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Abstract: Load tests are a popular way to diagnose the structural condition of bridges, however, such
tests usually interrupt traffic for many hours. To address this issue, a Kalman filter-based method is
proposed to diagnose the structural condition of medium- and small-span beam bridges by using the
acceleration responses obtained from the bridge during a brief traffic interruption. First, a condition
diagnosis feature based on the Kalman filter innovation (i.e., the optimal difference between the filter
predictions and measured responses) is presented. Second, a condition diagnosis index, which is the
energy ratio between the innovation and the measured acceleration, is generated by calculating the
null space of the Hankel matrix consisting of condition diagnosis features. Then, on the basis of the
novel detection, a method is used to diagnose the structural condition of a bridge during a brief traffic
interruption. Finally, the validity and dependability of the proposed method is demonstrated through
experimental tests with a model bridge and field tests on an actual bridge. Using the proposed
method, the long-time interruption of traffic flow and the reliance on finite element model are effective
avoided during the process of condition diagnosis of bridges.

Keywords: condition diagnosis; beam bridges; Kalman filter; novelty detection

1. Introduction

The structural responses of bridges during operation can be used for condition diagnosis, wherein
the main tasks are evaluating the safety status of bridges and identifying potential damage. Visual
inspection [1–5], which manually checks the safety status of bridges by measuring cracks, defects
and leakage, is an easy and popular way to assess the condition of bridges, however, the accuracy
and quality of visual inspection diagnosis results are subjective and dependent on the diligence of
the inspectors. Compared with visual inspection, structural health monitoring is a technique that
continuously provides large amounts of reliable structural response data [6–11], thus, this technique is
an effective way to assess the condition of bridges. However, it is economically infeasible to establish a
structural health monitoring system for all bridges, especially for medium- and small-span bridges,
which account for a large proportion of all bridges. To date, the load test is the most effective and the
most widely used approach for condition diagnosis in medium- and small-span bridges [12,13].

To accurately diagnose the bridge technical condition, there are two categories of load tests,
including the diagnostic load test and the proof load test [14–18]. For the former, a multi-grade load
is implemented to a bridge until the predetermined safe load is attained. For the latter, a lower
magnitude load is usually adopted, and the measured responses of bridge are used to assess the
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structural condition of bridges. For the load test, the loading vehicle is usually a standard truck
combined with a uniform load, which is defined by the axle load and spacing. Usually, the issue in
proof load testing is that the traffic flow must be interrupted for many hours to ensure the loading time
is sufficient for each load grade.

In this study, a diagnostic load test with a brief interruption in traffic flow is presented. The daily
traffic of a bridge is interrupted first. Then, the loading vehicle travels across this bridge at a constant
speed, and the acceleration response of the bridge superstructure induced by the loading vehicle is
acquired. The abovementioned load procedure can be repeated several times by ensuring that the
loading vehicle travels along the same driving route at the same speed. Finally, after completing the
entire load test, the traffic resumes again. The abovementioned procedure usually does not require
much time for medium- and small-span bridges. The measured acceleration response is applied to
diagnose the condition of bridges by using a Kalman filter-based method.

Kalman filters were originally widely applied in statistical analysis and time series analysis [19–23].
This filter is composed of a group of recursive equations that provide a simple way to update and
predict the response in a state space model of structures. Generally, the Kalman filter establishes the
optimal predictor which is a linear model with limited parameters, using the least squares method.
Utilizing the characteristics of the Kalman filter, the optimal differences between the measured response
and the filter predictions, named innovations, are used to detect damage in structures [24] by testing
the hypothesis on the whiteness of the innovation. Different types of Kalman filters, including adaptive
Kalman filters [25,26], extended Kalman filters [27–29], unscented Kalman filters [30,31] and dual
extended Kalman filters [32,33], have been investigated to diagnose structural damage. Additionally,
some methods have been combined with the Kalman filter to enhance the ability to detect structural
damage. Based on energy theory, a relationship between the structural stiffness and acceleration
response was generated by using Kalman filter, and this relationship was applied to fast detect the
damage of structures [34]. An extended Kalman filter-based artificial neural network was proposed to
detect the damage in bridges caused by the changes of environmental temperature [35]. As previously
discussed, the Kalman filter is an effective method to directly utilize the acceleration response to
diagnose the change in the condition of structures.

In this study, Kalman filter is combined with the diagnostic load test with a brief interruption in
traffic flow. After performing the diagnostic loading tests, a Kalman filter-based method is adopted
to diagnose the condition of the bridge using the measured acceleration responses of the bridge
superstructure. With this way, a long duration interruption of the traffic flow during the bridge
condition diagnosis process is effectively avoided. Using the Kalman filter, the measured acceleration
responses of bridge superstructure are directly utilized to assess the structural condition of the bridge,
so it effectively avoids the calculation errors of data secondary processing such as modal parameter
identification using acceleration data. Additionally, the proposed Kalman filter-based method does not
depend on the finite element model (FEM) of bridge; thus, this method also avoids the errors caused
by any difference between the analytical FEM of the bridge and the real structural characteristics of
the bridge.

2. A Kalman Filter-Based Method for Diagnosing the Structural Condition of Medium- and
Small-Span Beam Bridges

In this section, a method is presented to diagnose the condition of a bridge during a brief
interruption in traffic flow by using the acceleration response of the bridge superstructure induced by
the action of a moving vehicle traveling across the bridge at constant speed. A condition diagnosis
feature is generated by using the innovation between the measured acceleration and the predicted
acceleration obtained from the Kalman filter, and then a condition diagnosis index—which is the energy
ratio between the innovation and the measured acceleration—is proposed by calculating the null space
of the Hankel matrix consisting of condition diagnosis features. Following the basic novel detection
idea, the established condition diagnosis index is utilized to assess the condition of the bridge.
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2.1. Condition Diagnosis Feature Based on the Innovation Obtained by the Kalman Filter

A bridge is deemed a linear structural system. Thus, on the basis of state space theory, the state
equation of a linear discrete system of a bridge is defined as follows:

xk+1 = Axk + wk (1)

yk = Cxk + vk, (2)

where k represents the sampling time point of the structural response (k = 1, 2, · · · , N), in which N
is the count of sampling time points; xk ∈ Rn×1 represents the state vector at the kth sampling time
point, wherein n is the system order, which is twice the total number of degrees of freedom of bridge;
xk+1 ∈ Rn×1 is the state vector at the (k+1)th sampling time point; A ∈ Rn×n is the system matrix;
yk ∈ Rm×1 is the output vector of the structure at the kth time point; m is the total number of measured
degrees of freedom; C ∈ Rm×n is the state output matrix; vk ∈ Rm×1 is the measured noise vector at the
kth time point; and wk ∈ Rn×1 is the noise of the excitation load. The noise of the excitation load is
defined by the following equation:

wk = Gρk, (3)

where ρk ∈ Rr×1 is the unmeasured excitation vector at the kth time point, r is the total number of
excitation loads, and G ∈ Rn×r is the transfer matrix between the input load and state vector of the
system. The vector vk is defined by the following equation:

vk = Dρk + ηk, (4)

where D ∈ Rm×r is the transmission matrix and ηk ∈ Rm×1 is the pure measured noise at the kth
time point.

The innovation is defined as the optimal differences between the measured and predicted responses
of the bridge obtained by the Kalman filter [24]. Based on the abovementioned equations, the innovation
ek is computed as follows:

ek = yk −C
^
x
−

k , (5)

where
^
x
−

k is the prior state estimation vector at the kth time point. The posterior state estimation vector
at the kth time point can be estimated by using the Kalman filter [36], defined as follows:

^
x
+

k =
^
x
−

k + Kek, (6)

where K is the steady state Kalman gain, which is computed by using the following equation:

K = PCT(CPCT + R)
−1

, (7)

where the covariance matrix of the state error P ∈ Rn×n is defined as follows:

P =
¯
AP

¯
A

T
+ AKRK

T
AT + Q, (8)

A = A(I−KC), (9)

As described above, the innovation obtained by the Kalman filter is related to the measured
responses of bridges, and the measured responses are directly determined by the excitation load
acting on the bridge. For a bridge without any damage, the Kalman filter is obtained by using the
measured acceleration of the bridge superstructure under the action of a certain excitation load, and the
innovation e is calculated by using the generated Kalman filter. If the same excitation load acts on this
bridge, another innovation e

′

is acquired by using the abovementioned generated Kalman filter. If the
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structural condition of this bridge does not change, the two innovations, e and e
′

, should be the same
in theory. Therefore, the innovations obtained from the same excitation load can be used to diagnosis
the condition of the bridge.

However, for a bridge in operation, it is impossible to keep the excitation load consistent for
different times. To solve this issue, a reasonable method is to stop the traffic and to excite the bridge by
using the same standard loading vehicle traveling along the same driving route at the same constant
speed for every load test. This excitation method is similar to the regular load test of a bridge, and it is
easy to implement for real situations. In contrast to the regular load test, we do not need to stop the
traffic flow for many hours for each load test because for the selected medium- and small-span beam
bridges, the loading vehicle does not require much time to travel across the bridge even though the
vehicle speed is very low. As discussed above, the innovations obtained by the Kalman filter using the
acceleration responses of the bridge are defined as the condition diagnosis feature. These innovations
form the following matrix:

e =
[

e1 e2 · · · e j · · · em
]T

=


e1,1 e2,2 · · · ek,1 · · · eN,1

e1,2 e2,2 · · · ek,2 · · · eN,2
...

...
. . .

...
e1,m e2,m · · · ek,m · · · eN,m

, (10)

where j ( j = 1, 2, · · · , m) is the total number of measured acceleration responses of the bridge.

2.2. Condition Diagnosis Index Based on the Energy Ratio between the Innovation and the Measured Response

The energy ratio calculated by using the measured acceleration response and its corresponding
innovation is defined by the following equation:

β j =

(
e j
)(

e j
)T

(
y j

)(
y j

)T
, (11)

where β j is the energy ratio between the innovation and the acceleration response at the jth measured
point and y j =

{
y1, j y2, j · · · yk, j · · · yN, j

}
is the acceleration response at the jth measured

point. Using Equation (11), the energy ratio of all the measured points can be obtained, and then the
following vector is formed:

β = sort
({
β1, β2, · · · , β j, · · · , βm

})
, (12)

where sort(·) is the operator of arranging the order from small to large. The vector β contains all the
information from the innovations of the predicted acceleration responses. The change in β is the key to
diagnosing the variation in the structural condition of a bridge. To obtain consistent and comparable
results every time, the vector β should be reordered. In this study, it is recommended to arrange the
vector β so that the values change from small to large. After acquiring the vector β, the following
Hankel matrix, denoted as H, can be formed:

H =


β1 β2 · · · βq

β2 β3 · · · βq+1
...

...
. . .

...
βp βp+1 · · · βp+q−1

, (13)

where p and q are the number of rows and columns in the Hankel matrix (p < q), respectively.
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The elements on the antidiagonal of the Hankel matrix are the same, i.e., two adjacent columns
are misaligned. Therefore, any column of the Hankel matrix has a significant correlation with each
other, which can be selected as a delay vector as follows:

Bq =
{
βq, βq+1, · · · , βp+q−1

}T
∈ Rp×1, (14)

According to Equation (13), the length of the delay vector is p, and the number of delay vectors
is q. Because adjacent delay vectors are highly correlated, when p is very small, q increases, and the
correlation between any two delay vectors decreases. In contrast, if p is large, q decreases, and the
correlation between each delay vector increases.

In this study, the first load test of a bridge is defined as the reference condition, and the
corresponding Hankel matrix under the reference state is named H0. The following equation
is obtained:

H0N0 = 0, (15)

where N0
∈ Rq×1 is any column vector of the right null space of matrix H0 in the reference state.

This column vector is defined as follows:

N0 = column
(
null

(
H0

))
, (16)

where null(·) is the operator of calculating the right null space of the matrix and column(·) is the
operator of taking any column of one matrix.

In addition to the reference condition, the load test is repeated mH times under the condition of
bridge without any structural damage, and we intuitively define these tests as the load tests under
the healthy condition of bridge. For the bridge without any damage, the Hankel matrix obtained by
using the kHth test is denoted as HkH . Using the generated null space N0 under the reference condition,
the following residual αkH (αkH ∈ R

p×1) is obtained from the following equation:

αkH = HkHN0, (17)

where αkH is the vector of residuals under the healthy condition of the bridge and kH ∈ (1, 2, · · · , mH)

is the number of load tests.
Theoretically, for the reference condition and the healthy condition defined above, HkH is the

same as H0; thus, αkH is a perfect zero vector. However, owing to measurement noise, the residual
values cannot be zero but are close to zero. Because the number of repeated load tests is small and no
statistical characteristics are available, the condition diagnosis index is defined to evaluate the vector
of residual. This index is expressed as follows:

γkH =
∥∥∥αkH

∥∥∥ = √
αT

kH
·αkH , (18)

where γ kH is the condition diagnosis index of the kHth load test. After obtaining all the condition
diagnosis indexes of mH loading tests under the healthy condition of the bridge, the following threshold
under the healthy condition of the bridge is defined:

η = θ ·
1

mH

mH∑
kH=1

γkH , (19)

where η is the threshold under the healthy condition of the bridge and θ is the guarantee coefficient.
Usually, the value of guarantee coefficient should be determined case by case. This value depends
on the test condition, the ratio of signal to noise of measured data, pavement situation etc. For the
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example of actual bridge described in Section 4, the guarantee coefficient is taken 1.2 according to the
real condition of load test.

Except for the abovementioned two conditions, all the other conditions of bridge are defined
as the condition to be diagnosed. The residual of the zth loading test is calculated by using the
following equation:

αz = HzN0, (20)

where αz is the vector of residuals for the condition to be diagnosed and z is the number of load
tests. The condition diagnosis index for the condition to be diagnosed is calculated by using the
following equation:

γ′z = ‖αz‖ =

√
αT

z ·αz, (21)

where γ′z is the condition diagnosis index of the zth load test. If γ′z is larger than η, the condition of
the bridge is deemed abnormal. Conversely, the bridge is considered healthy if γ′z is smaller than η.

For a bridge in actual operation, especially for newly constructed bridges, it is appropriate to
regularly perform the proposed method to diagnose the condition of bridges. With the accumulation
of load test data, the statistical characteristics of condition diagnosis indexes can be obtained. Thus,
the threshold for the healthy condition of the bridge can be calculated by using a statistical approach.
In this way, the robust performance of the proposed method is enhanced. For the proposed method,
the results of condition diagnosis do not need to consider the influence of environmental temperature
because the time required for a load test is about half an hour on average. However, the environmental
temperature of load test for different time should be similar, so the results obtained by different load
tests could be compared.

As discussed above, the proposed Kalman filter-based method does not need to establish the FEM
of the bridge, so the calculation errors caused by the differences between the analytical FEM and the
structural performance of the actual bridge are avoided during the bridge condition diagnosis process.
Additionally, compared with other types of structural responses, it is easy to measure the acceleration
response and to ensure the high accuracy of the data. Therefore, it is relatively convenient for the
practical application of proposed method.

2.3. Procedure of the Proposed Method

Under the reference condition, the Kalman filter, the Hankel matrix H0 and its null space N0 are
established by using the acceleration responses of bridge. With the measured data under the healthy
condition, the condition diagnosis index γ kH and the threshold η are calculated. For the condition to
be diagnosed, a condition diagnosis index γ′z is obtained by using N0 and the measured data. If the
value of γ′z surpasses the threshold η, the abnormal condition of the bridge will be determined; on the
contrary, the condition of the bridge is believed to be safe. The whole procedure is shown in Figure 1.
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Figure 1. Flowchart of the proposed Kalman filter-based method for diagnosing the condition of bridges.

3. Example of an Experimental Model Bridge

3.1. Description of the Model Bridge Experiment

The model is a simply supported beam whose cross-section is composed of several T-shaped
steel beams, and the detailed information of the loading vehicle and the material parameters and
geometrical size of the bridge are given in the literature [37]. A photo of the whole experimental system
is shown in Figure 2. A total of 10 accelerometers (PCB Group, Inc., Depew, NY, USA) are installed on
two T-shaped beams to measure the response induced by the moving load. The frequency range of
each accelerometer works from 0 to 80 Hz, and the measurement range is ±2 g pk. The sensitivity of
each accelerometer is 100 mv/(m/s2), and all the technical specifications of this type of sensor satisfy
the test needs.

A schematic of the sensor placement is shown in Figure 3. Another 22 devices are designed
to simulate the damage of the transverse connections between the two T-shaped beams, as shown
in Figure 3. A SCADAS III data acquisition system (LMS Company, Leuven, Belgium) is used to
acquire the acceleration signals. The photos of accelerometers and data acquisition system are shown
in Figure 4.
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Figure 2. Photograph of the whole experimental system.

Figure 3. Arrangement of the accelerometers and the devices simulating damage in the transverse connections.

Figure 4. Photographs of the sensing system: (a) accelerometers; (b) data acquisition device.

A total of 22 experimental cases were implemented to verify the validity and dependability of
the proposed method. The healthy model bridge was excited by a 120 kg moving load traveling at
a constant speed, and this process was repeated a total of nine times; the corresponding cases are
denoted Case 1 through Case 9, as shown in Table 1. Another two different damage conditions for
this model bridge were implemented, and the corresponding cases are denoted Case 10 through Case
15. Finally, two types of structural conditions for this model bridge were generated by changing the
weight of the moving load, as shown in Table 1.
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Table 1. Description of all cases for the experimental example.

Case Number Description of Case

1–9 Healthy condition: bridge without any damage excited by a 120 kg moving load
10–12 Structural condition 1: damaged bridge (removing the #17 transverse connection) excited by a 120 kg moving load
13–15 Structural condition 2: damaged bridge (removing the #17 and #6 transverse connections) excited by a 120 kg moving load
16–18 Structural condition 3: damaged bridge (removing the #17, #6, #5, and #16 transverse connections) excited by a 120 kg moving load
19–20 Structural condition 4: bridge without any damage excited by a 130 kg moving load
21–22 Structural condition 5: bridge without any damage excited by a 140 kg moving load

3.2. Results of Condition Diagnosis of the Model Bridge Obtained by the Proposed Method

During the test process, as the moving vehicle travels across the bridge at a constant speed, the
acceleration responses of the superstructure of this model bridge are acquired with the SCADAS
III data acquisition system. The sampling frequency for each test is set to 400 Hz, and the time
history of the acceleration response obtained by sensor #3 (Case 1) is shown in Figure 5a. All the
acceleration responses obtained from Case 1 are implemented to generate the Kalman filter of the
healthy condition of this model bridge. With the generated Kalman filter, the predicted acceleration is
obtained. A comparison between the predicted and measured accelerations is shown in Figure 5b–c.
As described in Equation (5), the innovation, a unique concept in Kalman filter, which can be obtained
as the optimal difference between the filter predictions and the measured acceleration response of
sensor #3, is shown in Figure 5d. From the results in Figure 5, it is deduced that the prediction accuracy
of the generated Kalman filter is sufficient to satisfy the requirements for diagnosing the condition of
the model bridge.

Figure 5. Cont.
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Figure 5. Results of the Kalman filter obtained by using the acceleration response of the model bridge
acquired from Case 1: (a) measured acceleration response of sensor #3; (b) comparison between the
measured and predicted acceleration responses of sensor #3; (c) detailed parts of the innovation from
time points 3000 to 4000, and (d) innovation obtained by using the acceleration response of sensor #3.

Utilizing the generated Kalman filter, the condition diagnosis feature and condition diagnosis
index are calculated with the procedure described in Figure 1. The threshold for judging the abnormal
condition of the bridge is determined by using the acceleration data obtained from Case 2 through Case
10, as shown in Figure 6. For the different damage conditions of the model bridge, the innovations
obtained by using the acceleration data of sensor #3 are shown in Figure 6a–c. The results of condition
diagnosis are shown in Figure 6d.

Figure 6. Cont.



Sensors 2020, 20, 4130 11 of 19

Figure 6. Results of condition diagnosis by using the proposed method: innovation of the #3 sensor for
the model bridge under (a) structural condition 1; (b) structural condition 2; and (c) structural condition
3 and (d) condition diagnosis results for the model bridge.

As shown in Figure 6d, for three different damage conditions of the model bridge, there are three
cases for each damage condition, and the values of the condition diagnosis index for the three damage
conditions of the model bridge are all larger than the threshold. It is obvious that structural condition
3 is the most novel among the three abnormal conditions of the model bridge, which is consistent with
the real situation because the damage extent of the model bridge under structural condition 3 is more
severe than that under the other two structural conditions. The abovementioned results show that the
proposed method is effective for diagnosing the abnormal condition of a bridge.

3.3. Comparison of the Performance between the Proposed Method and the Method Based on Modal Parameters

After demonstrating the effectiveness of the proposed method, the performance of the proposed
method is compared with a popular method based on modal parameters in this section. For three
different damage conditions of the model bridge, the power spectral density (PSD) of the acceleration
obtained from sensor #3 is shown in Figure 7. From the finite element analysis, we know that the
first natural frequency of this model bridge is approximately 10 Hz; thus, the frequency of the first
peak shown in the PSD figure is believed to be the measured natural frequency of the model bridge.
As shown in Figure 7c, the abnormal condition of the model bridge under structural condition 3 can be
effectively diagnosed from to the obvious difference in the first peak between the healthy condition and
structural condition 3. However, it is difficult to diagnose the abnormal condition of the model bridge
under the other two damage conditions by using the method based on modal parameters. As shown
in Figure 6, the two abovementioned conditions can be diagnosed by using the proposed method.
Therefore, compared with the traditional method based on modal parameters, the proposed method is
more sensitive to structural conditions with minor damage.

Figure 7. Cont.
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Figure 7. Auto-PSD obtained by using the acceleration response of sensor #3 under different structural
conditions of the model bridge: comparisons between the healthy condition and (a) structural condition
1; (b) structural condition 2, and (c) structural condition 3.

3.4. Influence of Different Moving Loads on the Results of Condition Diagnosis of the Model Bridge

In this section, we verified whether the proposed method was effective in dealing with a disturbance
or noise in the excitation load. As shown in Figure 8, when the difference in vehicle weight between
the healthy condition and the condition to be diagnosed is less than 10% (e.g., structural condition
4), there is no misjudgment of the diagnosed results. However, when this difference is greater than
10% (e.g., structural condition 5, wherein the difference is approximately 20%), the obtained results
are clearly incorrect. Therefore, if the disturbance or noise in the excitation load between the healthy
condition and the abnormal condition is excessively large, the proposed method may fail to diagnose
the condition of the bridge.

Figure 8. Results of condition diagnosis of the model bridge excited by different moving loads.
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To discuss the reason for the above phenomenon, we need to analyze the effect of measured noise
on the innovation obtained by the Kalman filter. According to Equations (3) and (4), the covariance of
{wk, vk}

T is defined by the following equation:

E
{

wk
vk

}{
wk

T, vk
T
}
=

{
Qk Sk
Sk

T Rk

}
, (22)

where Q and R are the covariance matrixes of the disturbance of the excitation load and the measured
noise, respectively. For actual bridges, ρk and ηk described in Equations (1) and (2) are always
uncorrelated. Hence, the following relationships are obtained:

Q = GQbGT, (23)

S = GQbDT, (24)

R = DQbDT + Rb, (25)

Qb = E(ρkρk
T), (26)

Rb = E(ηkηk
T). (27)

As discussed in [23], the correlation of innovations obtained by the Kalman filter depends on the
structural damage of the bridge and the changes in Qb and Rb. Therefore, the effect caused by Qb
and Rb should be controlled to a lower level to ensure that the innovation is sufficiently sensitive to
the variation in structural condition. On this basis, the limitation of the proposed method is keeping
the load consistent in each load test, which means keeping the weight, speed and driving route of
the loading vehicle as constant as possible. According to our experience, the weight difference of the
moving vehicle between two loading cases should be less than 10%.

4. Example of an Actual Bridge

4.1. Description of the Selected Bridge and Corresponding Load Test

The Xinwohong Bridge, which is located in Shuangyashan, China, was taken as an example to
evaluate the effectiveness of the proposed method. This bridge consists of two continuous beam spans
and one simply supported beam span, as shown in Figure 9. The simply supported beam span was
used in the load test following the proposed method. The detailed dimensions of this bridge are shown
in Figure 10.

Figure 9. Photograph of the Xinwohong Bridge.
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Figure 10. Detailed geometrical parameters of the actual beam bridge (units: cm): (a) vertical view and
(b) cross-sectional view.

The superstructure of this bridge is composed of 14 hollow slab prestressed concrete beams
(Young’s modulus = 3.45 × 1010 Pa), and the cross-section of the superstructure is shown in Figure 10b.
During the load test, three accelerometers (PCB Group, Inc., Depew, NY, USA) were installed on the
bottom of the beam. Photographs of these sensors and schematics of the sensor placement are shown
in Figures 11b and 12b,d. The same data acquisition device used in the model test was applied to
obtain the acceleration response of the superstructure of this bridge, and an on-site photograph is
shown in Figure 11a. The load test was implemented when this bridge was just completed and ready
to be opened to the public. The load test under the original condition of this bridge was repeated six
times. To simulate the change in structural condition from the original condition, two additional steel
weights, which were approximately 3 tons each, were placed on the surface of the bridge deck to create
two new conditions (structural condition 1 and structural condition 2), as shown in Figure 12.

Figure 11. Photographs of the (a) data acquisition device and (b) accelerometers used for the load test
of the actual beam bridge.

Figure 12. Cont.
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Figure 12. Photographs and placement of the steel weights and accelerometers for the actual beam
bridge: (a) photograph of the bridge loaded with one steel weight; (b) placement of one steel weight
and accelerometers; (c) photograph of the bridge loaded with two steel weights, and (d) placement of
two steel weight and accelerometers.

4.2. Results of Condition Diagnosis for the Actual Beam Bridge

Using a similar method as that used for the model bridge, all the acceleration responses obtained
from the first case are implemented to generate the Kalman filter of the original condition of the actual
bridge. The sampling frequency is set to 400 Hz, and the acceleration time history of the first 11,000 time
point measured from sensor #2 is shown in Figure 13a. With the generated Kalman filter, the predicted
acceleration is obtained, and a comparison between the predicted and measured accelerations is shown
in Figure 13b–c. The innovation between the filter predictions and measured acceleration responses of
sensor #2 is shown in Figure 13d.

Figure 13. Cont.
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Figure 13. Results of the Kalman filter obtained by using the acceleration response of the actual bridge
obtained under the first case: (a) measured acceleration response of sensor #2; (b) comparison of the
measured and predicted acceleration responses of sensor #2; (c) detailed parts of the innovation from
time points 2000 to 3000, and (d) innovation obtained by using the acceleration response of sensor #2.

Using finite element analysis, the first natural frequency of this bridge is 4.30 Hz, so the frequency
of the first peak shown in the PSD plot is believed to be the measured natural frequency of the actual
bridge, as shown in Figure 14a,b. Of course, it is difficult to diagnose the occurrence of abnormal
conditions under structural condition 1 or structural condition 2 by directly using the method based
on modal parameters. Compared with the modal parameters-based method, the proposed method can
diagnose the change in the structural condition of this bridge, as shown in Figure 14c.

Figure 14. Cont.
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Figure 14. Results of condition diagnosis for the actual bridge by using the proposed method: auto-PSD
obtained by using the acceleration response of the #2 sensor under (a) structural condition 1 and (b)
structural condition 2 and (c) condition diagnosis results for the actual beam bridge.

5. Conclusions

In this study, a Kalman filter-based method is proposed to diagnose the condition of medium-
and small-span beam bridges during a brief interruption in traffic flow. The following conclusions are
drawn from this study:

(1) The proposed Kalman filter-based method is suitable to diagnose the structural condition of
bridges without any long-duration interruption of the traffic flow, and this method is convenient
for practical application since its does not need to establish the FEM of the bridge.

(2) There is good agreement between the predicted and measured acceleration responses, which
shows that the performance of Kalman filter is sufficient to predict the dynamic response of actual
bridges excited by a moving load.

(3) A condition diagnosis index based on the energy ratio between the innovation obtained by the
Kalman filter and the measured acceleration is proposed. The results of condition diagnosis using
data from experiments and field tests show that this index is sensitive to changes in the structural
condition of the bridge superstructure, thereby illustrating that the proposed index is suitable for
evaluating the condition of actual medium- and small-span beam bridges.

(4) The results obtained from a model bridge and an actual bridge demonstrate that, in comparison
with the traditional method based on modal parameters, the proposed method is more sensitive
to the changes in the structural condition of bridges.

(5) The limitation of the proposed method in application is keeping the load consistent for each load
test, and the difference in the weight difference of the moving vehicle between each test should be
less than 10%.
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