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Abstract: The classic models used to predict the behavior of photovoltaic systems, which are based
on the physical process of the solar cell, are limited to defining the analytical equation to obtain
its electrical parameter. In this paper, we evaluate several machine learning models to nowcast
the behavior and energy production of a photovoltaic (PV) system in conjunction with ambient
data provided by IoT environmental devices. We have evaluated the estimation of output power
generation by human-crafted features with multiple temporal windows and deep learning approaches
to obtain comparative results regarding the analytical models of PV systems in terms of error metrics
and learning time. The ambient data and ground truth of energy production have been collected in a
photovoltaic system with IoT capabilities developed within the Opera Digital Platform under the
UniVer Project, which has been deployed for 20 years in the Campus of the University of Jaén (Spain).
Machine learning models offer improved results compared with the state-of-the-art analytical model,
with significant differences in learning time and performance. The use of multiple temporal windows
is shown as a suitable tool for modeling temporal features to improve performance.

Keywords: photovoltaic systems; nowcasting energy generation; temporal windows

1. Introduction

Currently, photovoltaic (PV) power generation has been shown to be a successful technology with
a remarkable level of maturity with more than 500 GW of solar photovoltaic (PV) power installed all
over the world at the end of 2018, in some cases running for several years, and with a forecast of 1 TW
of total power being generated by 2022, most of it in large PV plants. The management of the operation
and maintenance (O&M) of these systems is a relevant research field for the solar PV industry [1,2].

Data represent a key asset in this PV management area, since they enable us to model the standard
behavior of the system and to monitor its performance compared with the expected output determined
by the model. This monitoring, when applied promptly and comprehensively, taking account of all
the factors that may impact performance, enables early damage and fault detection, which then allows
operation and maintenance actions to maximize the up-time and efficiency of PV plants.

Traditionally, approximate analytical expressions based on the physical laws and the electrical
parameters of the solar cells, together with the engineering data of the devices that conform the
PV system, have been used to build standard performance models. Leveraging the latest software
advances in machine learning, a different approach can be taken by using regressors to build models,
which learn from data on the actual behavior of the system during a relevant period of time and use
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the time series prediction to monitor performance. Machine learning approaches bring the advantage
of modeling independently from the deployment and configuration parameters of the PV system,
which are strongly affected by location and environmental conditions.

This work presents an important extension of the proposal [3], where two deep learning models
showed a better performance in forecasting energy generation with regard to standard analytical
models [4,5]. The main contribution of this work is evaluating in further detail the capabilities of
data-driven models for nowcasting the energy generation of photovoltaic systems from ambient sensor
information. In this way, two main data-driven approaches are evaluated: (i) human-crafted features
which are computed by means of multiple temporal windows and (ii) deep learning models with
automatic feature extraction and learning. Several configurations of segmentation and aggregation by
means of temporal windows have been proposed showing an improvement in terms of performance
and learning time. So, an important advance is made in this knowledge area through the use of
machine learning techniques to make predictions about PV system consumption in order to check
its status. In addition, an IoT module which collects photovoltaic data in real time within the Opera
platform is described. The module has collected the evaluation data over 24 weeks, which are openly
available to the scientific community.

The remainder of the paper is organized as follows: in Section 2, we detail the review of
works related to our proposal; Section 3 describes the supporting infrastructure and IoT module for
collecting real-time data within the Opera Digital Platform; Section 4 presents the methodology to develop
data-driven nowcasting of PV system consumption; Section 5 introduces the results of the dataset collected
by the Opera Digital Platform. Finally, conclusions and ongoing works are discussed in Section 6.

2. Related Works

PV systems are now considered a well-established technology for energy generation and have
reached a significant maturity level. However, being relatively recent most of the systems have been running
no more than 20 years [1,6]—means that there is not much experience in Operations and Maintenance
(O&M). Most of the tasks and tools regarding O&M make little use of new information technologies such as
big data, deep learning, business intelligence, etc. [7]. Up to now, the most common way to estimate the
behavior of PV systems has been the use of classic models based on the physical process of the solar cell to
define the analytical equation to obtain its electrical parameter [8]. There are many of these models with
very different approaches, difficulty levels and results [4,9–11]. The main objective of these tools is to
nowcast the electrical energy generated by the cells and also by the PV system.

Among all of these classic models, we have selected the Araujo model plus constant FF (FF: Fill
Factor is a noteworthy solar cell figure regarding maximum power delivered vs. maximum current
and maximum voltage of the cell; its upper limit is 1;) [4] to compare and evaluate the performance of
PV systems with the performance estimated by our proposed machine learning model. Araujo is a
standard PV model that combines enough accuracy with a very simple formulation [4,8]; additionally,
it needs only a few variables to be measured: current and voltage of the cell, irradiation and ambient
temperature [5].

Nevertheless, to obtain output energy using any of these classic models it is necessary to know
a large number of parameters and specifications of the PV generator in question: technical specs,
topology of the generator, location etc. One of the main advantages of our machine learning-based
proposal is the ability to nowcast all of these parameters and specs independently, and hence enabling
easier and more efficient PV deployment and customization.

Recently, several works regarding the use of new technologies to monitor and nowcast PV system
behavior have been presented. However, none of them have been used in or have produced—a usable
O&M management system [7,12–14]. A previous work related to a O&M analytics platform was
presented in [15]. The use of new information technologies in O&M management in the renewables
sector has, up to now, been restricted to a few large and expensive platforms developed by companies
to use in utility-scale generator power plants [16,17].
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Regarding the collection of operating data to monitor PV systems, it is traditionally carried out
with wired sensor data acquisition systems, which are sometimes expensive, allow little flexibility and
have limited cloud connectivity. Recently, several works on the new concept of using IoT connectivity in
monitoring the behavior of PV systems have been presented [12,14,18]. Incorporating these sensors in a
comprehensive O&M management tool has allowed us to develop a highly versatile and easy-operation
data collection system with wireless sensors, which offers great advantages as regards ease of use,
cost efficiency and standardization of data capture [13,19,20].

Several proposals based on the IoT paradigm in photovoltaic systems have been presented in the
relevant literature. In [21], a literature review of IoT energy platforms aimed at end users is presented,
where platform selection, new energy platform construction and, finally, platform comparison are
considered. In [22], the design and implementation of an IoT-based solar monitoring system for
city-wide, large-scale, and distributed solar facilities in smart cities was presented. In [23], a solar
tracking system enabling increased efficiency of photovoltaic systems was proposed. The proposed
system executes a tracking algorithm in the Firebase web service and allows the exchange of data
with said service through a NodeMCU development board, which has an integrated Wi-Fi module.
Finally, in [24], the use of IoT and machine learning paradigms for next-generation solar power plant
monitoring systems was analyzed and discussed.

Regarding the use of IoT and machine learning paradigms for analyzing sensor data streams,
there are techniques that have proven to be successful in other contexts. For example, evaluation
of single and multiple windows to segment and fuse temporal information from sensor data
streams [25,26], whose window size can be imbalanced [27,28] to aggregate data from shorter to
longer terms, enriching the features of sensor streams.

On the other hand, the use of Deep Learning in temporal series has become a prolific research
field [29]. Mainly, with the use of Long-Short Term Memory (LSTM) [30], which is a type of recurrent
neural network that includes a memory and is designed to learn from sequence data, such as sequences
of observations over time. LSTM is most widely used in natural language processing and speech
recognition, can model temporal dependence between observations [31] and is suitable for prediction
from sensor data [32]. LSTM has obtained encouraging results in several fields, such as activity
recognition [28] or estimating building energy consumption [33]. Moreover, modeling spatial features
in time series by means of Convolutional Neural Networks (CNNs) [31] qiu2017learning has achieved
promising results in speech recognition [34] or gas classification [35], together with LSTM models [36].

3. IoT Module for Real-Time Data Collection in the Opera Digital Platform

In this section, we describe the IoT module for collecting the photovoltaic data in the Opera Digital
Platform, which have been collected to nowcast output energy generation in the photovoltaic system.

Opera Project is a digital platform developed by an interdisciplinary team, covering the areas of
ICTs, PV and Electronic Technology, and has been designed to provide O&M management services
for renewable energy installations [15]. This digital platform has been developed with the knowledge
and the working data of the UniVer Project. This project see Figure 1 is a standard, medium-sized,
grid-connected PV system that has been running for the last 20 years in the Campus of the University
of Jaén [37]. The PV modules are made of 60 multicrystalline Si solar cells with 18.34% efficiency and a
156.75 × 156.75 mm2 surface. The PV generator is composed of 220 of these modules with a topology
of 20 (serial) × 11 (parallel) and a total power of 59.4 kW at Standard Test Conditions (STCs; that is,
1000 W/m2 of normal irradiance onto cells, cell temperature of 25 ◦C and AM1.5 solar spectrum).
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Figure 1. Two views of the photovoltaic (PV) generator of the UniVer Project. (a) PV pergola with
semitransparent modules ; (b) East view of the PV facade.

The Opera Platform is now also managing the O&M of this PV system.
The main objective of the IoT-based PV system O&M optimization module, besides reducing

costs, is to monitor the generated energy. Energy ET is the end product of every electric generator and
is computed as the integral of instantaneous power P in a period of time T: ET =

∫
T P · dt. Electric

power output is the instantaneous variable to be measured by this data collection system and also
targeted by the models to nowcast the behavior of PV systems, such as the one developed in this paper.
This output mainly relies upon the entry product: solar irradiance G whose magnitude is defined
by the square density of power incident on a surface measured in Watts per square meter (W/m2).
The temperature and the specs of the PV generator (PVG) are the other inputs for this data collection
system monitoring the performance of the PVG.

Monitoring of the PVG must be done following the European Standard IEC 61724 [38]. In line
with this, the variables that have been measured are shown in Table 1. From these measured data and
with the nominal specs of the PVG at STC, we compute derived parameters and metrics regarding
losses in energy performance, which is useful to evaluate the behavior of the PV system and very
helpful for fault diagnosis and descriptive operation analysis, such as : (i) global irradiation on the
PVG surface, (ii) net energy from the PVG in a period of time, (iii) performance ratio and (iv) yields and
losses. All of them are well defined analytically and conceptually in [38] and their function, meaning
and usefulness are also described in [39–41]. In this work, we have focused on the nowcasting of
output power generation, which is straightforwardly related to the analytical metrics on the behavior
of the PV system.

In order to collect environmental and energy generation information from the Opera Digital
Platform in real time, we have developed and deployed a genuine integration of ambient and power
supply sensors. This is composed of a set of sensors based on IoT technology connections and
controlled by a microprocessor which uploads the data by wireless network. These sensors measure
the working data of the PVG and the environmental variables shown in Table 1, needed to monitor
and nowcast PVG operation in accordance with standard [42].

Table 1. Variables measured by the data collection system.

Parameter Symbol Unit

Irradiance on PV surface GI W·m−2

Ambient temperature Tam
◦C

PVG output current IA A
PVG output voltage VA V
PVG output power generation PA W

The central unit of the IoT module is an Arduino. It is a standard board device that includes,
in addition to a µP, an input data conditioner, a communication network interface and other display
interfaces. The IoT module is responsible for collecting the photovoltaic data to send the information
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to the cloud by means of an internet connection (i.e.: wired, WiFi or modem). The module is powered
by standard power supply or by solar panel plus battery.

The ambient sensors connected to the Arduino board detect: (i) solar irradiance, (ii) module
temperature and (iii) ambient temperature. The irradiance sensor is a calibrated Si solar cell (calibration
certificate from CIEMAT, the Spanish Research Centre in Energy, Environment and Tech.), with an
analogical output from 0–5 V corresponding to an irradiance range from 0 to 1250 W/m2. The ambient
and cells temperature sensors are 4-wire Pt100 Probes, also with an analogical output of 0–5 V,
corresponding to a temperature range of −20 to 130 ◦C. These two sensors, plus the corresponding
interface circuitry, are included in a commercial unit made by Atersa S.L. (www.atersa.com), as we
describe in Figure 2. The ambient sensors are placed close to the panels and are powered by their
own solar mini-module. The ambient sensors send the measured data to the Arduino microprocessor
using Zigbee protocol to enable direct wireless communication between the devices and the Arduino
board [43] in open areas, which is inherent in the deployment of photovoltaic systems. We included
the Zigbee connection since experimental results with other popular wireless technologies, such as
Wi-Fi and Bluetooth, show that it is more energy efficient [44].

Figure 2. Radiation and temperature sensors unit.

The PVG data measured by the IoT module are the instantaneous values of output voltage and
intensity, which enable the computing of output power by multiplying output voltage and current
intensity. This is possible since the data are instantaneous values; in this case, the output of the
PVG is DC current, so this way to obtain power is also valid for mean values over a period of time.
Alternatively, an output power sensor can be installed, such as a power meter or a grid analyzer,
to get some redundancy in the measured data and, with the second device, some additional secondary
electrical output parameters.

Finally, in Figure 3 we show the voltage and current sensors, along with the microprocessor
unit used to measure operation data of the UniVer Project PV generator. Figure 4 shows a schematic
diagram of the data collection architecture.

 www.atersa.com
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Figure 3. Current and voltage sensors and microprocessor unit. (a) Two voltage sensor devices for the
two branch of the generator under study (black units) and the µP unit (white one); (b) Two current
sensor, toroidal cores, for the two branch of the generator under study.

Figure 4. Architecture of the IoT module for collecting data in real-time.

4. Machine Learning Approaches to Nowcast Power Generation

In this section, we describe the methodology used for processing, segmenting and modeling the
sensor data from the Opera PV System in order to nowcast output power generation from the ambient
sensor information in real time.

As stated previously, several models are evaluated in this work. They are mainly grouped into:
(i) human-crafted features and multiple temporal windows and (ii) deep learning for automatic feature
extraction and learning. In the following sections, we detail: (first) basic segmentation with temporal
sliding windows for sensor streams in a data-driven model; (second) modeling for human-crafted
features and multiple temporal windows; and (third) deep learning approaches to nowcast output
power generation of the Opera PV System.

4.1. Data-Driven Model to Nowcast Power Generation

Following a formal definition, a sensor s collects data in real time in the form of a pair si = {si, ti},
where si represents a given measurement and ti the time-stamp, respectively. Thus, the data stream of
the sensor source s is defined by Ss = {s0, . . . , si} and a given value in a timestamp ti by Ss(ti) = si.
In this work, irradiance on PV surface GI , ambient temperature Tam, PVG output IA, PVG output
voltage VA and PVG output power generation PA provide five data streams which describe the
behavior and energy production of the PV system.

Next, temporal sliding windows, which are defined by the window size of a time interval
Ww = [W−w , W+

w ] [45], segment the samples of a sensor stream Ss and aggregate the values si by a given
aggregation function Tt(Ss, Ww, t∗):
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Tt(Ss, Ww, t∗) =
si⋃
si

si, ti ∈ [t∗ −W−w , t∗ −W+
w ]

whose value of aggregation defines a given feature Tt of the sensors Ss in a current time t∗. In Figure 5,
we describe the segmentation and aggregation by temporal sliding windows in some visual examples
of data streams.

Figure 5. Example of data streams from sensor sources, segmentation and aggregation by temporal
sliding windows.

4.2. Human-Crafted Features and Multiple Temporal Windows for Efficient Nowcasting of Output Power Generation

In this section, we describe human-crafted features based on multiple sliding temporal windows
where an expert defines an aggregation function to process sensor streams training a data-driven
regressor to compute a feature vector for learning purposes.

Among the broad spectrum of models, we focus on efficient regressor, which enables both learning
and evaluating on micro boards in real time under fog computing environments [27]. To this end,
we evaluate a human-crafted feature approach [46], where the aggregation functions and multiple
windows of different sizes are defined by experts. In concrete terms, we include the following
configuration of models:

• Aggregation functions Tt based on statistical metrics, such as maximal, minimal, average and
standard deviation have been defined in this configuration as they have been demonstrated as
relevant features in describing sensor streams [47].

• Segmentation and fusion of temporal information from sensor streams with: (i) single window,
(ii) multiple windows [25], and (iii) incremental windows [27] to aggregate data from shorter to
longer terms enriching the features of sensor streams. Window size is also defined by human criteria.

• Classification from efficient regressors, with low learning time and training requirements, such as
linear regression, k-nearest neighbors (kNN), support vector machines (SVM) and random
forest (RF).
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Therefore, starting from a set of input sensors S = {S1, . . . , Ss, . . . , S|S|}, a set of window sizes
W = {W1, . . . , Ww, . . . , W|W|} and a set of aggregation functions T = {T1, . . . , Tt, . . . , T|T|} we define a
total number of features |S| × |W| × |T| which describe the sensor streams S for each point of time
t∗ [47]. Since our model is based on a data-driven supervised approach, the features which describe the
sensor streams are associated for each point of time t∗ with a target sensor to nowcast S∗ (not included
in the input sensors S ∩ S∗ = ):

T1(S1, W1, t∗), . . . , Tt(Ss, Ww, t∗), . . . T|T|(S|S|, W|W|, t∗)→ S∗(t∗)

4.3. Deep Learning Modeling to Nowcast Output Power Generation

In this section, we describe DL models to nowcast output power generation in a PV device.
Contrary to the previous proposal, DL does not require human-crafted features and data pre-processing
is applied to compute a homogeneous sequence of data between the different collection rates from
raw sensor sources. Here, a minimal signal segmentation is defined by sliding temporal windows
of short-term window size, which is related to a minimal temporal granularity ∆. The raw data are
averaged

⋃
= µ for each short-term temporal window within the segment.

So, we obtain a sequence of data for each sensor source, whose sequence size is the same for all
sources Ss:

S∗(t∗)→


µ(S1, [0, ∆], t∗)→ µ(S1, [∆, 2∆], t∗), . . . , µ(S1, [∆|W| − ∆, ∆|W|], t∗)

. . .

µ(S|S|, [0, ∆], t∗)→ µ(S|S|, [∆, 2∆], t∗), . . . , µ(S|S|, [∆|W − 1|, ∆|W|], t∗)

which are related to the target sensor to nowcast S∗ for each current time t∗ under a sliding window
approach.

Once the input and output data from the DL model are defined, in this work, we propose
two architectures of DL neural networks to nowcast the output power generation of the PV device,
which have been shown as suitable configurations to sequence time series in sliding window
approaches [48].

• 2LSTM. Two layers of LSTM which have been previously identified as a suitable configuration to
nowcast energy load [49].

• 3CNN+2LSTM. Three layers of CNN are firstly integrated as spatial feature extractors.
Next, two layers of LSTM model the temporal dependencies from CNN. The combination of
CNN-LSTM hybrid networks has been selected due to providing encouraging results in modeling
output power generation [50].

In Table 2, we include the parameters and layers for each proposed model.

Table 2. Configurations of Convolutional Neural Networks.

2LSTM 3CNN+2LSTM

LSTM (32 units) 2 kernels × 16 filters
dropout (0.25) Re-Lu
LSTM (32 units) 2 kernels × 32 filters
dropout (0.25) Re-Lu
connected (1 unit) 2 kernels × 64 filters
activation function: Re-Lu Re-Lu
loss function: MAE dropout (0.25)

LSTM (32 units)
dropout (0.25)
LSTM (32 units)
dropout (0.25)
connected (1 unit)
activation function: Re-Lu
loss function: MAE
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5. Evaluation

In this section, we present the evaluation of our proposal. First we shall present the experimental
setup, then the results obtained and, finally, we will discuss our proposal based on the results presented.

5.1. Experimental Setup

In this section, we describe the experimental setup and results of a case study developed in the
University of Jaén (Spain), where the Opera Project and PV device were deployed. The IoT module
which collected the photovoltaic data in real time within the Opera platform was running from the 9th
of June to the 23rd of November 2019, generating data collection over 168 days. The location of the IoT
module in the campus of the University of Jaén was (latitude: 37.787253, longitude: −3.776258).

In the experimental setup, five sensors, which were installed in the PV device, collected the
following measures: irradiance, ambient temperature, module temperature, output current and output
voltage, as described in Section 3. The output power generation to be estimated by the machine
learning model was obtained using output current and output voltage according to the following
equation: P = Vİ.

Both data and learning models are openly available to the scientific community at this GitHub
repository: https://github.com/galmonacid/opera/. Below, we detail the configuration and results in
nowcasting output power generation by several machine learning models.

• Human-crafted features and multiple temporal windows. We evaluate the nowcasting performance
of the following models with human-crafted features and multiple temporal windows and times
with the configurations shown below:

– Linear regression, with intercept = True.
– kNN (k-Nearest Neighbors), with number of neighbours = 5.
– SVM (Support Vector Machine), with kernel = polynomial .
– Random forest, with minimum samples leaf = 1 and minimum samples split = 2.

For each of these four models, three sliding temporal window configurations were defined
and evaluated:

– T = 10 min, one single 10-min temporal window.
– T = 30 min, three 10-min temporal windows.
– T = 90 min, three incremental temporal windows, with a 10-min, 20-min and 60-min window.

• Deep Learning approaches, where we evaluate the performance and learning time of two DL
models: 2LSTM and 3CNN+2LSTM, as described in Section 4.3. Concretely, we have evaluated
two segmentation configurations: 10 min ∆ = 10 m and 5 min ∆ = 5 m:

– ∆ = 10 m defined by a 90-minute sequence of data whose sequence length is |W| = 9, W =
{[0 m, 9 m], [10 m, 19 m], . . . , [80 m, 89 m]}. For ∆ = 10 m and |W| = 18 W = {[0 m, 4 m], [5 m,
9 m], . . . , [85 m, 89 m]} for ∆ = 5 m. This configuration generated a total of 24,031 samples for
learning purposes.

– ∆ = 5 m, defined by a 90-minute sequence of data whose sequence length is |W| = 18,
|W| = 18 W = {[0 m, 4 m], [5 m, 9 m], . . . , [85 m, 89 m]} for ∆ = 5 m. This configuration
generated a total of 48,062 samples for learning purposes.

In order to nowcast output power generation from the ambient data collected in the PVS,
we compared the predicted and ground truth in the tests using 30-fold cross validation. We note the
ambient data from photovoltaic sources has been normalized using the max-min method in a previous
learning stage.

https://github.com/galmonacid/opera/
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5.2. Results

In this section, we describe the obtained results from the standard analytical method and the
machine learning approaches described in the work.

Output power generation was collected by the IoT module representing the ground truth for
evaluation purposes. The estimated output power generation for each model was based on data from
ambient sensors. The prediction versus the ground truth for the full time-line of tests were compared
using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and coefficient of determination
(R2). With the 30-fold cross validation configuration, we also computed learning time and evaluation
time to assess the resource consumption of the models.

First, we evaluated the Araujo model which provides a base performance provided by the
standard analytical method. The results from this baseline model are shown in Table 3:

Table 3. Araujo error metrics.

Model RMSE (W) MAE (W) R2

Araujo 641.36 354.81 0.9947

Second, we evaluated one of the data-driven approaches analyzed in this work: regressor models
which nowcast energy generation by means of human-crafted features computed from sensor streams.
The results are shown in Table 4 in terms of RMSE, MAE and R2 metrics.

Table 4. Error metrics of human-crafted feature models with different sliding windows approaches.

Model Sliding Window Sizes RMSE (W) MAE (W) R2

Linear Regression
10 min 637.20 425.74 0.9948

10 min + 10 min + 10 min 590.27 375.11 0.9955
10 min + 20 min + 60 min 537.37 323.04 0.9963

kNN
10 min 466.76 229.62 0.9972

10 min + 10 min + 10 min 536.11 249.29 0.9963
10 min + 20 min + 60 min 528.40 253.13 0.9964

Random Forest
10 min 410.44 201.91 0.9978

10 min + 10 min + 10 min 375.49 183.49 0.9982
10 min + 20 min + 60 min 360.13 173.47 0.9983

SVM
10 min 4474.17 2794.36 0.7421

10 min + 10 min + 10 min 4593.69 2835.49 0.7281
10 min + 20 min + 60 min 4410.17 2653.65 0.7493

Furthermore, in order to evaluate the computational energy consumption, we have included a
comparison of learning and evaluation time for the models based on human-crafted features in Table 5.

Third, we evaluated the data-driven approach based on deep learning. To compare the results with
Araujo and models based on human-crafted features, we provide the comparison of the performance
of DL models in terms of RMSE, MAE and R2 metrics in Table 6 and the learning and evaluation time
in Table 7.

Finally, as summary of the results of the different models, in Table 8 we include a comparison
between the different approaches: Araujo, the best-performing DL model (3CNN+2LSTM) and the
best regressor among human-crafted feature approaches (random forest 90 min).

In order to provide a visual representation of the nowcasting of energy consumption, in Figure 6
we show a 2-day sample test comparing measured output power generation with the regressor models.
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Table 5. Human-crafted feature models time metrics.

Model Sliding Window Sizes Learning Time (ms) Evaluation Time (ms)

Linear Regression
10 min 11.46 2.10

10 min + 10 min + 10 min 36.67 2.72
10 min + 20 min + 60 min 37.25 2.81

kNN
10 min 86.52 13.00

10 min + 10 min + 10 min 213.55 51.50
10 min + 20 min + 60 min 196.54 52.11

Random Forest
10 min 22,743.35 42.89

10 min + 10 min + 10 min 69,790.30 45.54
10 min + 20 min + 60 min 73,499.40 42.03

SVM
10 min 30,912.46 322.88

10 min + 10 min + 10 min 48,459.79 846.61
10 min + 20 min + 60 min 49,373.02 857.88

Table 6. Error metrics of Deep Learning approaches based on Long Short-Term Memory (LSTM) and
Convolutional Neural Network (CNN)+LSTM.

Model Segmentation RMSE (W) MAE (W) R2

2LSTM 5 min 2393.75 618.70 0.9262
10 min 706.57 376.76 0.9936

3CNN+2LSTM 5 min 2384.14 583.11 0.9271
10 min 531.08 274.87 0.9964

Table 7. Deep Learning models time metrics.

Model Segmentation Learning Time (ms) Evaluation Time (ms)

2LSTM 10 min 222,657.12 6951.65
3CNN+2LSTM 10 min 197,593.52 5627.01

Table 8. Summary of error metrics for best configurations of human-crafted features and DL approaches.

Model RMSE (W) MAE (W) R2

Araujo 641.36 354.81 0.9947
3CNN+2LSTM 531.08 274.87 0.9964
Random Forest 360.13 173.47 0.9983

(i)

Figure 6. Cont.



Sensors 2020, 20, 4224 12 of 16

(ii)

(iii)

(iv)

(v)

(vi)

Figure 6. We show 2-day samples of ground truth of output power generation compared with the
predictions. From the top to bottom: (i) the Araujo model, (ii) linear regression, (iii) kNN, (iv) random
forest, (v) SVM, (vi) 3CNN+2LSTM.

5.3. Discussion

In this work we describe an IoT module for collecting ambient sensor information and output
energy consumption from the photovoltaic system deployed under the Opera Project. In order to
evaluate the standard behavior of the system and to monitor its performance, we have focused on
nowcasting output energy generation from the ambient sensor devices. To this end, two different
approaches for machine learning models have been proposed: (i) human-crafted features and multiple
temporal windows and (ii) deep learning for automatic feature extraction and learning.

Both approaches present encouraging performance in nowcasting output energy generation
in the photovoltaic system based on data collected from ambient sensors; however, we highlight
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the model based on human-crafted features and multiple temporal windows for its lower learning
time and best results. Specifically, we note: (i) the use of multiple imbalanced temporal windows
increases nowcasting performance, (ii) random forest is the best regressor and (iii) kNN provides
an excellent balance between learning time and results. Moreover, the use of kNN should be highly
recommended for nowcasting energy generation in photovoltaic systems using fog-based approaches,
where mini boards could perform the data learning in a short time using low computational resources
and computational energy consumption.

In the case of DL approaches, the use of CNN+LSTM provides improved nowcasting performance
when comparing the results with the Araujo analytical model. This fact is due to the automatic feature
extraction generated by CNN, which summarizes the key patterns to nowcast output power generation,
providing a remarkable improvement compared with only using LSTM. The performance of the DL
model with 10-min segmentation increases compared to 5-min segmentation because short-term
segmentation duplicates the number of input variables in the sequence of samples and the higher
complexity of data reduces nowcasting performance. However, the human-crafted features model
with imbalanced temporal windows has overtaken the performance of DL approaches and the Araujo
analytical model, coming out as the leading model according to the results presented in this work.

6. Conclusions and Ongoing Works

In this work, an IoT module and data-driven models to nowcast output energy generation
integrated in the Opera Digital Platform project have been described. The IoT module is based on
Arduino and low-cost sensors which collect ambient and energy data sources in a photovoltaic system.
The IoT module has collected the data presented in this work over 24 weeks.

Two approaches based on machine learning have been evaluated: (i) human-crafted features
with multiple temporal windows, and (ii) deep learning models. CNN+LSTM, kNN and random
forest provide better performance compared with the standard analytical model Araujo. In the
case of CNN+LSTM, the advantage of DL is the lack of human intervention in feature definition.
The performance of kNN is remarkable, with notably low learning time and providing fog integration
capabilities in micro boards. Finally, random forest with incremental temporal windows had the
highest performance in terms of error metrics.

A potential advance in this line of work would consist of an in-depth analysis of the diagnosis,
typology and fail patterns in PV systems to predict these events by means of machine learning models.
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