxide film shown in Figure 20d, the oxide film coverage
area is too large, so that its interior is treated as regular patterns and neglected by the MGRTS +DoG.
As a result, only the edge is retained.
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Figure 20. Failure cases of our method: (a) False negatives (blue box) of Sc (to facilitate observation, we
increased the contrast by 20%); (b) False positives (yellow box) of PSI; (c) False negatives (blue box) of
PSI (to facilitate observation, we increased the contrast by 20%); (d) Incomplete detection of OF.

4. Application in Actual Production Line

The algorithm proposed in this paper has been applied to the on-line surface defects inspection
system installed at the actual production line of an aluminum ingot milling machine.

4.1. Image Acquisition Devices

Figure 21a shows a concise diagram of the imaging system, and Figure 21b is the corresponding
picture of the material object. The image acquisition device includes cameras and a light source.
Two line-scan charge-coupled device (CCD) cameras are used to capture images of 4096 × 1024 size
of an aluminum ingot surface after milling under the illumination of light source, and the resolution
is 0.315 mm/pixels. When the aluminum ingot passes through the acquisition device, the image
acquisition program will control the acquisition speed of the camera according to the production speed
and store the image. At the same time, the defect detection algorithm starts to process the image, and
it alarms in time when defects are found.Sensors 2020, 20, x  20 of 23 
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Figure 21. The imaging system: (a) a concise diagram and (b) picture of the material object. 
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approximately 0.31 fps, so our algorithm can meet the real-time requirements. 

Table 5. Average time consumption of one image in each step. 

Process stage Time consumption (ms) 
Aluminum ingot region detection + ROI extraction 272 

Defect ROI Classification 140 
Total 412 

To sum up, by applying our defect detection method to the online surface inspection system, the 
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5. Conclusions 
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4.2. Effectiveness of Our Method

For 5 days, we randomly checked the defect detection results of 39 production records and
compared them with the real products. The detection rate of the algorithm is over 98.0%, and the
accuracy of defect recognition rate is 96.0%. The statistical method of detection rate is as follows: the
number of defects detected by the surface inspection system (regardless of defect category) accounts
for the percentage of the number of defects on the surface of aluminum ingot.

4.3. Time Efficiency

The aluminum ingot region detection and the ROI extraction of the proposed approach were
implemented by using C++ and OpenCV 2.4.6 library in Microsoft Visual Studio 2008, and the defect
ROI classification is implemented by using python and Keras. The proposed approach was executed
on a workstation with a 2.8 GHz Intel Xeon i5 processor and 16 GB memory, and the workstation is
configured with a piece of NVIDIA Tesla k40c. The average time consumption of one image in each
step is given in Table 5. Our detection system achieves an average processing speed of approximately
2.43 fps. The production speed of the aluminum ingot milling machine production line is from 3 to
6 m/min, when the actual production speed is 6 m/min, the corresponding camera acquisition speed is
approximately 0.31 fps, so our algorithm can meet the real-time requirements.

Table 5. Average time consumption of one image in each step.

Process Stage Time Consumption (ms)

Aluminum ingot region detection + ROI extraction 272
Defect ROI Classification 140

Total 412

To sum up, by applying our defect detection method to the online surface inspection system,
the production is guided by the timely alarm of defects, which has great significance for ensuring
product quality and improving production efficiency. In addition, the using effect also proves the
promising application of our method in the surface defect detection of aluminum ingot with complex
texture background after milling.

5. Conclusions

We proposed a novel two-stage detection approach to adaptively detect different types of defect
on the surface of aluminum ingot with a complex milling grain background.

Firstly, the combination of MGRTS, DoG, and the similar region merging for the ROI extraction
boosts the detection performance of various defects. Secondly, the data augmentation and the focal
loss used in the inception-v3 network fine tuning handled the class imbalance well and improved the
classification accuracy. Finally, the experimental results and the application in the actual production
line show that when the number of defect ROI samples is large but the number of labeled original
image samples is small, the performance of the two-stage defect detection algorithm proposed in this
paper is significantly better than that of the one-stage deep learning algorithm. At the same time, it can
also meet the real-time requirements.

Our algorithm combines the traditional detection and deep learning classification methods,
which has great advantages in field application, because it can not only make full use of CPU and GPU
to maximize the processing speed, but it also can be put into use quickly at the beginning of the project
in the case of a lack of samples.

In future work, we will continue to collect more samples from the production line, including
difficult cases and false defects. Then, we will focus on exploring a multi-scale analysis method and full
convolution semantic segmentation network to further improve the detection effect of various defects.
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