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Abstract: Although many authors have highlighted the importance of predicting people’s health costs to
improve healthcare budget management, most of them do not address the frequent need to know the
reasons behind this prediction, i.e., knowing the factors that influence this prediction. This knowledge
allows avoiding arbitrariness or people’s discrimination. However, many times the black box methods
(that is, those that do not allow this analysis, e.g., methods based on deep learning techniques) are more
accurate than those that allow an interpretation of the results. For this reason, in this work, we intend
to develop a method that can achieve similar returns as those obtained with black box methods for
the problem of predicting health costs, but at the same time it allows the interpretation of the results.
This interpretable regression method is based on the Dempster-Shafer theory using Evidential Regression
(EVREG) and a discount function based on the contribution of each dimension. The method “learns”
the optimal weights for each feature using a gradient descent technique. The method also uses the
nearest k-neighbor algorithm to accelerate calculations. It is possible to select the most relevant features
for predicting a patient’s health care costs using this approach and the transparency of the Evidential
Regression model. We can obtain a reason for a prediction with a k-NN approach. We used the Japanese
health records at Tsuyama Chuo Hospital to test our method, which included medical examinations,
test results, and billing information from 2013 to 2018. We compared our model to methods based on
an Artificial Neural Network, Gradient Boosting, Regression Tree and Weighted k-Nearest Neighbors.
Our results showed that our transparent model performed like the Artificial Neural Network and
Gradient Boosting with an R2 of 0.44.

Keywords: health care costs; dempster–shafer theory; supervised learning; regression; feature selection;
evidential regression; interpretable prediction

1. Introduction

Health care expenditure is one of the most critical issues in today’s society. World Health Organization
(WHO) statistics show that global health care expenditure was approximately US$ 7.5 trillion, equivalent
to 10% of the global GDP in 2016 [1]. One of the reasons for these high expenses in care is the low
accountability in health care in some countries, for example, inefficiencies in the US health care system
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result in unnecessary waste, provoking a large discrepancy between spending and returns in care [2].
If we could predict health care costs for each patient with high certainty, problems such as accountability
could be solved, enabling control over all parties involved in patients’ care. It could also be used for other
applications such as risk assessment in the health insurance business, allowing competitive insurance
premiums, or as input information for developing new government policies to improve public health.

With the current frequently used electronic health records (EHRs), an interest has emerged in solving
accountability problems using data mining techniques [3]. There have been various approaches to predict
health care costs for large groups of people [4,5]. On the contrary, prediction for an individual patient
has rarely been tackled. Initially, rule-based methods [6] were used for trying to solve these problems
requiring domain knowledge as if-then rules. The downside of this method is the requirement of a domain
expert to create the rules, thus making the solution expensive and limited to the dataset being used. In the
current state-of-the-art, statistical and supervised learning methods are preferred with the latter getting
the best performance. The reason for best performance is the skewed and heavy right-hand tail with a
spike at zero present in the distribution of health care costs [7].

Supervised learning methods can be evaluated by performance and interpretability; usually, the most
sophisticated methods are the ones that have best performance, sacrificing interpretation (e.g., Random Forest,
Artificial Neural Networks, and Gradient Boosting). A drawback of these high performing machine learning
algorithms in health care is their black-box nature, especially in critical use cases. Even though health care
cost prediction is not a critical use case, using patients’ personal and clinical information for this problem
could suffer biased results without an interpretable method. Interpretable methods would allow patients,
physicians, and insurers to understand the rationale behind a prediction, giving them the option to accept or
reject the knowledge the method is providing.

The aim of this work is to create an intrinsic interpretable regression method for health care
costs prediction, with a performance comparable to state-of-the-art methods, inspired by the work of
Peñafiel et al. [8], where an interpretable classifier based on the Dempster–Shafer Theory (DST) [9] was
presented. The Dempster–Shafer Theory (DST) [9] is a generalization of the Bayesian theory. It is more
expressive than classical Bayesian models since it allows us to assign “masses” to multiple outcomes
measuring the degree of uncertainty of the process. We could have extended the work of the interpretable
classifier but as it is a pure classification algorithm, the output is assumed to be discrete, and some
procedures do not apply to continuous outputs, e.g., the time complexity grows exponentially with
the number of classes. Petit-Renaud and Denœux [10] introduced the use of Dempster–Shafer theory
for regression problems; they presented a regression model that uses DST called Evidential Regression
(EVREG) to find the expected value of a variable using a set of examples as evidence. We will extend
EVREG using a weighted distance and gradient descent, which enables the model to do feature selection
(FS) tasks and use it in the health care costs prediction problem. The weight of each feature will represent
the importance of this feature to predict an outcome in a dataset; thus, a set of masses with these weights
will be computed; the masses will represent the importance of samples in the training set to predict
an outcome.

Previous works in health care costs prediction [11–13] have reached to the conclusion that clinical
features yield the same performance as using only cost predictors without the proper FS experiment.
One aim of our work is to prove these claims with a proper FS method. Our research question is whether
it is possible to develop an interpretable method with FS capabilities that has a similar performance to
black-box methods for the health care cost prediction problem. We used Japanese health records from
Tsuyama Chuo Hospital to test our answer. These records include medical checkups, exam results, and
billing information from 2013 to 2018. We used them to compare our method performance with the
performance obtained by less interpretable methods such as Artificial Neural Networks (ANNs) and
Gradient boosting (GB).
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First, we will describe the state-of-the-art for health care cost predictions, introduce FS and DST.
Then we will describe our proposed model, which we named Weighted Evidential Regression (WEVREG)
with its implementations and improvements. Finally, we will present the model performance in feature
selection tasks against prediction methods with FS capabilities using synthetic data, besides its performance
in health care costs prediction.

Our results show that WEVREG is able to perform FS tasks obtaining better performance for features
with complex dependencies. In health care costs prediction, our method outperforms ANN, and gets
similar results to GB but cannot reach the same performance. The features selected by our method show
that cost variables are the most important ones to predict future costs, confirming the results obtained in
previous works.

This paper extends the work presented previously in [14] by improving the prediction algorithm and
showing how this model can perform feature selection. The paper also explains which are the features in
the input data that are most important for making the prediction of the health costs.

2. Related Work

2.1. Health Care Cost Prediction

Health care costs commonly have a spike at zero and a skewed distribution with a heavy right-hand
tail; statistical methods (e.g., linear regression) suffer from this characteristic in small to medium sample
sizes [15]. Advanced methods have been proposed to address this problem, for example, Generalized
Linear Models (GLMs) where a mean function (between the linear predictor and the mean) and a variance
function (between the mean and variance on the original scale) are specified and the parameters are
estimated given these structural assumptions [16]. Another example is the two-part and hurdle model,
where a Logit or Probit model is used in the first instance to estimate the probability of the cost being
zero, and then if it is not, a statistical model is applied, such as log-linear [17] or GLM. The most
complex statistical method used to solve this problem is the Markov chain model; an approach based
on a finite Markov chain suggested estimating resource use over different phases of health care [18].
Mihaylova et al. [19] present a detailed comparison of statistical methods in health care cost prediction.

Supervised learning methods have been extensively used to predict health care costs; the data used
for these methods vary. While a few works use only demographic and clinical information (e.g., diagnosis
groups, number of admissions and number of laboratory tests) [20], the majority have incorporated cost
inputs (e.g., previous total costs, previous medication costs) as well [11–13,21], obtaining better performance.
GB [22] excels as the method with the best performance for this problem [13], which is an ensemble-learning
algorithm, where the final model is an ensemble of weak regression tree models, which are built in a forward
stage-wise fashion. The most essential attribute of the algorithm is that it combines the models by allowing
optimization of an arbitrary loss function, in other words, each regression tree is fitted on the negative
gradient of the given loss function, which is set to the least absolute deviation [23]. ANNs come close to
the performance of GB. An ANN is an extensive collection of processing units (i.e., neurons), where each
unit is connected with many others; ANNs typically consist of multiple layers, and some goal is to solve
problems in the same way that the human brain would do it [24]. Another type of model with good results
is the M5 Tree [12]; this algorithm is also a Regression Tree (RT), where a Linear Regression Model is used
for building the model and calculating the sum of errors as opposed to the mean [25].

Most health care expenses of a population are generated by a small group, as Bertsimas et al. [11]
showed in their dataset: 80% of the overall cost of the population originates from only 20% of the most
expensive members. Therefore, a classification phase is suggested to classify patients in a risk bucket
when trying to improve the performance of the methods listed above. Morid et al. [7] reported that for
low-risk buckets, GB obtains the best results, but for higher ones, ANN is recommended. It has also been
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found that costs rise sharply with nearness to death [26–28]. This fact needs to be taken into account when
building the embedding for the input vectors of a health care costs dataset.

2.2. Feature Selection

Nowadays, there are several datasets with high dimensionality. Reducing the number of features while
maintaining the models performance has become indispensable. This strategy decreases the dimensionality of
the Euclidean space, therefore preventing the curse of the dimensionality phenomenon that causes a drop on
models accuracy [29]. Feature selection (FS) is the ability to select the features with the highest correlation
to the target variable [30]; in particular they select a subset of features based on a certain evaluation criteria.
Some features that do not meet the criteria are eliminated; the goal is to eliminate redundant or irrelevant
features that are a priori unknown. This strategy decreases the number of dimensions, often resulting in an
increase of models accuracy and time performance. FS has been of great importance in areas such as DNA
microarray analysis, text categorization and information retrieval [31,32]. FS methods can be classified in three
types: filter, wrapper and embedded methods [33]. Filter methods are typically the simplest and cheapest
to compute; they apply statistical techniques to test the correlation of each feature with the target variable:
normally a threshold is set to choose the most relevant features. The most well-known filter methods include
Pearson’s correlation coefficients [34] which assigns a value to two variables, between −1 and 1 representing
the linear dependency between them. F-score [35] is another example, where the weighted harmonic mean
of the test precision and recall is computed varying from 0 to 1. The disadvantage of these methods is that
they cannot detect complex relations as they do not reveal mutual information between features. Wrapper
methods are expensive because they test multiple subsets of features in a prediction model and select the
subset maximizing the performance of the prediction. The most well-known method for regression problems
is the Linear Support Vector Regressor (L1-SVR) [36] which given a toleration error, finds the hyper-plane
that maximizes the margin between vectors. Feature importance is then obtained from the SVR coefficients.
Embedded methods, unlike the previous methods, include the feature selection process as their learning
phase. Common embedded methods include various types of decision tree algorithms. Some of the most
popular ones are the Random Forest (RF) [37]—a method which uses multiple decision trees to reach an
outcome—and Gradient Boosting (GB) [38], where weak decision trees are built, and features are selected
sparsely following an important change in the impurity function.

Since FS is an important pre-processing step in most machine learning applications, it has been widely
studied with new methods constantly appearing. There has been recent interest in FS algorithms based on
k-neighbors. ReleifF [39] is a filtering method that randomly samples an instance of the data and locates its k
nearest neighbor, the k instances are then used to update the score of each feature. Other recent approaches,
Regression Gradient Guided Feature Selection (RGS) [40] and Weighted Nearest Neighbors(WkNN) [41]
are methods that use a Weighted k-NN model with a gradient descent as an optimization approach to find
the optimal weight vector used in the k-NN distance function. These two algorithms differ in the gradient
descent algorithm and discount function used to find the optimal importance of each feature.

2.3. Dempster–Shafer Theory

Let X be the set of all states of a system called frame of discernment. A mass assignment function m
is a function satisfying:

m : 2X → [0, 1], m(φ) = 0, ∑
A⊆X

m(A) = 1 (1)

The term m(A) can be interpreted as the probability of getting precisely the outcome A, and not a
subset of A.
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Multiple evidence sources expressed by their mass assignment functions of the same frame of
discernment can be combined using the Dempster Rule (DR) [42]. Given two mass assignment functions
m1 and m2, a new mass assignment function mc can be constructed by the combination of the other two
using the following formula:

mc(A) = m1(A)⊕m2(A)

=
1

1− K ∑
B∩C=A 6=φ

m1(B)m2(C)
(2)

where K is a constant representing the degree of conflict between m1 and m2 and is given by the
following expression:

K = ∑
B∩C=φ

m1(B)m2(C). (3)

Petit-Renaud and Denœux [10] introduced a regression analysis algorithm based on a fuzzy extension
of belief functions, called evidence regression (EVREG). Given an input vector x, they predict a target
variable y in the form of a collection of evidence associated with a mass of belief. This evidence can be
fuzzy sets, numbers, or intervals, which are obtained from a training set based on a discount function that
takes their distance to the input vector x and is pooled using the Dempster combination rule (Equation (2)).
They showed that their methods work better than similar standard regression techniques such as the
Nearest Neighbors using data of a simulated impact of a motorcycle with an obstacle.

The EVREG model has been used for predicting the time at which a system or a component will no
longer perform its intended function (machinery prognostic) for industrial application. Niu and Yang [43]
used the EVREG model to construct time series, whose prediction results are validated using condition
monitoring data of a methane compressor to predict the degradation trend. They compared the results
of the EVREG model with six statistical indexes, resulting in a better performance of the EVREG model.
Baraldi et al. [44] used the model to estimate the remaining useful life of the equipment. Their results
have shown the effectiveness of the EVREG method for uncertainty treatment and its superiority over the
Kernel Density Estimation and the Mean-Variance Estimation methods in terms of reliability and precision.

3. Data and Problem Description

The problem we address in this work is predicting future health care cost of individuals, using their
past medical and cost information. This is a supervised learning problem, which can be formally specified
as a regression problem where the input vector x = (x0, x1, . . . , xn) is an individual’s past medical and cost
information and the target variable y is that person’s health care expenses in a future period (e.g., a year).

The records used for this work were provided by Tsuyama Chuo Hospital, a Japanese hospital located
in Okayama prefecture. These records were gathered between 2013 and 2018.

Japan has universal coverage for social health insurance; the system is composed of three sub-systems,
National Health Insurance (self-employment), Society Health insurance (for employees) and a Special
Scheme for the elderly (75 or older). Every citizen must join one of these three sub-systems according to
their occupational status and age. The premium charge for each person is set by each insurer depending
on the person’s income. Each medical organization is paid by a fee-for-service principle; at the end of
the month every medical facility in Japan has to send a set of claims to be reimbursed by an insurer (as a
claim sheet); the insurers have the right to decline a claim if it is incorrect or seems unnecessary.

Medical facilities use a special software for the production of a claim sheet. This software registers all
procedures, drugs and devices for each patient. Each procedure has a standard code set by the Ministry
of Health, Labor and Welfare (MHLW) that can be translated directly to the International Statistical
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Classification of Diseases and Related Health Problems codification (ICD-10) [45], a medical classification
list created by the World Health Organization (WHO).

Every claim sheet send by health facilities all over Japan are gathered by the MHLW in a National
Database [46]. The database contains a detailed information on patients such as provided service, age, sex,
date of consultation, date of admission, date of discharge, procedures and drugs provided with volumes
and tariffs. 1700 million records are registered annually. Unfortunately, we do not have access to the
National Database, but we have access to the electronic claims (claim sheets) sent by Tsuyama Chuo
hospital to the National Database between 2013 and 2018.

The claims are stored in a set of files; we had to transform these files to study the data. The format of
the claims file is confusing without previous knowledge of the structure. The detailed documentation of
this format can be found at the Medical Remuneration Service website (http://www.iryohoken.go.jp/shin
ryohoshu/file/spec/22bt1_1_kiroku.pdf). A short summary of the file format is shown in Table 1.

Table 1. Insurance claims.

Header Name Description

IR Medical institution Details of the medical institution.
RE Insured details Patient details with dates and demographics.
HO Insurer details Patient insurer information.
KO Public expenses Patient public expense information.
KH Special information Patient especial information (free text).
SY Diagnosis Patient diagnosis in MHLW coding.
SI Procedure Details for a patient treatment.
IY Medications Details for the medicines given.
TO Specific equipment Specific equipment details used in a patient.
CO Comment Comments for diagnoses or symptoms (free text).
SJ Symptoms Patients symptoms.

Since a patient’s data are dispersed within these files, we could not use these raw data to predict the
health care expenditure of patients. We used the data in these files to create a patient’s representation that
we could use for the prediction of an individual’s health care costs. Each patient in the insurance claims
could be identified by a unique identifier, which enabled us to follow all patients throughout the years.

We had access to patients’ health checkups as well as to the data sent by Tsuyama Chuo hospital to
the National Database. Every Japanese worker needs to take a yearly health checkup to start or continue
working at a company, so there were many patients with health checkup data.

Our dataset had patients’ monthly history between 2013 and 2018. However, there were many missing
values because most patients had few claims each year. Therefore, we grouped claims yearly so that
we could have fewer missing values. We created three different scenarios for this purpose as follows.
Scenario 1: We used a single year of history to predict the next cost value. Scenario 2: We used two years
of data to predict the third one, and Scenario 3: We used five years of history to predict the costs of the
sixth year. We filtered out patients in each scenario if they did not have the required history available,
and thus, the sets shrank in each scenario. In the case of missing health check values, we opted to use the
median of the exam to replace null values. Table 2 shows the basic statistics of the sets in each scenario.

http://www.iryohoken.go.jp/shinryohoshu/file/spec/22bt1_1_kiroku.pdf
http://www.iryohoken.go.jp/shinryohoshu/file/spec/22bt1_1_kiroku.pdf
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Table 2. Statistics of patients’ records in each scenario.

Statistics Scenario 1 Scenario 2 Scenario 3

Total number of patients 71,001 33,646 8,810
Mean costs 11,030 11,536 12,420
Mean age 54.00 58.00 63.00
% Male 48.81 48.54 48.56

% Female 51.19 51.46 51.44

4. Proposed Model

A regression task predicts the value of a target variable y using as input an arbitrary vector x. For a
regression method to succeed at this task, the predicted target variable value ŷ needs to be as close as
possible to the real target variable y value. In particular, in a Supervised Learning problem, variable ŷ is
deduced from a training set or the set of examples that are taken from past observations. In summary a
regression task solves the problem of finding a function f (x) which best explains the target variable y.

Petit-Renaud and Denœux presented a regression method based on the Dempster–Shafer Theory
(DST) called Evidential Regression (EVREG) [10]. The EVREG model uses a set of observations that have
occurred in the past as evidence in order to predict the target value of a new observation. Each observation
in this evidence set is given a mass which represents the similarity of the new observation with each
observation in the set. We calculate this similarity using a distance function (e.g., Euclidean distance) in
the feature space of the observations. The DST ensures that the masses of this evidence set add up to 1,
so they can be easily transformed to a probability distribution. Then an expected value is computed as the
mass of each past observation mi, times its observed target value (yi), as shown in Equation (4).

E[y] =
N

∑
i=1

mi ∗ yi (4)

DST is characterized for reasoning with uncertainty. EVREG uses the width of the observed target
variable interval (difference between maximum and minimum target variables) to represent uncertainty as
another piece of evidence. The importance given by the model to this interval represents the uncertainty
the model has when predicting an outcome. For example, when the new observation is at a great distance
from the evidence set, the model assigns a high value to the evidence of the variable y interval; thus we
get a high uncertainty in the model outcome, resulting in upper and lower bounds for the predicted target
variable proportional to the interval of the target variable observed in the evidence set.

EVREG has been used for predicting the time at which a system or a component will no longer perform
its intended function (machinery prognosis) for industrial applications [43,44]. Niu and Yang [43] used the
EVREG in a time series task, to predict the degradation trend of a methane compressor. They compared
the results of the EVREG model with six statistical indexes; the results showed the EVREG model had
the best performance. Baraldi et al. [44] used the model to estimate the remaining useful life of industrial
equipment. Their results have shown the effectiveness of the EVREG method for uncertainty treatment
and its superiority over the Kernel Density Estimation and the Mean-Variance Estimation methods in
terms of reliability and precision.

We will first describe EVREG (Section 4.1) in this section. Then, its time complexity and time
improvement will be explained in Section 4.2. We will extend EVREG using gradient descent and a
weighted distance function in Sections 4.3 and 4.4; the goal will be to improve the model regression
performance and enable it to perform feature selection tasks, which will allow it to rank features in a space.
Using this new distance function and optimization approach, the model will update the weight of each
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dimension. The extended model will be able to rule out or assign low weights to irrelevant features,
and assign higher values to the ones that strongly influence the output. This is an important characteristic
since feature selection has been shown to improve model accuracy and computing times [40,41,47]. Our aim
is that this enhanced EVREG method will perform as well as state-of-the-art regressors for tabular and
time series regression problems. In addition, the model will possess a feature selection ability, ranking
the features representing the correlation of each feature with the target variable, enabling its users to gain
more knowledge of the used data.

4.1. Evidential Regression

EVREG [10] is a Supervised Learning algorithm. This kind of algorithm uses a sample set as examples
to make a prediction. The samples in a Supervised Learning problem are called the training set. Formally,
we define the training set as:

L : {ei = (xi, yi)}N
i=1 (5)

where ei is an element of the training set, xi is the input vector of ei and yi its output or target value.
Let x be an arbitrary vector and y its corresponding unknown target variable. We need to derive

the expected value ŷ of variable y from the training set L. Each element ei of the training set is a piece
of evidence concerning the value of y. The relevance of each element in L can be assumed to depend
on the similarity between the arbitrary vector x and the input vectors xi of ei. It can be assumed that a
suitable discount function that depends on a distance measure ‖·‖ can measure this similarity. If x is close
to a vector xi in L, we assume that y is also close to yi, which makes the element ei an important piece of
evidence. If x and xi are at a great distance, it is safe to assume that yi has a small effect on y, and provides
only marginal information concerning y. We will use the Minkowski distance defined as:

d(xi, xj) = (
l

∑
k=1
|xik − xjk|p )

1
p (6)

where xik and xjk are the values of vectors xi and xj at dimension k. When p is 1 we get the L1 or
Manhattan distance and with p equal to 2 we get L2 or also known as the Euclidean distance. In the case
of high dimensional spaces, the vectors become uniformly distant from each other, the ratio between
the nearest and farthest vector approaches 1. This phenomenon is more present in the Euclidean than
in the Manhattan distance metric [48,49], which makes the Manhattan distance to yield better results in
distance-based algorithms in the presence of a high dimensional space. EVREG could use any distance
measure (e.g., cosine distance) to represent the similarity between two vectors. We will use the Minkowski
distance for its flexibility while testing the performance for values p ∈ [1, 2]. The value of p will be chosen
as the one that yields the best prediction performance in each problem. We will define the discount
function φ between vectors xi and xj using this distance measure as:

φ(d(xi, xj)) = exp(−
d(xi, xj)

γ

2

) (7)

where φ is a decreasing function from IR to [0, 1] that needs to fulfill φ(0) ∈ [0, 1] and,

lim
d→∞

φ(d) = 0 (8)

Equation (7) is the well-known Radial Basis Function (RBF) that decreases monotonically with
distance, commonly used as a kernel in the Support Vector Machine (SVM) classifier. Parameter γ is the
radius of the function, intuitively γ defines how far the influence of a vector reaches. In Figure 1 we can
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observe Equation (7) for different γ values. RBF-based methods are an active area of research [50,51];
various approaches exist to find the optimal parameters such as γ. This parameter can be learned using
an optimization approach, but often the value is set manually by trial and error. We will try to find the
optimal γ using a Grid Search approach in this work

Figure 1. Radial Basis Function for different γ values.

The discount function φ will represent the similarity between two vectors (higher value means
higher similarity); we can use this similarity function to compute the mass (influence) of each element in L
given an arbitrary vector x using the Dempster rule of combination getting:

mi(x) =
1
K

φ(d(x, xi)) ∏
k!=i

(1− φ(d(x, xk))) (9)

where K is a normalization term defined by the DST as:

K =
N

∏
j=1

(1− φ(d(x, xi))) +
N

∑
i=1

[φ(d(x, xi)) ∏
k!=i

(1− φ(d(x, xk)))] (10)

In Equation (9), φ determines the influence of xi in x and the product determines the effect of the
evidence set between these two vectors. We can obtain the influence of every vector in set L using the
previous formulas, but we need to consider one extra piece of evidence. We have observed the values of
variable y in every example of set L. EVREG takes this information into account. We will assume that
variable y is bounded to the interval [yin f , ysup], and for this interval we will define an additional mass
called domain mass m∗ calculated as:

m∗(x) =
1
K

N

∏
i=1

(1− φ(d(x, xi))) (11)
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Since we assumed that y is bounded to the [yin f , ysup] interval, there exists a probability density
function P(x) associated to mi(x) and m∗(x). Smets et al. [52] showed that the Pignistic transformation
could be used to transform the masses in EVREG to a probability function. In the particular case where
output y is a real number, the Pignistic probability is defined as:

P(x) =
N

∑
i=1

mi(x) · δi(x) +
m∗

ysup − yin f
(12)

Equation (12) is a mixture of Dirac distributions and a continuous uniform distribution. With this
probability function, we can get the expected value of target variable y as the Pignistic expectation [10]:

ŷ =
N

∑
i=1

mi(x) · yi +

m∗(x) · (sup
y∈L

y + inf
y∈L

y)

2
(13)

where ŷ is the expected or predicted value of target variable y. With the Pignistic expectation we have an
upper and lower bound for variable ŷ as:

ŷ∗ =
N

∑
i=1

mi(x) · yj + m∗(x) · sup
y∈L

y (14)

ŷ∗ =
N

∑
i=1

mi(x) · yj + m∗(x) · inf
y∈L

y (15)

We can observe that the interval [ŷ∗, ŷ∗] contains variable ŷ. The width of this interval can be
interpreted as the uncertainty of the response, which is directly associated with the mass of the domain of
target variable y.

The computation time of a prediction grows quickly with the size of the training set. For a single
prediction in training set L of size n, we need to compute the mass of each element ei which has a vector
xi of dimension q. We start by pre-computing the discount function (φ) of the input vector x with every
element ei in the set L. This computation takes O(q) time for each element in the set, taking a total time
of O(nq) to compute each mass of L additionally to the discount function. In Equation (9) we need to
compute a product sequence and the normalization term K. As we have pre-computed the discount
functions for the training set, the product sequence takes only O(log(n)). As for the normalization term K
(Equation (17)) which takes most of the calculation time for computing Equation (9), the product sequence
on the left side can also be computed in O(log(n)). The sum of the right side takes time O(nlog(n))
because of the product sequence contained in it. The domain mass also requires the normalization term
K and the product sequence takes time O(nlog(n)). Thus the time complexity for a single mass in the
training set is O(nlog(n)).

4.2. Improving Computing Time

All the masses of the training set need to be calculated to compute a single prediction. The mass
calculation needs to be computed n times; since we compute a single mass in time O(nlog(n)), the n
masses will take time O(n2log(n)). Computing a prediction with the formula shown in Equation (13) uses
the masses of the set L, and the mass of the domain of target variables in the training set. This calculation
requires to compute the maximum and minimum values, which needs time O(n), so we can get the
prediction of input vector x in time O(n2log(n)).
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The quadratic growth of each prediction makes it impossible for the EVREG model to work with large
sets; therefore it is difficult to apply it for real-life problems. However, it has been suggested the use of
a k-Nearest Neighbors (k-NN) approach [10] to improve computation time. Their results showed that a
k-NN approach did not introduce a significant penalty to the algorithm performance. It is possible to create
indexes for the k-NN search in O(n(q + k)) with this approach in the following way. First, we compute
the distance between x and xi for each vector in the training set, then we iterate through the distances k
times selecting the smallest distance. Now, only the masses of the k nearest neighbors have to be calculated
when computing a new prediction of a vector x. The masses of samples that are not in the set of the
nearest neighbors of x will be assumed to be null. In particular, we use a flat index implementation by
Johnson et al. [53], for the exact nearest neighbor’s search given its better execution times and memory
usage compared to other existing solutions.

Given now that only the masses of the k Nearest Neighbors are relevant for a prediction, the mass of
each sample in the training set for an input vector x is calculated as:

mi(x) =


1
K φ(d(x, xi))∏ k!=i

xk∈N(x)
(1− φ(d(x, xh))) if xi ∈ N(x),

0 otherwise

(16)

where N(x) is the set of k Nearest Neighbors of vector x. Now the normalization term K can be computed as:

K = ∏
xi∈N(x)

(1− φ(d(x, xi))) + ∑
xi∈N(x)

[φ(d(x, xi)) ∏
h!=i

xh∈N(x)

(1− φ(d(x, xh)))] (17)

Just the k neighbors are considered as evidence for a prediction of the domain mass, so the domain
evidence is only attributed to its neighbors. We compute the calculation of the domain mass as:

m∗(x) =
1
K ∏

xi∈N(x)
(1− φ(d(x, xi))) (18)

Since now we compute only the masses of the k Nearest Neighbors, we have to change the size
of the training set n by the number of neighbors k instead in the expression for computing the time
complexity. In Equation (16) once we got the k Nearest Neighbors, the normalization term K will be
computed in O(qklog(k)). The discount function will still take O(q) and the product sequence will have
O(qklog(k) complexity. Only the masses of the k neighbors will be needed to compute a prediction,
so only k masses of the training set will be computed thus obtaining a complexity for a single prediction of
O(qk2log(k)). Assuming that k is always significantly less than n, the conclusion is that the complexity for
a prediction ends up being reduced to O(nqk) because of the complexity of the k-NN search.

We performed the following experiment to demonstrate the importance of the k-NN approach for
speeding up the prediction computing time. We had two different settings, one for each approach: (i) the
first approach used all the training set as evidence; we started with 1000 examples and ended at 30,000
with steps of size 500 in this case. (ii) the k-NN approach; the examples started at 100,000 and finished at
5,000,000 examples with steps of size 100,000. We fixed the number of neighbors to 10 and the number of
dimensions used was only 1. The results are shown in Figure 2. Each value shown in the figure corresponds
to the mean execution time of 100 experiments.
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Figure 2. Time complexity single prediction.

The plot in Figure 2 is in a logarithmic scale. The slope of each curve was computed to observe
the complexity of each approach. The x axis corresponds to the logarithmic number of samples in the
training set, and the y axis is the logarithmic execution time of a single prediction in seconds. The number
of vectors varied in each approach due to hardware constraints: case (i) we had to limit the number of
vectors that could be tested because of excessive execution time and memory consumption. Case (ii) the
machine where the experiment ran could not register execution times properly for a low number of vectors
in the training set. As expected, the time complexity of the implemented EVREG with no optimization
grew dramatically faster than the k-NN approach as seen by their slopes. The complexity of using all the
training set approach seemed to have a larger time complexity than theoretically expected, as the slope in
a complexity of O(n2log(n)) was 2.12. In the k-NN approach we could easily observe a linearity with the
size of the training set. Consequently, it became obvious that the k-NN approach significantly dropped
execution times and made EVREG a viable option for real world problems.

4.3. Weighted Evidential Regression

This section proposes an improvement to the discount function used in EVREG based on ideas
which has been previously introduced to enhance the well-known k-Nearest Neighbors Regressor
(k-NN Regressor) [54], which is another regressor, similar to EVREG. The improved model will be called
Weighted Evidential Regression (WEVREG) Model. The aim of this improvement is to boost prediction
performance and allow the model to perform feature selection tasks. The k-NN Regressor is a simple and
intuitive non-parametric regression method to estimate the output value of an unknown function for a
given input. It “guesses” the output value using samples of known values as a training set, and computing
the mean output value of the nearest neighbors of the input vector. All neighbors in this method are equally
relevant for predicting the target variable in its original version. There is a variation of this algorithm
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where the importance of each neighbor depends on a distance measure between them, thus using a
weighted average of the k-NN vectors in the training set. This weighted k-NN Regressor is a kind of locally
weighted regression [55]. The weight of each neighbor is proportional to its proximity to the input vector.
The prediction is computed with this approach by the following expression:

f̂ (x) =
1
Z ∑

x′∈N(x)
f (x′) e

−d(x,x′)
β (19)

where N(x) is the set of k Nearest Neighbors of vector x, f (x′) is the value of the target variable of neighbor
x′, d(x, x′) is a distance function between vector x and its neighbor x′ (commonly the Euclidean distance),

β is a parameter of the estimator and Z is a normalization function with value Z = ∑x′∈N(x) e
−d(x,x′)

β .
Similar to the EVREG, the weighted k-NN regression uses the Euclidean distance and a Gaussian

Radial Basis discount function to assign a weight to each one of its neighbors. Further improvements have
been made to the weighted k-NN Regression based on the assumption that the target variable is most
accurately predicted using only the most relevant features of the neighbors which adds a Feature Selection
process to the algorithm. Navot et al. [40] introduced a weighted distance function for the weighted k-NN
Regressor, which improved the model performance and enabled the model to perform a feature selection
task. Given a weights vector w over the features of size q the distance function induced by w is defined as:

d(xi, xj) = (
l

∑
k=1
|(xik − xjk) · w|p )

1
p (20)

where input vector xi and xj have the same size q as the weights vector w. Each value of vector w represents
the importance for each dimension in computing the distance between two vectors, i.e., the amount which
a feature contributes to the distance between these two vectors. The model assumes that every dimension
contributes the same to the distance between two vectors in EVREG Equation (6), and consequently, to our
discount function (Equation (7)). However, this is not always the case; for example we could have a feature
in our input that has no impact in the target variable we are trying to predict thus it contributes nothing
to the similarity between those vectors. For instance, a patient age could have a great impact on that
individual health care costs so to predict the costs we want to be closer to patients in the same age group,
but maybe the eye color does not influence this cost, so we would not want to include two patients with
the same eyes color just for this fact.

We will change the distance function in Equation (6) with the one that uses weights as presented in
Equation (20) in order to improve the prediction performance of the EVREG model and to gain further
understanding about the data.

We will also use the distance measure described in Equation (20), to compute the k-NN of each
input vector x. The k-NN search implementation we use does not have a feature to use a custom distance
measure to compute a k-NN search, so we will have to create the indexes with a transform training set
space (applying the weights vector), and then transform the input vector x that will be predicted. We will
get the same distance measure as described in Equation (20) with this operation.

A simple example is presented to ease the understanding of the chain of thoughts behind this idea.
Let us assume we have a sample set of size 5 in a two dimensional space and we want to predict its third
dimension. The input vectors (two dimensions) are shown in Figure 3a. The optimization discussed in
Section 4.2 is used in this example, taking into account only the three closest neighbors to predict the target
variables. If we want to predict the output value for vector C using the three closest neighbors, then we
should consider A, B and E as its closest neighbors, shown in Figure 3a by the distance between C and
all the vectors. Nevertheless, what if we find that the dimension y is not as significant as x for predicting
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the target dimension? This observation means a variation in y does not affect in the same magnitude the
prediction as a difference of the same size in x. The space to reflect the variation in magnitude is scaled,
getting Figure 3b.

(a) Example input vectors. (b) Transformed input vectors.

Figure 3. Feature transformation.

If we now compute the three closest neighbors for vector C then we get vector A, E and D, replacing
vector B, thus reflecting the importance of feature x in the similarity function.

If we want the weight of a feature to represent the importance in an input vector, then the range of
each one of the feature domains has to be of the same size. Otherwise, we could get a bigger weight of
a dimension only to compensate the size of the domain. Therefore, it is recommended to normalize the
input features (all values must be between 0 and 1) so that the weights are comparable among features.

We can find the optimal weight vector using an optimization approach such as gradient descent.
We will describe the process of finding the optimal weights for a known training set in the next subsection.

4.4. Weight Learning

This subsection will present the process of finding the optimal weights vector in a known training set.
We will use a gradient descent algorithm to find a vector w that minimizes the error of the prediction model.

The accuracy of a regressor is commonly measured by computing the difference between the predicted
value Ŷ and the actual value of the target variable Y. The estimation error is expressed by a loss function
L(Y, Ŷ), L : IR× IR→ IR. Likewise in a Supervised Learning problem, our goal is to find a vector w that
induces the smallest error in L using the training set L and a small generalization error in a validation
set at the same time. We will use a gradient-based algorithm such as gradient descent with an Adam
optimizer to get the optimal value for w, because of its clear mathematical justification for reaching
optimum values [56].

The gradient descent algorithm is an iterative algorithm that optimizes variable values in order to
find a function minimal value. We use the Mean Squared Error (MSE) as our error function [57], and we
define the loss function L induced by w as:

Lw(Y, Ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (21)
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where n is the number of samples in the training set, Y is a vector of size n with the actual values for the
target variable of each sample in the training set, and Ŷ is the predicted value for each one of the samples
in the training set. y and ŷi are elements of Y and Ŷ respectively.

After defining the function error L which is induced by the weights vector w, our goal is to find a
vector w that yields the smallest error possible for the training set given. The estimator ŵ for vector w is
obtained by minimizing this criterion:

ŵ = argmin Lw(Y, Ŷ) (22)

Since our loss function Lw is continuous and differentiable, we can use gradient descent algorithm to
find ŵ. The gradient of Lw needs to be computed in every iteration of our algorithm in order to update the
weights w, then w is updated by taking a step proportional to the negative of the gradient. We need the
partial derivation of Lw for the gradient computation. This derivation is calculated as:

∂Lw

∂w
=

2
n

n

∑
i=1

∂(yi − ŷi)

∂w
=

2
n

n

∑
i=1

∂(yi − ŷi)

∂ŷi
· ∂ŷi

∂w
(23)

We need to calculate the partial derivative of the predicted target variable Ŷ with respect to w in order
to solve Equation (23). Therefore, the calculation of the derivative of Equation (13) gives:

∂ŷi
∂w

=
N

∑
j=1

∂mj(xi)

∂w
· yj +

∂m∗(xi)

∂w
·
(sup

y∈L
y + inf

y∈L
y)

2
(24)

where the derivative of a single mass in set L is calculated as,

∂mj(xi)

∂w
=

K
∂φ(xi ,xj)

∂w − ∂K
∂w · φ(xi, xj)

K2 ·∏
k!=i

(1− φ(d(x, xk))) +
φ(xi, xj)

K
· ∂(∏k!=i(1− φ(d(x, xk)))

∂w
(25)

With the derivatives of discount function φ and the normalization term K as,

∂φ(xi, xj)

∂w
= − 2

γ
exp(

−d(xi, xj)
2

γ
) · d(xi, xj) ·

∂d(xi, xj)

∂w
(26)

∂K
∂w

=
∂(∏N

j=1(1− φ(d(x, xi))))

∂w
+

N

∑
i=1

∂[φ(d(x, xi))∏k!=i(1− φ(d(x, xk)))]

∂w
(27)

The derivative of the product sequence is calculated as,

∂(∏k!=i(1− φ(d(xi, xk)))

∂w
= −

n

∑
h=1
h!=i

∂(φ(xi, xh))

∂w
· ∏

k=1
k!=h

(1− φ(xi, xk)) (28)

Finally, the derivative of the mass assigned to the domain can be calculated as,

∂m∗(xi)

∂w
=

K ∂(∏N
i=1(1−φ(d(x,xi)))

∂w − ∂K
∂w ∏N

i=1(1− φ(d(x, xi)))

K2 (29)

Then we can apply this calculated gradient, predicting the target variable yi of every example ei in
the training set L. When we predict the output value of a sample ei, we leave out this sample from set
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L and use all the other n− 1 samples for which the actual output value is known in the set as evidence.
We will perform this operation multiple times through all the training set, a single pass through all the
training set will be called an epoch. The algorithm will perform a fixed number of epochs. At the end of
each epoch the weights will be updated by the calculated gradient multiplied by a learning rate factor α

and we will store the weight vector only if a local minimum is found. Finally, the method will return the
weight vector ŵ which minimizes the loss function L, as we show in Algorithm 1.

Algorithm 1 Weight learning.

1: function WEIGHT LEARNING(X, Y, α, NumEpochs)
2: w← [1, 1, . . . , 1]
3: minLoss← ∞
4: ŵ← w
5: for epoch← (1, NumEpochs) do
6: Ŷ ← [ ]
7: for xi ∈ X do
8: S← Remove(xi, X) . Remove xi from training set
9: ŷi ← EVREG(xi, S, w) . Predict example ei with training set S

10: Insert(ŷi, Ŷ) . Insert ŷi in Ŷ
11: end for
12: loss← L(Y, Ŷ) . Compute loss
13: gradient← CalculateGradient(Y, Ŷ) . Compute gradient
14: w← w + α ∗ gradient . Update weights vector
15: if minLoss > loss then . Save best weight vector
16: minLoss← loss
17: ŵ← w
18: end if
19: end for
20: return ŵ
21: end function

The introduction of the weight learning process makes the EVREG model not only better predict
the output of a given variable, but also gain the ability to perform feature selection tasks. The main
advantage of EVREG is its transparency. This means we can easily track any prediction made by the
model; we can get the contribution (mass) of each piece of evidence in the training set L, which makes it
intrinsically interpretable. The model can now present a ranking of features according to their importance
(weight), i.e., the contribution of a feature to each mass computed, thus helping the end user get a better
understanding of her/his data.

5. Synthetic Data Experiments

We use synthetic datasets in this section to show the prediction capabilities of WEVREG, testing its
prediction performance in various configurations. First we compare its performance with the ones of other
well-known regression methods previously used in the health care costs prediction problem. The synthetic
datasets that will be used are detailed in Table 3.

Table 3. Synthetic regression datasets.

Name Samples Relevant Features Total Features

Linear Regression 200 5 500
Friedman 200 5 500

Linear Regression 5k 5000 5 500
Friedman 5k 5000 5 500
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These datasets were previously used by Bugata and Drotár [41] to test the performance of WkNN.
WkNN is a k-NN based algorithm that, like our method, finds the weight of each feature and then
uses a k-NN regressor to make a prediction. WkNN will be one of the methods that will be compared
to WEVREG.

The Linear Regression dataset is generated using a random linear regression model, then a gaussian
noise with deviation 1 is applied to the output. The Friedman regression problem is a synthetic dataset
described in [58], which has only 5 relevant features. The input is uniformly distributed on the interval
[0, 1]. Again a gaussian noise with 1 standard deviation is applied; the formula is shown in Equation (30).

f (x) = 10sin(πx0x1) + 20(x2 − 0.5)2 + 10x3 + 5x4 + N(0, 1) (30)

We used the Mean Absolute Error (MAE) to objectively measure the performance of each method.
This error computes the average absolute difference between the predicted cost ŷ and the real value y,
as shown in Equation (31). Where ŷ and y are vectors of size n.

MAE(ŷ, y) =
1
n

n

∑
i=1
|ŷi − yi| (31)

We used three regression methods to compare their performance to the one of WEVREG. The first
method was WkNN due to its similarity with WEVREG. Then the two tree-based algorithms to be used
were RT and GB . Every method had a unique configuration in each set for simplicity. We used a grid search
approach to find the best parameter for each method, except for WkNN where the same configuration
as WEVREG was used to demonstrate the difference between both methods. WEVREG used the closest
20 neighbors with a learning rate of 0.1 iterating for 100 times. RT considered all features to create a split
and 1 was the minimum number of samples required to be at a leaf node. For GB we used 500 boosting
stages and 4 as the minimum number of samples to split a node, with a learning rate of 0.1. The output
was scaled to be bound to [0, 1]. The performance of these methods is shown in Table 4.

Table 4. MAE on synthetic datasets (the lower the better).

Name RT WkNN WEVREG GB

Linear Regression 0.11± 0.03 0.08± 0.02 0.08± 0.02 0.03± 0.01
Friedman 0.12± 0.01 0.14± 0.01 0.10± 0.01 0.08± 0.01

Linear Regression 5k 0.06± 0.01 0.02± 0.00 0.03± 0.00 0.01± 0.00
Friedman 5k 0.09± 0.01 0.08± 0.01 0.07± 0.01 0.05± 0.01

GB was the method that obtained the best overall performance as can be observed in Table 4.
In particular, WEVREG obtained a good performance resulting in the second best method in most of
the sets. WEVREG obtained similar results to WkNN, with slightly better performance of WEVREG.
Furthermore, we tested the performance of the methods with a variable number of features. We could
observe the performance of each method in the Linear Regression and Friedman dataset using between 50
and 1000 features in Figure 4.
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(a) Linear Regression. (b) Friedman.

Figure 4. Model performance with different number of features.

As shown in Figure 4, WEVREG did not decrease its performance with the inclusion of more features
in the Linear Regression problem (Figure 4a). This was not the case in the Friedman dataset, where it
had an abrupt drop when the 600 features were exceeded, resulting in a performance similar to WkNN.
However, WEVREG was able to maintain its performance with the increase of unimportant features for a
good portion of the tests, which was more than necessary in the real problem we were trying to solve.

6. Experiments and Results

We had access to claims sent by Tsuyama Chuo hospital to the National database and patients’ yearly
health checkups, as mentioned in Section 3. We crossed data from both sources to obtain:

• Demographics: Patients’ gender and age.
• Patients’ attributes: General information about patients such as height, weight, body fat and

waist measurement.
• Health checks: Results from health check exams a patient had undergone. Japanese workers undergo

these exams annually by law. Each exam is indexed by a code, and the result is also included.
Some examples are creatinine levels and blood pressure. There were 28 different types of exams,
and the date when they were collected was also included.

• Diagnosis: Diagnosis for a patient illness registered by date and identified by their ICD-10 codes.
• Medications: Detailed information of the dosage and medicine administered, including dates

and charges.
• Costs: Billing information of each patient’s treatment. Including medicine, procedures and hospitalization

costs. The sum of these costs in a year is the value that was predicted.

The goal of our experiments was to test the model presented here and compare it to the results that
most successful models reported by the up-to-date literature in terms of accuracy and ability to interpret
the results. In this work we tried to predict the costs of each patient in the future year. Figure 5 shows the
distribution of patients’ costs. The chart shows that costs had the same distribution as described in [7],
with a spike at 0 and a long right-hand tail.
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Figure 5. Patients costs distribution.

It has been reported [11–13] that the use of clinical features (health checks, diagnosis and medications)
yields the same performance as using only cost features. This conclusion has been reached without the
proper use of an FS algorithm, just by testing the use and omission of clinical data, thus it is not clear
whether or not specific clinical data helps to determine a patient’s costs. We will use the clinical features to
properly test this hypothesis.

Encoding a patient’s history was done by using all sources available as features. The sources are
demographics, health checkups, diagnosis in ICD-10 codification, previous and actual costs.We will only
consider chronic conditions for the diagnosis as these can be carried from one year to the next. We will use
as chronic conditions the diseases defined by Koller et al. [59] in a study of the impact of multi-morbidity
on long-term care dependency. In the study they used 46 chronic conditions based on ICD-10 codes
defined by the Central Research Institute of Statutory Ambulatory Health Care in Germany. Table 5 shows
a description of the patient’s vector representation with the number of variables of each type in each
scenario. As an input vector, we used all dimensions shown in Table 5 except for the actual cost that was
used as our target variable.

Table 5. Number of variables by type in patient encoding.

Description Scenario 1 Scenario 2 Scenario 3

Demographics 2 2 2
Health checkups 27 54 135
Chronic diseases 46 92 230
Medication info 2 4 10
Previous costs 1 2 5

Actual cost 1 1 1

The evaluation of the performance of our model was done by comparing its results with the methods
reported by Sushmita et al. [12], Morid et al. [7] and Duncan et al. [13] for the health cost prediction
problem; these works used RT, GB and ANN methods respectively. We also tested a similar regressor
algorithm: WkNN.
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We used the MAE (Equation (31)) to measure the performance of each method. However, the MAE
is useful to compare algorithms in the same set but not to compare results in different datasets, so we
also used the Mean Absolute Percentage Error (MAPE), a modified absolute error where the difference
between the predicted variable ŷ and the real value y is divided by value y; it is computed as:

MAPE(ŷ, y) =
1
n

n

∑
i=1

|ŷi − yi|
yi

(32)

where again n is the size of vectors ŷ and y. One disadvantage of this error measure is that it does not
support zero values in the output of a dataset. It is expected that most individuals did not incur any cost
(healthy individuals). This not the case for our dataset, as we have information of individuals that have
concurred to Tsuyama Chuo Hospital for treatment or for a health check. Therefore, we can use MAPE as
a performance measure.

We also used another measure, R2 which is the Pearson correlation between the predicted and actual
health care cost. It represents the proximity of the predicted cost curve to the real cost curve. This value is
calculated as:

R2(ŷ, y) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − m̄)2 (33)

where m̄ is the mean of variable y defined as:

m̄ =
1
n

n

∑
i=1

yi (34)

We transformed our target variable (actual costs) to its logarithmic value in each one of the scenarios,
as recommended by Diehr et al. [5], so the distribution of patients’ costs in Figure 5 was distributed as
shown in Figure 6.

Figure 6. Patients logarithmic costs distribution.

We used a grid search approach for the GB model. We found that the best performance for our dataset
was reached when the maximum depth of the individual estimators was 1, the minimum number of
samples required to split an internal node was 2 and the number of boosting stages was 125 with a learning
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rate of 0.1. We tried multiple configurations (number of layers, number of neurons in each layer and
activation function) for the ANN; the best configuration had two hidden layers, the first with double the
number of inputs and the other with 10, the learning rate was set to 0.01, and with a Rectified Linear Unit
( f (x) = max(0, x)) as an activation function. We let it iterate for 30 epochs so it did not overfit. Concerning
WkNN configuration, we used 20 neighbors with a Euclidean distance and a RBF kernel. The learning rate
was set to 0.01 and was let to iterate for a maximum of 30 epochs. Finally, the WEVREG configuration was
the following: we trained the fixed weights for each dimension using gradient descent with a learning rate
of 0.1 for 25 epochs, and we used the closest 20 neighbors to improve prediction times, the same quantity
used in WkNN.

We performed a 5-fold cross validation procedure to evaluate the performance of each model [60].
The 5-fold cross validation is a statistical procedure where the dataset is randomly divided into five
groups, then one of these groups is treated as a validation set and the other four become the training set.
This validation is then performed with every group for a total of five times. Finally, the mean performance
for each validation group is calculated to obtain the performance of each algorithm. We performed the
5-fold validation five times (resulting in 25 validations) for every tested method. The median of each
performance measure is shown in Table 6 with its corresponding standard deviation.

Table 6. Models performance with all features (the lower is the better for Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE); the higher the better for R2).

Model Scenario 1 Scenario 2 Scenario 3

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

RT 0.97± 0.01 0.13± 0.00 0.16± 0.01 0.94± 0.01 0.12± 0.00 0.18± 0.02 0.91± 0.02 0.11± 0.00 0.17± 0.02

WkNN 0.95± 0.01 0.12± 0.00 0.21± 0.01 0.91± 0.00 0.12± 0.00 0.25± 0.00 0.82± 0.01 0.10± 0.00 0.34± 0.01

ANN 0.92± 0.01 0.13± 0.00 0.22± 0.01 0.85± 0.01 0.11± 0.00 0.30± 0.01 0.79± 0.03 0.10± 0.00 0.35± 0.04

WEVREG 0.92± 0.02 0.12± 0.00 0.23± 0.02 0.84± 0.00 0.11 ± 0.00 0.33± 0.00 0.75± 0.02 0.09± 0.00 0.41± 0.02

GB 0.89± 0.02 0.12± 0.00 0.26± 0.02 0.84± 0.01 0.11± 0.00 0.32± 0.01 0.67± 0.02 0.09± 0.00 0.49± 0.02

Every method increased its prediction performance through every scenario even though the sets
shrank in every step; this could be attributed to the availability of longer history for every patient in the sets.
RT was the only method that did not increase its performance drastically with each scenario, obtaining the
overall worst performance. The best results across all scenarios were obtained by GB. WEVREG obtained
similar results to GB, even obtaining a slightly better R2 in the second scenario, but it had a noticeable
difference in the last scenario that could be attributed to the smaller size of the set. WkNN obtained worst
metrics compared to WEVREG across all scenarios, although it used the same similarity function and
similar weight learning. The higher complexity of the masses computation in WEVREG seemed to benefit
its prediction power compared to WkNN.

The most important characteristic of WEVREG was its FS capabilities. Weights for each input feature
were learned during its training phase. Each feature started with an initial weight of 1, and it was updated
in every iteration of the gradient descent. These weights represented the importance of each feature to
predict the target variable which in this case was patients’ health care costs. After obtaining the weight of
each feature we could select a sub-sample of the features by setting a threshold. We set this threshold to 1,
so every weight that increased a little of its value from its starting value would be considered. The top five
features on each scenario are shown in Table 7.
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Table 7. Top 5 features for each scenario.

Scenario 1 Scenario 2 Scenario 3

Feature Weight Feature Weight Feature Weight

cost_1 65.06 cost_1 19.67 cost_5 19.66

age 6.19 cost_2 16.47 cost_4 19.66

gender 1.09 age 3.09 cost_3 19.66

dementia_1 1.03 urinary_incontinence_1 1.70 cost_2 19.66

parkinsons_disease_1 1.03 dementia_2 1.59 diabetes_mellitus_3 2.43

As we can observe across each scenario, the most noticeable features were cost features. WEVREG
assigned larger weights to the closest previous costs. These results are in line with previous works [11–13],
where it was reported that cost features alone are a good indicator for future health expenses.

Patient’s age seemed to be a small differentiable feature, that had a small effect in the search of
similar patients. Diagnosis features and health checkups features did not have a noticeable effect for health
care costs prediction. In the case of the last scenario, even though it was overshadowed by cost features,
diabetes mellitus was a meaningful diagnosis to reach a correct cost prediction. This could be related
to the fact that patients with this diagnosis incurred high expenses attributed to inpatient care [61,62].
An important feature across all scenarios was the diagnosis of dementia in the previous year; it seemed to
be a small factor to group patient with similar costs in cases where it was present.

We used the weights learned by the model to filter out unnecessary features. The selected features
were the ones that had been assigned a weight larger than 1. Table 8 shows the number of selected features
by scenario.

Table 8. Number of features selected by scenario.

Scenario Total Features Selected Features

1 76 5
2 154 10
3 382 33

We tested once more the performance of the methods with significantly smaller sets in each scenario.
The results can be seen on Table 9.

Table 9. Model performance with selected features (for MAE and MAPE lower is better, for R2 higher is better).

Model Scenario 1 Scenario 2 Scenario 3

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

RT 0.92± 0.02 0.13± 0.00 0.22± 0.03 0.87± 0.03 0.12± 0.00 0.27± 0.03 0.81± 0.02 0.10± 0.00 0.32± 0.02

WkNN 0.91± 0.01 0.12± 0.00 0.23± 0.01 0.82± 0.01 0.11± 0.00 0.34± 0.01 0.76± 0.02 0.10± 0.00 0.41± 0.02

ANN 0.92± 0.01 0.13± 0.00 0.22± 0.01 0.83± 0.02 0.11± 0.00 0.32± 0.02 0.72± 0.03 0.09± 0.00 0.44± 0.03

WEVREG 0.91± 0.01 0.12± 0.00 0.23± 0.01 0.82± 0.01 0.11± 0.00 0.34± 0.01 0.72± 0.02 0.09± 0.00 0.44± 0.02

GB 0.91± 0.01 0.12± 0.00 0.24± 0.01 0.82± 0.01 0.11± 0.00 0.33± 0.01 0.68± 0.02 0.08± 0.00 0.48± 0.02

Every model, except GB, increased its performance in all scenarios, as observed in Table 9. In particular,
WkNN and RT had a significant improvement in its MAE and R2 scores. ANN and WEVREG had a
high improvement in the last scenario, which could be attributed to the large number of unnecessary
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features in the first place. The initial features seemed to induce too much noise for the models to make
precise predictions. On the other hand, GB did not seem to be benefited as the other models with the
filtered features since it obtained similar performances, showing the GB resilience in the presence of noise
in its features compared to the other tested models. These results show the capability of WEVREG to
complete FS tasks, allowing us to decrease the number of features considerably, speeding up training times
and model performance. They also show that the most important features for health care costs prediction
were cost features; other features such as demographics and some diagnosis such us diabetes mellitus
helped to determine a patient’s costs but were not as indicative as previous costs.

7. Discussion and Conclusions

We presented a new regression method with the ability to do FS tasks; it has comparable prediction
performance as state of the art regression methods. It can easily show the most relevant features for health
care cost prediction; in particular, we obtained that cost features for our dataset are the most relevant to
determine a patient’s future health care costs.

Since WEVREG uses a k-NN approach we can easily keep track of how a prediction is made; this is
a desirable ability in the health care domain. We compared its results with the predictions made by four
models; two of them (GB and ANN) are the best ones from the eleven models analyzed and reported by
Morid et al. [7]. When comparing results we can conclude that our method obtains comparable performances
to these methods, proving that it is possible to create and use more transparent models for a regression
problem like health care cost prediction, challenging the common belief that complex and black-box like
methods are always the solution with the best performance for every problem being presented.

We improved Evidential regression presented by Petit-Renaud and Denœux [10] to be used in the
prediction of health care costs. Our results were obtained using data of electronic health records from
Tsuyama Chuo Hospital. The results showed that our Weighted Evidential Regression method obtained
R2 = 0.44 in the best scenario, which shows that a transparent and interpretable method, could perform as
current state of the art supervised learning algorithms such as ANN (R2 = 0.44) and GB (R2 = 0.49).

Even though results are similar or better than previous works, we believe our results are still improvable.
One of the approaches to improve performance is classifying patients in cost buckets as recommended by
various studies [7,11,13]; this strategy results in better performance but escapes the goal of this work, so we
can apply this classification process in future work to obtain a patient’s risk class as first step to try to improve
the performance of WEVREG. Another approach could be the use of a nearness to death feature as it has
been found that costs rise sharply with it [26–28]. It is impossible to know a patient’s near death status with
our current data. We could include census data to create the new feature, obtaining nearness to death by
age group taking into account the change in life expectancy depending on patients’ age [63]. We can also
try to solve the prediction of health care cost using deep learning methods, but this purpose may become
feasible with the availability of a larger dataset. Finally, we also plan to apply this model to other regression
problems in the health care domain, such as predicting the hospital length of stay and predicting the days
of readmission based on each patient’s diagnosis and history, which are two classic prediction problems in
this domain.
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