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Abstract: Surface electromyographic signal (sEMG) is a kind of bioelectrical signal, which records the
data of muscle activity intensity. Most sEMG-based hand gesture recognition, which uses machine
learning as the classifier, depends on feature extraction of sEMG data. Recently, a deep leaning-based
approach such as recurrent neural network (RNN) has provided a choice to automatically learn
features from raw data. This paper presents a novel hand gesture prediction method by using an
RNN model to learn from raw sEMG data and predict gestures. The sEMG signals of 21 short-term
hand gestures of 13 subjects were recorded with a Myo armband, which is a non-intrusive, low cost,
commercial portable device. At the start of the gesture, the trained model outputs an instantaneous
prediction for the sEMG data. Experimental results showed that the more time steps of data that
were known, the higher instantaneous prediction accuracy the proposed model gave. The predicted
accuracy reached about 89.6% when the data of 40-time steps (200 ms) were used to predict hand
gesture. This means that the gesture could be predicted with a delay of 200 ms after the hand starts to
perform the gesture, instead of waiting for the end of the gesture.
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1. Introduction

Hand gesture recognition is a promising human-computer interaction, which is widely discussed
and studied in various areas. The capability of machines to recognize distinctive gesture characteristics
can be harnessed in a wide variety of applications including the control of bionic hands [1,2], virtual
game control [3], sign language translation [4], smart wheelchair [5], and intelligent robotics [6,7]. To
this day, various sensors have been used to recognize hand gesture. Data glove that contains bending
sensors and accelerometers are able to capture the rotation and movement of the hand and fingers [8],
while it is not convenient and unnatural to wear a cumbersome glove in daily life. Cameras are also used
to recognize hand motion [9], while it is sensitive to the use environment such as background texture,
color, and lighting. Surface electromyographic signal (sEMG) is a useful non-intrusive technique for
recording the electrical activity produced by muscles through surface sensors placed on the skin, which
is a promising candidate for motion detection, gesture recognition and even gesture prediction [10–12].

In previous studies, a variety of features of sEMG signal were designed and extracted to classify
hand gesture [13–20]. These features included mean absolute value, zero crossing, root mean square,
power spectrum ratio, discrete wavelet transform and so on. Machine learning methods were used to
classify these features, such as k-nearest neighbors, artificial neural network, gaussian mixture model,
linear discriminant analysis, hidden Markov model, support vector machine and random forests.
Although the promising performance of these feature-based methods have been shown, the complex
process of feature extraction may result in the loss of useful information [21].
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To solve the problem, researchers started to use deep learning-based approaches, such as
convolutional neural network (CNN), to automatically learn features from a large amount of data.
Ding [22] used a multiple-scale CNN structure to deduce information loss in feature extraction.
Geng [23] proposed a deep CNN to classify instantaneous sEMG data images generated by a
high-density electrodes matrix. Allard [6] transformed sEMG data to frequency spectrum images using
Fast Fourier Transform, then used CNN to classify them. Wei [24] proposed a multi-channel CNN, and
improved recognition accuracy by learning the correction between muscle and gesture. Shen [25] built
a complex model that ensembled multiple CNN with a stacking method. Allard [26] combined CNN
and transfer learning to decrease the data requirement of the training model for a new subject.

Recurrent neural network (RNN) is also a deep learning-based approach, which has been widely
studied in the field of speech recognition and machine translation in recent years. Different from
CNN which is good with hierarchical or spatial data and extracting unlabeled features, RNN is
good at temporal or otherwise sequential data [27]. Simao [28] compared the performance between
forward propagation neural network and RNN on the recognition of eight hand gestures. He [29]
combined long short-term memory (LSTM) and multiple layer perceptron to learn features of static
hand gesture. Nadia [30] used raw sEMG signal to recognize six gestures, which could adapt to new
subjects. Furthermore, some researchers used the combination of CNN and RNN to recognize hand
gesture. Wu [21] proposed a method to combine LSTM and CNN to recognize hand gesture. Xie [31]
compared the performance of a single CNN model, single LSTM model and hybrid model to recognize
different gestures. Hu [27] introduced an attention mechanism into a hybrid model of CNN and RNN
to recognize gesture in five sEMG benchmark databases.

However, to our knowledge, most of the existing RNN-based methods [27–32] still focus on hand
gesture recognition, which recognize hand gestures based on the whole temporal sEMG data, but make
a prediction by RNN, which has already been used in other fields [33–36] and has not been studied.
In this paper, we propose a novel method by using RNN to predict hand gesture. The trained RNN
model could output instantaneous prediction for the sEMG data from the previous sampling time
step. The sEMG signals of 21 hand gestures of 13 subjects were recoded to train the model. In the test
part, when the movement of a gesture starts, the model outputs an instantaneous prediction at every
sampling time step.

The main contributions of this paper are as follows:

• A hand gesture dataset containing 21 short-term gestures of 13 subjects is recorded by the
Myo armband, which is publicly available on the Github that also includes our code (https:
//github.com/ChauncyHe/HandGesturePrediction).

• A novel RNN model to predict hand gesture is proposed, which is able to predict the gesture in
the process of the gesture. When sEMG data points of 200 ms are used, which are generated after
the motion start of the gesture, the accuracy could be about 89.6%.

The rest of this paper is organized as follows: Section 2 describes the sEMG sensors used in
this work, the process of data acquisition, and the proposed method in detail. Section 3 presents the
experimental results and analysis. Section 4 summarizes the paper.

2. Materials and Methods

2.1. sEMG Dataset

2.1.1. Recording Device

There are various commercial devices or sensors to record sEMG signals, such as Thalmic Myo
armband, Otto Bock 13e200 electrodes, Cometa Wave Plus system, Ag-AgCl Duo-Trode electrodes
and Delsys Trigno system. Considering the portability in a real application scenario, we selected one
low-cost wireless Myo armband from Thalmic Labs (Figure 1) to record sEMG data, which has been
used to recognize hand gestures in many studies [37]. The Myo armband consists of a low-consumption
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ARM Cortex-M4 120 MHZ microprocessor, 8 dry electrodes and 9-axis inertial measurement unit
(IMU). Its 8 non-intrusive dry electrodes can record sEMG signals generated by muscles at a sampling
frequency of 200 Hz with 8 bits of resolution for each channel.
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Figure 1. Myo armband.

As shown in Figure 2, the Myo armband wearing protocol is stipulated as follows: Firstly, the
armband is located at a fixed position on the forearm of the right hand. The distance between the
edge of the armband and the elbow joint is approximately the width of an index finger. Secondly,
the wearing orientation is fixed. The first electrode is placed on the back of the forearm and aligned
to the middle finger. Thirdly, the position and orientation of the armband is kept unchanged when
recording data. Because the prediction model is subject-specified, the precisely same wearing position
and orientation for all subjects is not necessary.
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Figure 2. Wearing position and orientation.

2.1.2. Hand Gestures

We designed 21 common gestures as shown in Figure 3. These gestures are mainly controlled
by the traction of several major muscles on the forearm, and high visual similarity exists in some of
these gestures. For example, grabbing a cylinder (A19) and grabbing a sphere (A18) are two similar
behaviors. In addition, A09, A15, A14, A05 and A04 are five finger gestures corresponding to numbers
1–5, respectively. A20 is finished by bending five fingers into the shape of zero, which is also similar
to a fist (A03). Most of these gestures are realized by the motion of the finger joints, while A16 and
A17 are finished by the motion of the wrist joint. Relaxation gesture is regarded as the 21st gesture.
Different from previous studies, all gestures are asked to be finished in the short term, which occurs
within 2 s instead of maintaining more than 5 s.
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Figure 3. A01–A20 are 20 different hand gestures, and R represents the relaxation gesture. All these
gestures (except R) are rapidly finished by going through a process of R-A-R within 2 s.

2.1.3. Acquisition Protocol

We recruited a total of 13 healthy right-handed volunteers (including 8 males and 5 females, aged
from 23 to 25). Each subject wore the Myo armband on the right forearm near the elbow joint in
accordance with the aforementioned wearing protocol. Before formal recording of data, the subject
was instructed on how to perform each kind of hand gesture until the subject was able to perform
all gestures by themselves without difficulty. Real-time sEMG data were transmitted from the Myo
armband to a personal computer by a wireless receiver. The data of 30 repetitions of 21 kinds of hand
gestures was recorded for each subject. Although the sampling time of each repetition lasted 2 s, a
complete hand gesture was suggested to be finished in 0.5–1.5 s. Muscle fatigue will be caused by
continuous multiple repetitions [38]. Therefore, to alleviate the harmful impact of muscle fatigue, a 2-s
break between repetitions and a 5-min break between different gestures were reserved. In Table 1, a
detailed data acquisition configuration for all subjects is shown. For each subject, a total of 630 samples
were recorded. A sample is comprised of sEMG signal X ∈ R400×8 and corresponding label Y ∈ R400×21,
where X is 8-channel sEMG data in 400-time steps and Y is the one-hot coding label of these time steps.

Table 1. Acquisition configuration summary for the collection of datasets.

Acquisition Device Myo Armband Gestures 21

Sampling frequency 200 Hz Repetition times 30

Channel number 8 Sampling time of a repetition 2 s

Subject number 13 Finish time of a gesture 0.5–1.5 s

Age range of subjects 22–26 Repetition interval 2 s

Health state Intact subjects Gesture interval 5 min
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2.2. Methods

In this section, the details of the proposed method are described. It is worth noting that we do not
perform any common data preprocessing on input sEMG signals such as filtering and rectification.
That is to say, we will use raw sEMG signals to train the RNN model, which could give a category
prediction result by using raw sEMG signals in the test stage.

Firstly, before training the RNN model, motion detection which detects the start and end of a
hand gesture is used to label the gesture. Then, the structure of the recurrent neural network model is
described. Finally, post-processing is performed to obtain the final prediction result for a sample from
instantaneous predictions generated at every time step.

2.2.1. Motion Detection

In the process of data recording, since subjects are only required to finish a complete hand gesture
within 2 s, the gesture start time step ts and the end time step te for each sample are both unknown.
Motion detection is a key process to label gestures. There are many methods including moving average
algorithm [3], standard deviation [5] and spectrogram technology [39]. In this study, we used the
standard deviation of multi-channel sEMG signals in the time domain to detect the gesture. A sliding
window was used to extract the average standard deviation of 8 channels.

S1[t, c] =

√√√√
1
w

t∑
t−w

X[t, c] −
1
w

t∑
t−w

X[t, c]


2

, (1)

S2[t] =
1

Nc

Nc∑
c=1

S1[t, c]. (2)

where t = 1, 2, 3, · · · , 400 represents time steps, and c = 1, 2, 3, · · · 8 represents channels. w represents
the width of the sliding window. X is the sEMG data of a sample, and NC represents the number
of channels.

The sliding window is computing the standard deviation of the front w data points at time step
t. To guarantee the consistency of array shape, zero-padding is used when t < w. Considering the
sensitivity of each channel to gestures are different, an average operation on channels is performed to
get a more robust detection (Figure 4).
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2.2.2. Model Structure

The RNN model is established by using gated recurrent units (GRU), a variant of recurrent neural
units, as shown in Figure 5. The input layer is 8 channels raw sEMG data X ∈ R400×8 of a gesture
sample. Layer 1 consists of 50 GRU units and uses the tanh activation function, which memorizes the
signal change in the time domain. Layer 2 is a fully connected layer with 200 general units, and uses
Tanh as the activation function. Layer 3 is also a recurrent layer that is the same as layer 1. Layer 4 has
21 units and uses SoftMax as the activation function to output probabilities of multiple categories. L1
or L2 regularization is not used in this study, and dropout is also not necessary by our experiments. For
two recurrent layers, the sequence output is used, which guarantee the model output is also a sequence.
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Because of the adding of GRU units in layer 1 and layer 3, the model output contains the time
information as well. Model output Ŷ ∈ R400×21 is the changing process of the instantaneous prediction
result with respect to the increasing time steps of sEMG data. In detail, Ŷ[t, :] ∈ R21 is an instantaneous
prediction result at timestep t, which is represented by a probability vector obtained by layer 4.
Additionally, according to the time characteristic of a unidirectional recurrent neural network, the
instantaneous prediction result Ŷ[t, :] is merely determined by sEMG data slice X[1 : t, :] ∈ Rt×21.

2.2.3. Post-Processing

When the gesture start is detected at ts by motion detection, the model starts to output an
instantaneous prediction result at every time step. In fact, when t = ts + M, a total of M instantaneous
prediction results are obtained. To improve the real-time performance of gesture prediction, a small
number of m(m <M) instantaneous results are used to make a decision in post-processing. To get a
final prediction category label from these m instantaneous prediction results, a simple and effective
approach is to merely consider the last instantaneous result at t = ts + m, which could be formed as
the following:

L̂ = argmax Y[ts : ts + m, :]. (3)

where ts is the gesture start timestep of this sample, and m denotes how many time steps of sEMG
that are used to predict. Then L̂ ∈ {1, 2, · · · , 21} represents 21 different gestures. When m equals 40
timesteps, it means that the final prediction category label could be obtained with a delay of 200 ms
after the hand starts to perform the gesture, instead of waiting for the end of the gesture.

2.3. Training and Test Details

Considering the relatively small number of samples for training a deep learning-based model
with raw sEMG signals, stratified 5-folds cross-validation is used to partition datasets and evaluate
model performance. Stratified partition guarantees enough sample numbers to train each category,
and prevents resulting in an unbalanced model because of common random partitions. An average
test accuracy on these 5 models is regarded as the generalization ability of the current model structure
and hyper-parameters. Training details and test details are shown in Figure 6.
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(f) The output of the RNN model.

In the training stage, gesture start time step ts and gesture end time step te of all training samples
are detected to label the dataset by motion detection, and the RNN model is trained on the labelled
dataset. We selected Adam optimizer to update model weights and used the cross entropy loss function
to measure model error. The initial learning rate was set to 0.01 and a learning rate reducing mechanism
was used.

In the testing stage, when the gesture start is detected by motion detection, the model makes use
of m time steps of record data after the gesture starts to predict hand gesture. As shown in Figure 6,
record data obtained from motion detection are sent to the trained model after data filling which fills
zero into the record data to make the input data X ∈ R400×8. Prediction results are obtained from the
model output after post processing.

After getting prediction category labels of every sample in the testing set by post-processing, we
could obtain the evaluation performance of the model as usual classification tasks. Prediction accuracy
of the model is determined by:

ACC =

∑NS
i=1 I

(
L̂i = Li

)
NS

(4)

where Ns is the number of test samples, final category prediction result is represented by L̂ ∈ {0, 1, · · · , 20},
Li is the true category label of sample i, I(p) equals to 1 when p is true otherwise it equals to 0.

3. Results and Analysis

3.1. Accuracy Performance

Prediction accuracy of each subject is shown in Figure 7. The result shows that prediction accuracy
increases with m, which conforms to the intuition that more known data points of gesture leads to
a more reliable result. The average accuracy of all subjects on some major values of m are recorded
in Table 2. When m = 40 time steps (Tm = 200 ms), the average prediction accuracy on testing set
reached 89.6%.

Table 2. Prediction accuracy with different m.

m (Time Steps) 20 40 60 80

Tm(ms) 100 200 300 400

Accuracy 83.8 ± 7.5% 89.6 ± 5.5% 91.5 ± 4.7% 90.8 ± 5.4%
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Figure 7. Accuracy with respect to m on 13 subjects. The horizontal axis m denotes how many time
steps of sEMG data are used to predict gesture. Additionally, the vertical axis denotes the average
accuracy of 5-fold cross validation.

To figure out the prediction performance of the model on each kind of hand gesture, the confusion
matrix is plotted in Figure 8, on the condition that m = 40 time steps. In order to more objectively
express the model prediction performance on these 21 types of gestures, the confusion matrix is
the hybrid of all subjects. From this figure, we found that several similar finger motion gestures
representing numbers such as A04 (five), A05 (four), A14 (three) and A15 (two) were more likely to be
confused with each other. On the contrary, A16 (wave in) and A17 (wave out) that only used the wrist
joint, were relatively easy to predict.
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3.2. Real-Time Performance

For a hand gesture, the time Ta = te − ts represents the actual time span of a complete gesture. The
average Ta on all samples of a subject varies between 463 ms and 1582 ms as shown in Figure 9. When
m = 40 time steps, corresponding Tm = 200 ms. From the figure, we find that Tm � Ta, which means
the model will give prediction output after the gesture has started 200 ms before the gesture ends.
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3.3. The Feasibility of Prediction

According to [37], a gesture contains transient state and steady state, and transient state is
generated when the gesture is in motion, while steady state is produced when the gesture is maintained.
Classification of hand gestures in the transient state has lower accuracy than in the steady state. To
explore whether the data in the transient state of a gesture is able to be used to predict gesture, Tp is
defined as the time of transient state and a comparison between Ta, Tp and Tm of a subject is illustrated
in Figure 10. When Tm = 200 ms, the accuracy of the model on the test set reached 89.6%. We can see
for some drastic gestures such as A03 (fist) and A16 (wave in), transient time Tp was longer than that
of other gestures. Additionally, for these gestures, sEMG data only in Tp were used to predict hand
gestures. The results show that it is feasible to obtain a high prediction performance by using our
RNN method.
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3.4. Comparison with Other Methods

In this study, the proposed method is used to predict hand gestures and the real-time performance,
which is more important. Table 3 shows the real-time performance and other conditions of the proposed
model and other previous studies which used RNN methods. Most of these models were not real-time
models, especially those methods which were a combination of LSTM and CNN. Nasri [30] made a
very high validation accuracy on six gestures, but each gesture away repeated about 200 times for a
subject, which is an extremely heavy workload. In addition, the use of a sliding window of 940 ms
severely decreases the model’s real-time performance. He [21] used a sliding window of 400 ms but
the accuracy of gestures was 75.5%. Compared to these studies, our method could obtain a real-time
performance with a good accuracy.

Table 3. Comparison with state-of-the-art using RNN.

Work Channels Device Sampling
Rate (Hz) Gestures Repetition Gesture

Duration (s) Subjects Classifier Accuracy
(%)

RTP
(ms)

Hu [27] 10 Myo(8+2) 100 52 10 5 27 LCNN 87.0 NRT
Xie [31] 16 Myo(8+8) 200 17 6 5 10 LCNN 83.6 NRT
Wu [21] 8 Myo(8) 200 5 12 5 NI LCNN 98.0 NRT

Simao [28] 16 Myo(8+8) 200 8 NI NI NI LSTM/GRU 95.0 NRT
Samadani [32] 12 Myo(8+4) 100 18 6 5 40 LSTM 89.5 NRT

Nasri [30] 8 Myo(8) 200 6 195 10 35 GRU 99.8 940
He [29] 12 Myo(8+4) 100 52 10 5 27 LSTM 75.5 400

Ours 8 Myo(8) 200 21 30 2 13 GRU 89.6 200

Note: RTP represents real-time performance, which usually can be denoted as the width of the sliding window. NI
denotes the corresponding term is not indicated in the paper clearly. LCNN is the combination of LSTM and CNN.
NRT means the method is not a real time approach.

3.5. Limitations

We regret that, although the Myo armband is a popular low-cost device widely used in relevant
studies in the past, it is unfortunately not commercially available since 2018 [39]. To our knowledge,
there are some sEMG devices which use dry electrodes like the Myo armband, including Delsys Trigno
system, gForce-100 Armband [40], etc.

In addition, more concerns have to be taken into consideration in the application of real-time
hand gesture prediction. In data acquisition, the wearing position and orientation of the Myo armband
is fixed for each subject, so the trained subject-specified model is sensitive to the subject and wearing
situation of the Myo armband in the test stage. Generally, the robustness of the model needs to be
enhanced in further work.

4. Conclusions

This paper proposes a hand gesture prediction method based on raw multi-channel sEMG signals.
Firstly, a dataset containing 30 repetitions of 21 short-term hand gestures of 13 subjects was collected
with a Myo armband, in which each complete gesture was finished within 0.5–1.5 s. Then, a RNN
model was built, which output an instantaneous probability distribution at every time step after the
start of the gesture was detected. Finally, the prediction result was acquired by post-processing from
these instantaneous outputs. Experimental results show that prediction accuracy by our model could
reach about 89.6% using data of 200 ms, which can be collected after the start of the gesture.
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