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Abstract: The concept of smart cities has become prominent in modern metropolises due to the
emergence of embedded and connected smart devices, systems, and technologies. They have enabled
the connection of every “thing” to the Internet. Therefore, in the upcoming era of the Internet of
Things, the Internet of Vehicles (IoV) will play a crucial role in newly developed smart cities. The IoV
has the potential to solve various traffic and road safety problems effectively in order to prevent
fatal crashes. However, a particular challenge in the IoV, especially in Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communications, is to ensure fast, secure transmission and accurate
recording of the data. In order to overcome these challenges, this work is adapting Blockchain
technology for real time application (RTA) to solve Vehicle-to-Everything (V2X) communications
problems. Therefore, the main novelty of this paper is to develop a Blockchain-based IoT system
in order to establish secure communication and create an entirely decentralized cloud computing
platform. Moreover, the authors qualitatively tested the performance and resilience of the proposed
system against common security attacks. Computational tests showed that the proposed solution
solved the main challenges of Vehicle-to-X (V2X) communications such as security, centralization,
and lack of privacy. In addition, it guaranteed an easy data exchange between different actors of
intelligent transportation systems.

Keywords: blockchain; automotive communication; internet of vehicles; intelligent transport system;
internet of things; ethereum; security; cloud and android

1. Introduction

The Internet of things (IoT) represents a network of physical devices embedded with network
connectivity, actuators, sensors, software and electronics, such as home appliances, vehicles, and
other items. Through the embedded computing systems, each device is identified and incorporated
into the Internet infrastructure. The network infrastructure allows remote control of such devices [1].
Accordingly, computer-based systems are increasingly integrated into the physical world, which leads
to economic gains, accuracy, and efficiency, and decreased human intervention. Thanks to actuators
and sensors, the technology represents the general class of cyber-physical systems, including smart
cities, intelligent transportation, smart homes, virtual power plants, and smart grids.
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The IoT is transforming conventional vehicular ad-hoc networks (VANETs) into the Internet of
Vehicles (IoV) [2]. The IoV represents the real time data interaction between vehicles and between
vehicles and infrastructures through smart terminal devices, vehicle navigation systems, mobile
communication technology and information platforms that allow information interaction and share
driving instructions, and control the network system.

This concept has enabled easier collection and sharing of information about vehicles and
infrastructures. It also allows data collection, computing and sharing into Internet systems and
other information platforms.

Recently, this concept has taken firm ground in reality. It is estimated that in the near future,
25 billion things will be connected to the Internet, and vehicles will account for a significant number [2].
So far, Intelligent Transportation Systems (ITS) in Japan and Europe have already implemented some
forms of IoV technology, while 55,000 licensed rickshaws in New Delhi have been equipped with
GPS devices [3]. Due to the prompt development of communication and computation technologies,
this concept has attracted enormous research and commercial interest. What is more, smart vehicles
are increasingly connected to the Internet, other vehicles nearby, and traffic management systems.
In this way, vehicles are being incorporated into the Internet of Things (IoT). Nevertheless, in spite of
indubitable advantages, this concept has certain limitations. Importantly, due to their high connectivity,
it is really hard to ensure the security of smart vehicles, making them susceptible to malicious entities.
Moreover, a sensitive data exchange leads to additional privacy challenges. The conventional security
and privacy methods are ineffective when it comes to smart vehicles. The main challenges are
summarized as follows:

• Centralization: At the moment, smart vehicle architectures are based on centralized, brokered
communication models [4]. More precisely, central cloud servers identify, authenticate, authorize,
and connect all the vehicles. Nevertheless, it is not likely that this model will be scaled. The failure
of cloud servers can endanger the whole network.

• Lack of Privacy: Typically, user privacy is not protected in the current communication
architectures. In other words, data pertaining to the vehicle is exchanged without the owner’s
permission. Moreover, noisy or summarized data is revealed to the requester.

• Heterogeneity: The use of connecting devices in IoV is highly variable, as they are deployed
by different entities, authorities, and individuals. Moreover, their resolutions, functionalities,
and operating conditions differ from each other. Hence, it is challenging to enable the smooth
integration of numerous devices at the same time. In particular, merging such devices in a
complex network increases the degree of complexity.

• Scalability: A use of miniaturized devices such as actuators and sensors has been increasing due
to the prompt rise in embedded technologies. Simultaneously, the data created by such devices
is growing indefinitely. Thus, another significant challenge related to the IoV is to manage the
number of devices and the data they create.

• Interoperability: Both human and non-human objects represent actors in the IoV ecosystem.
Each actor, depending on the environment and the particular situation, can play several roles,
such as service providers, data consumer, data provider, and available resource in IoV applications.
To materialize the vision of the IoV, it is essential to ensure the smooth interaction of all the actors.
If each actor is managed in a different way, their interaction magnifies.

• Mobility: The challenges in terms of mobility are related to protocol efficiency and the IoT network.
Currently, the use of sensor networks, Mobile Ad Hoc Networks (MANETs), and mobility
protocols of Vehicular Ad Hoc Networks (VANETs) are not adequately equipped to handle
standard IoT device because of considerable processing and energy constraints. Moreover, efficient
real-time authentication is required instead of the one-time initial configuration considering that
the vehicle must continuously authenticate other vehicles present on the roads.

• Safety Threats: The number of autonomous driving functions in smart vehicles keeps growing.
Consequently, a security breach that occurs occurred by a malfunction resulting from the
installation of malicious software can lead to car crashes and endanger road users.
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VANETs are susceptible to attacks such as Man-In-The-Middle (MITM) attacks and thus, it is
very challenging to ensure its security [5–7]. Malicious node (MITM) uses these attacks to alter or
eavesdrop messages exchanged between vehicles containing delay-intolerant or sensitive information,
e.g., a steep-curve warning. Consequently, incorrect and compromised information can be spread
throughout the network. What is more, Distributed Denial of Service (DDOS) can be used to block users
from accessing network services. In addition, DDOS in the environment of the connected vehicle can
manipulate identities and disseminate fake information to consequently introduce a jam in the targeted
network [8]. Accordingly, the main principles of the security requirement integrity, confidentiality, and
availability, are violated. In this context, Troy Hunt, a Microsoft Most Valuable Professional (MVP)
in Security, gained access in February 2016 to vehicle data and controlled certain vehicle systems [9]
from his home in Australia. Then, in June 2016, a Mitsubishi Outlander PHEV [10] was hacked via its
remote control smartphone app, which allowed the user to lock or unlock doors, edit charger settings
and control non-driving critical elements such as air conditioning. Tesla [11] has fallen victim to
several hacks, most recently at the hands of Chinese cybersecurity firm Keen Security Lab. In addition,
researchers [12] were able to control the brakes, doors, and mirrors of a Tesla Model S from 20 km (12 m)
away. All these incidents indicate the serious need for an advanced solution for communication and
data transmission providing integrity, security and efficiency. Recently, Blockchain [13,14] technology
has shown a potential to improve the intelligent transport systems by making them secure, distributed,
and autonomous. In this way, the infrastructure and resources of intelligent transport systems such
as crowd sourcing technology can be used more effectively. Blockchain is crucial for addressing the
challenges of privacy and security on the IoV networks. To overcome these challenges, a Decentralized
IoT Solution for Vehicles communication (DISV) based on the concept of Blockchain is proposed.
More precisely, every member of the Internet of Vehicle networks receives messages and subsequently
broadcasts them to selected Blockchain layer. Furthermore, the server will verify the received block
based on its local knowledge and make a decision whether it should be added to the smart contract.
In this paper, the main contributions are three-fold as follows:

• A new IoT Solution (DISV) to study all the possible interactions between different components
and road users of smart cities, such vehicles, lights, radars, pedestrians and others. This DISV
consists of three primary layers:

- The perception layer that consists of multiple Android applications (AV and AP) which are
designed to sense and collect information about vehicles, drivers, and infrastructures.

- The network layer, which enables data transfer between devices and the cloud through
networks such as wireless or 4G.

- The application layer, which consists of cloud solutions responsible for management, data
analysis, and providing services to the user.

• A Decentralized Framework based on Blockchain technology with real time application (RTA)
specification aimed at enabling secure communication between vehicles and other actors in
transportation systems.

• Good performance of the proposed system particularly in terms of the execution time, costs,
availability, integrity, immutability, and security.

The remainder of this paper is organized as follows. In Section 2, an overview of Blockchain
techniques and Ethereum is presented. Section 3 reviews the Blockchain techniques for the Internet
of Things and practically for the Internet of Vehicles. The detailed design of the proposed system is
introduced in Section 4 including the components and the main procedures. In Section 5, the results of
the computational tests to verify the effectiveness and reliability of the proposed system are described.
Section 6 summarizes the main finding and gives new directions for future research.

2. Blockchain Technique and Ethereum

Bitcoin, a decentralized global currency cryptosystem, was introduced in 2008 by
Satoshi Nakamoto [15], based on the Blockchain technology. In Bitcoin, Blockchain is used to
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ensure secure exchange of digital money for goods and services without a central authority through
a trusted peer-to-peer network in a pseudo-anonymous way. Blockchain or public ledger contains a
record of all transactions, accessible by all participants in the network, as they are publicly announced.
More precisely, each participant possesses the exact copy of the Blockchain. Individual transactions
are separated into blocks, which are time-stamped and published. Subsequently, transactions cannot
be modified or reversed, as the hash of the previous blocks is included in the next successors in
each block of the chain. Accordingly, there is a consensus about the participants about the history of
transactions. Following its successful use in bitcoin, Blockchain as a distributed ledger technology or,
more precisely, a distributed database of records, has gained the wide application not only in the current
digital economy, but in non-financial fields as well. Primarily, it has become a reliable infrastructure for
creating platforms that provide various solutions. The Blockchain technology has become a basis of
platforms used in healthcare, transportation, payment processing and money transfers, supply chains,
etc., [16]. Still, the most popular use of Blockchain is the development of alternative cryptocurrencies,
improved in comparison to Bitcoin in regard to hashing algorithms and proof-of-work algorithm.
These improvements are primarily aimed at shortening the verification time of transactions. Since the
emergence of Bitcoin, the number of digital currencies has reached 3,000. Currently, the market cap is
estimated at $295 billion USD. In addition to Bitcoin, currencies that have gained the most prominence
are Ethereum [17] , Ripple [18], and Stellar [19]. The current study is using the Ethereum platform, which
will be discussed in detail in subsequent sections.

2.1. Ethereum

Ethereum, developed by Vitalik Buterin [20] in 2013 and launched in 2015 following a successful
online crowd sale, is a distributed computing platform based on Blockchain. Moreover, it is
programmable Blockchain, which allows the users to create new applications as Ethereum runs
the programming code of decentralized applications . More specifically, a programming code is called
a smart contract, and it allows exchange of money, data, and content by generating, deploying, and
operating Decentralized Software applications based on the Blockchain technology.

2.1.1. Ethereum Virtual Machine (EVM)

The Ethereum Virtual Machine (EVM) is a Turing complete software that enables the users to
deploy and run different programs in various programming languages (i.e., Solidity) and significantly
facilitates the creation of Blockchain applications. As a sandbox environment, it is isolated from the
rest of the main network. Thus, each Ethereum network operates its own EVM implementation
by executing the same instructions. Computations in the EVM are paid by the currency of
Ethereum—Ether (ETH).

2.1.2. Transactions

A term transaction refers to a signed data package and consists of messages sent between
Ethereum accounts (the transaction sender to the recipient of the transaction). The transactions
are verified through the mining process, or more precisely generating a signature by the private key
owned by a transaction sender. The transaction includes the Ethereum recipient address, ETH gasPrice
(the cost of a unit of gas consumed), the transferred amount (the maximum amount of gas to be used),
and other optional data.

2.1.3. Ether and Gas

Ether is a volatile currency of Ethereum paid by the transaction sender for executing the code
in a contract triggered by a message or a transaction and storage and computation. Furthermore,
the execution cost or the cost of network use is expressed in gas. More precisely, gas is a unit which
expresses the amount of computation effort by minors to execute a given operation, and it is fixed.
Thus, the users use ETH to pay the amount of gas needed for the execution. The miners represent
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the Ethereum network nodes that receive, propagate, verify, and execute transactions. As different
operations require different amounts of gas, the gas limit is the maximum amount of gas that the
sender will pay for the transactions. More details about Ether and Gas can be found in [21].

2.1.4. Proof-of-Work (PoW)

Proof-of-Work represents the original consensus algorithm that determines the validity of the
transaction used in Blockchain to ensure security. Through PoW, miners solve mathematical problems
by using special software. Accordingly, miners form the blocks of transactions and add them to
Ethereum by connected them to the previous block. The hash of the previous block is incorporated
into every new block. Thus, the added block becomes a part of the chain that can be traced until the
first or so-called genesis block

3. Literature Review

Blockchain technology is used in almost all domains of the IoT. In the domain of healthcare, the
IoT enables feeding the E-healthcare systems with clinical data about patients as well as their healthcare
providers, families, and social circles. The healthcare providers store data in the form of Electronic
Medical Records (EMRs). The patient data portability of Electronic Health Records EHRs is enhanced
in comparison to EMRs. Esposito et al. [22] used the concept of the distributed online database to
create a scheme established on Blockchain for using the IoT in the sector of healthcare. Accordingly,
Liang et al. [23] employed the Blockchain network in Android healthcare apps for investigation,
inspection of records, and protection of integrity. In the Telecommunication, 5G will enhance the IoT by
enabling a completely connected and mobile society through the connection of billions of objects [24].
However, the 5G heterogeneous communication environment will have a challenge of protecting
privacy. To resolve this issue, Fan et al. [25] developed a scheme using Blockchain aimed at sharing
data and ensuring privacy.

In the Internet of Cloud (IoC), data from the millions of IoT devices are uploaded through the
Cloud by the Internet connection on the basis of virtualization technology. Xu et al. [26] developed
a Blockchain-based intelligent resource management for cloud data centers. Recently, The Internet
of Vehicles (IoV) is highly innovative, and there is a new trend of many applications in this field
of research. It is based on the integration of vehicles into the IoT with an aim of establishing
smart communication between vehicles and different types of networks such as vehicle-to-sensor,
vehicle-to-human, vehicle-to-road and vehicle-to vehicle. In many applications, the security model
is not centralized. For that reason, Huang et al. [27] developed an ecosystem model on the basis
of Blockchain electric vehicle and charging pile management. This model employs Elliptic Curve
Cryptography (ECC) for the computation of hash functions of charging piles of electric vehicles.
Furthermore, Kang et al. [28] developed PETCON, a P2P electricity-trading system, for illustrating
localized and comprehensive operations of P2P electricity trading. The PETCON system employs a
consortium Blockchain method to analyze, verify, and share transaction records publicly, while it is not
necessary to have a reliable authority. Besides, CreditCoin, a privacy-preserving scheme, was created
by Li et al. [29] in order to ensure that adequate announcements are forwarded without revealing users’
identities. This scheme employs the Blockchain for sending anonymous announcements through an
aggregation protocol between vehicles. As a result, confidence in IoV information sharing is enhanced.
Finally, Yang et al. [30] proposed a Blockchain-based reputation system to assess data credibility in the
IoV. Depending on the senders’reputation values, this system judges if the received messages are true
or false. Yong, Yuan, et al. [14] developed a Blockchain solution aimed at solving security problems
and performance limitations in an Intelligent Transportation Systems (ITS).

The authors combined mandatory information of vehicles (i.e., vehicle insurance, vehicle tax, and
traffic regulations) with other relevant information such as the provision of updates and information
on weather forecasts and traffic jams.



Sensors 2020, 20, 3928 6 of 27

The main goal is to connect VANET services and use the multiple functionalities of
Blockchain including peer-to-peer communication without disclosing personal information, security,
and communication between vehicles. Lei et al. [31] introduced dynamic key management using
Blockchain for establishing communication systems to be used in vehicles that do not need the
administration from the central manager. By relying on a decentralized Blockchain structure,
it eliminates any other authorities. Thus, the key transfer process is the process of verification and
authentication verified and authenticated by the security manager network.

Dorri et al. [4] created a Blockchain technology mechanism that does not reveal any private
information of vehicle users. Simultaneously, it updates the wireless remote software and other
emerging vehicle services (i.e., electric vehicles and smart charging services, insurance and car
sharing services).

One of the challenges facing the field of the IoV is latency, which typically takes place when
real-time cloud services are provided to vehicular cloud subscribers, considering that all models aimed
at improving the security and quality of the system require additional communication procedures.
Fog computing can be used for delivering real-time services to vehicular cloud subscribers to minimize
latency [32]. The proposed solution utilized Networked Fog Centers (NetFCs) at the edge of the
network and employed single-hop mobile links (i.e. I2V TCP/IP-based) to connect them to vehicular
clouds. Consequently, vehicular service delivery time is minimized, whereas the overall efficiency
is maximized. The authors of [33] developed an adaptive resource management controller for
Vehicular-to-Infrastructure emerging non-safety services. Their focus was on traffic offloading to
local/remote clouds in V2I applications. Such applications download and upload enormous amounts
of data and need QoS (Quality of Service). According to the results, hard reliability of the controller
to cloud service providers on a per-slot basis in ensured. The innovative solution [34] developed
by Aloqaily et al. incorporated the concept of Smart Vehicle as a Service (SVaaS) aimed at ensuring
continuous vehicular services in smart cities. The solution detects the future location of the vehicle by
using a location prediction mechanism. Following the determination of the predicted location of a
vehicle, this solution applies a service selection mechanism based on Quality of Experience (QoE) to
select the required services before the vehicle reaches the destination.

In [35], Al Ridhawi al.developed the concept of service availability further to encompass
diversified vehicular cloud services. These services were obtained through content sharing by cloud
service users and providers. Cutting-edge cloud negotiation entity and a future location prediction
model were used to identify and chose the service in local and global cloud service areas.
Due to the importance of vehicle-to-everything’ communication in smart cities and in order to
enhance and secure the communications, a new IoT Blockchain-based system was developed and
tested. The proposed system has shown to establish secure communications and create entirely
decentralized cloud computing for the IoV. In the following section, more details are presented about
the proposed solution.

Regarding the V2V communications, many researchers and industry stakeholders have focused
on the development of intelligent communication concepts such as smart cities, electric vehicles,
Blockchain-based automotive communications approaches, Intelligent Transportation Systems, etc.,
Table 1 presents a detailed comparison between existing literature on on the Blockchain solution for
vehicle communication and proposed work. To begin with, M. Singh et al. [36–38] contributed to
reinforcing vehicle-to-vehicle data sharing security by proposing a novel Intelligent Vehicle-Trust
Point (IV-TP) to ensure secure and fast vehicular communication. This approach is an intelligent
data transmission system based on blockchain technology, smart connected vehicles, and vehicular
cloud computing. IV-TP assigns unique identity to each smart vehicle, which enables the vehicle to be
recognized during a communication session. In particular, an important contribution of IV-TP is that it
guarantees the trustworthiness of such vehicle. Furthermore, J. Kang et al. [39] proposed a consortium
blockchain-based distributed data management system for VECONs. Roadside Units (RSUs) use
smart contracts to verify and store securely data as well the sharing data history. In addition, they
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consider time of events, paths resemblance and frequency of interaction to build a repute share data
system. However, the central architecture of traditional VANETs possesses certain limits and security
vulnerabilities . To overcome these limits, B. Leidin et al. [40] proposed an automatic management,
communication, and organization framework for distributed vehicular network that relies on Ethereum.
Moreover, E. Reilly et al. [41] implemented an innovative light client protocol where communication
integrity is ensured within smart cities and related IoT devices. The novelty introduced by the authors
is an obligatory an authentication phase of data provenance run on an Ethereum address, which
ensured that a transaction session is trusted. In addition, the costs of the transaction through the
proposed protocol is lower than through the Bitcoin-based NeuroMesh protocol. However, certain
limitations restrict the use of this application in some cases. In fact, as an operating system is needed,
not all devices can support it. Besides, the solution is not suitable for time sensitive applications because
transactions can be subject of delays. Updating vehicular automotive systems are sensitive to malicious
interventions or attacks as well. In order to make this phase safer, G. Falco et al. [42] designed an
automotive mechanism that validates sources of vehicular data and guarantees reliability, immutability,
and integrity of shared data. The proposed approach uses efficiently the limited computing and
networking resources of vehicular and ensures network scalability. Data changes such as software
updates, cars identification, and distance travelled are validated through a DHTs-based consensus
voting system. Blockchain technology is also employed to share data share in a trustworthy way.
Finally, S. Rowan et al. [43] exploited both physical ultrasonic audio and visual light channels to
establish V2V communication as a robust and secure way of data sharing. First, a verification phase is
conducted to identify the ID and the position of the automobile in order to establish communication.
Once verified, the correspondent ID is accepted for further exchange of data. The authors also proposed
a novel protocol for key production used for inter-exchange vehicles session, based on a public key
Blockchain architecture with the use of physical channels already mentioned. It is important to
mention that the previous works have many limitations such as support Turing-Completeness. More
specifically, most of the previous works use bitcoin as a Blockchain implementation platform. However,
since bitcoin is primarily a cryptocurrency for buying and selling commodities in a safe marketplace
pseudo- anonymously, it does not accept smart contract and neither it includes programming features
for solving computation problems in order to allow the transfer of different sensitive information.
To establish cutting-edge vehicles communication applications, the underlying Blockchain platform
must support Turing-complete operations such as Ethereum. In addition, the previous works did not
include the performance calculation, in particular execution time, considering that the Blockchain
is based on mining processing. More precisely, the data must be mined in order to be shared in the
Blockchain. The duration of the mining process can reach up to 10 min [44]. The timing depends
on technologies, architectures and type of smart contract and data used. Therefore, it may cannot
support real time warning such as alerting driver for potential crashes. Hence, the efficacy of any
proposed Blockchain for vehicles communication is limited due to the time-consuming nature of
the mining process. The proposed solution in this work is a Decentralized IoT Solution for Vehicles
communication (DISV) based on the concept of Blockchain, with the real-time aspect that supports
Turing-Completeness as it is developed using Ethereum platform. The performance test represents the
proof of the real-time aspect of the developed solution.
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Table 1. Comparison between existing literature on the Blockchain solution for vehicle communication
and the proposed system.

Goals Tuning
Completeness Performance

M. Singh et al. Developing an Intelligent Vehicle-Trust Point protocol for
secure and fast vehicular communications No No

J. Kang et al. Developing a consortium blockchain-based distributed
data management system No No

B. et and al. Developing an Ethereum-based automatic management
framework for distributed vehicular network No No

E. Reilly et al. Developing a novel light client communications protocol
based on Ethereum contracts for smart cities. Yes No

G. Falco et al. Developing a Blockchain-based automotive hashing
validation mechanism for vehicular data provenance No Yes

S. Rowan et al.
A novel and robust protocol for key production based on
public-key Blockchain architecture with the use of both
ultrasonic audio and visual light physical channels

No No

Proposed System Decentralized IoT Solution for Vehicles communication
(DISV) based~ on the concept of Ethereum Yes Yes

4. Proposed Solution

4.1. System Overview

The purpose of this paper is to present an IoV solution with Real-Time Application (RTA).
This solution provides secure communication between vehicles and other actors in transportation
systems. It attempts to overcome limitations such as execution time and accordingly, improves
performance. A prototype of DISV was developed and tested it based on the following scenario: if a
driver is drowsy, the nearest cars should be alerted by sending a message via Blockchain. Since it is
based on an IoT architecture, the proposed solution should contain mainly three layers; the perception,
the network, and the application layers, as illustrated in Table 2 and described below:

1. The perception layer is the physical layer. It consists of several IoT devices equipped with sensors
designed to identify and collect information about the environment (i.e., physical parameters)
and to detect nearby smart objects. The Android Application for Vehicles (AV) embedded into the
perception layer collects and analyze data about the trip, the vehicle, and the driver’s behavior.
Android Application for Infrastructure (AP) simulates the role of IoT devices integrated into the
roads such as radars, traffic lights, roadside electronic signs and others.

2. The network layer connects the sensors to other servers, network devices, and smart things,
and also transmits and processes sensor data.

3. The application layer consists of Blockchain application and Central Cloud Server. It delivers
application-specific services to the IoT devices. More precisely, the Blockchain application
manages communication between vehicles and other actors in the transportation system.
The Central Cloud Server is in charge of processing and analyzing the obtained data and managing
invitations of other actors.

The Figure 1 depicts the architecture of the proposed solution and demonstrates the principal
workflow, which contains three main steps. First, the cars send data to the central server (1). Second,
based on the received data, the central server sends an invitation to connect to the Blockchain layer (2).
Third, the cars can share the data with the others participants of the IoV in the same area securely (3).
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The application layer

Blockchain

The network layer

The perception layer

Cloud

Administration

Decentralized
cloud

Decentralized
cloud

Figure 1. The architecture of the proposed Internet of Things solution.

Table 2. The main features of the developed IoT solution.

Layers Developed Solution Main Features

Perception layer
Android Application for
Vehicles (AV)

Collects and analyze data about the trip,
the vehicle, and the driver’s behavior.

Android Application for
Infrastructure (AP)

Simulate the role of IoT devices integrated into
the roads such as radars, traffic lights, roadside
electronic signs and other.

Network layer
Connects the sensors to other servers,
networks devices and smart things.

Application layer Blockchain Application
Managing communication between vehicles
and other actors in the transportation system.

Central Cloud Server
Processes and analysis obtained data
Manages invitations of the of other actors.

4.2. The Perception Layer

In order to test possible scenarios involving various components, an Android applications has
been developed in the Android Application for Vehicles (AV) and for infrastructure (AP) as detailed in
the following sections.

4.2.1. Android Application for Vehicles (AV)

AV is an Android application consisting of two sub-systems. The first subsystem is the Vehicle
Data Collection System (VDCS) which collects data about the trip and the car. The second one is the
Driver Drowsiness Detection system that collects data about the driver’s behavior to identify if drowsy
or not

1. VDCS is designed to collect information about the car, such as the car model and characteristics
of the motor including horsepower, speed and engine size. Finally, the system collects the data
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related to the trip such as start and end time, distance, and minimum, maximum, and average
speed as illustrated in Figure 2. It is set to detect measures such as rotational velocity along the
Roll, Pitch and Yaw axes; acceleration; distance; and GPS position every 15 s.

2. The purpose of Driver Drowsiness Detection is to detect driver’s drowsiness and prevent potential
accidents it might cause. This system is an element of the Advanced Driver Assistance System
(ADAS), which is an integral part of contemporary automotive technology. The role of ADAS
is to improve safety and ensure the satisfying driving experience. This system was developed
on the basis of Real-Time Driver Drowsiness Detection using Deep Neural Networks techniques.
More details about this system can be found in [45–47] .

Mainly, the Android application has four pages. The first page serves for logging in by using
a username and password. Following the authentication, the user can start a new trip or access the
information about the last five trips in the second page.

If the user chooses a new trip, the application will start recording and displaying all information
as described in the previous section. Then, it will send the collected data via the web service to the
cloud server. In the fourth page, the front camera will capture and display the driver’s face.

Figure 2. Screenshot of the four main pages of the Android application for Vehicles (AV).

4.2.2. Android Application for Infrastructure (AP)

The aim of this application is to simulate the role of IoT devices integrated into the roads such as
radars, traffic lights, roadside electronic signs and others.

Many additional options of the Android application, such as traffic jams, the speed of cars,
and weather conditions can be added to the perception layer.

4.3. The Network Layer

The network layer establishes the connection between the servers and transmits, and processes
the sensor data. The application can use either Wi-Fi or mobile internet (3G/3G+/4G) to send the data
to the server.

This collection process uses the hybrid system to gather and store data locally before transmitting
it them to the server. This technique is proven to be highly effective for data collection when the
Internet connection is poor or unstable.
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4.4. The Application Layer

Regarding the application layer, it contains two principal compounds: Central cloud server and
the communication system using a Blockchain Network.

4.4.1. Central Cloud Server

The central cloud delivers application-specific services to the end-user. It sends the collected data
to the web services for processing and analysis before showing them to the end-user. The web service
is a component of the application layer responsible for interaction between different components of
the IoT solution, such as web site, database serve, IoT devices, and embedded systems. Windows
Communication Foundation by Microsoft is used to implement the web service based on the REST
Architecture and JSON message format. In addition to collecting data from devices, it uses information
about crashes from the General Directorate of Traffic at the Ministry of Interior as well as road
conditions or any relevant data from other authorities. The data is available to the end-user through
the website with direct access to the web services.

The web application is the interface the researchers use to interact and query the recorded
data. The website content, shown in Figure 3, displays demographic information about the driver’s
nationality, gender and age. It also includes information about the vehicle, including the model and
date it was put into service.

Figure 3. Screenshot of a real trip displaying information about the vehicle and the driver.

By using Google Maps, the website displays the tracked trip and the position of individual events,
as well as the details of all recorded events as shown in Figures 4 and 5.
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Figure 4. Screenshot of a real trip displaying the data recorded for every event.

Figure 5. Screenshot of a real trip displaying the Blockchain layer for every road section.
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4.4.2. The Blockchain Layer

Blockchain Layer Overview

The Blockchain layer manages communication between cars. In each separate time slot, the car
sends collected data to the central server via a web service. The data includes the current location
and the status of the connection to one of the existing Blockchain layers. Subsequently, the central
server invites nearby IoT devices to establish communication by an available Blockchain cloud.
The communication is established after accepting the invitation. As illustrated in Figure 6, each
road section contains a Blockchain layer, which sends the messages to the connected IoT devices.
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Figure 6. Sequence diagram of nominal scenario of communication between Internet of things (IoT) devices.

System In- Depth

The Blockchain layer and the Android application jointly create decentralized applications (Dapp,
dApp, or DApp). More precisely, decentralized applications represent distributed Internet apps run
on a decentralized P2P network (Blockchain). Their code is an open source that is publicly open,
and accordingly, it can be accessed and customized. Dapp applications do not rely on a central server
like standard apps, as illustrated in Figure 7.

The Blockchain layer is the back-end of the decentralized applications, whereas the android
application is the front-end part. The mobile app calls functions of the smart contract deployed in
every Ethereum node in order to send a message via the Blockchain network. The communication
passes through as a wrapper between the mobile and node-endpoint. This study uses one of the
most reliable frameworks - the Web3.Js for Android framework. Its smart contract has two primary
functions. The first function, setMessage, is in charge of publishing a new message on the Blockchain
network in the amount of ETH the sender is willing to pay per unit of gas to mine the message.
The second function, GetMessage, enables the device connected to the Blockchain network to read
the existing data. Table 3 shows the format of the sent message. The message is composed of the
following elements:
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Figure 7. The architecture of decentralized applications (Dapp).

Table 3. Model of the sent message in the Blockchain network.

Model Example
{
Sender : ,
TypeSender : ,
Time : ,
FinishTime ,
Message ,
TypeMessage:
Position ,
}

{
"s": "Toyota , 404551 , white",
"ts": "Car",
"t": " 2018-10-13 19:43:16",
"tf": " 2018-10-13 19:53:16",
"m": "Alert Drowsy driver",
"tm": "3",
"p": " 25.333091, 51.467223",
}

The message is composed of many elements:

- "s" field presents the information about the sender such as brand, car matriculation number,
and color of the car.

- “ts” field defines the type of sender message that can be sent from a car, pedestrian
or infrastructure.

- "t" field contains the time of sending the message. This helps the Android application to decide if
the message is new or old. Therefore, if the mobile receives the message late, the notification alert
will not be displayed.

- "tf" field contains the time when the message should be removed from the smart contract. Every
time any participant adds a new message, it must delete the obsolete messages. Thus, the smart
contract becomes lighter and remarkably reduces the execution time, mining time, cost and energy.
The finish time value is the result of summing between the start time and duration of the message.
The availability of the message in the smart contract is detailed in Table 4.



Sensors 2020, 20, 3928 15 of 27

Table 4. Urgency level of the message sent through the Blockchain Network.

Urgent
Level

Duration
of Message Example

0 10 min Drowsy driver or bad driver behavior

1 1 h Streets crowded

2 6 h Temporary Closed Roads

3 12 h Maintenance work

- "m" field includes the content of the message. For example : “Be careful of a drowsy driver, road
crash in Khalifa Street”.

- "mt" field defines the priority of the message as explained in Table 5; there are three message
types: information, warning, incident.

- "p" field contains the position of the sender and will not be displayed in case of delay in sending
the message and when the sender becomes far from the incident point.

There are certain limits regarding the use of Blockchain for establishing communication between
vehicles and other participants in the transportation system. The main concern is the time needed
to update the transaction into a block chain. The DISV cannot be regarded as a real-time application
due to the time needed for updating the smart contract. Therefore, several measures are proposed in
order to reduce the content of the smart contract and consequently minimize the time required. First,
instead of having one Blockchain layer in charge of the communication in a larger region, separate
Blockchain layers within smaller areas would facilitate the communication of a low number of vehicles.
Second, following the competition of their time, all messages should be removed from the system
(see Table 4). Third, as elaborated in Table 3, the format of messages should be minimal to increase the
transaction speed.

Furthermore, The Table 4 illustrates the duration of every message based on Urgent level, in fact
the message is received by “SetMessage” function in smart contract will stored in Patricia Trie data
storage on Ethereum Blockchain [48]. Once the become obsolete, The Smart contract remove the
message after the central data receives a copy of it.

Table 5. Type of message sent through the Blockchain Network.

Type Message

Information message
i.e., Informative messages from the Ministry of
Interior. It is displayed only in the message page of
the Android application.

Warning message
i.e., Information about traffic signal not working. It is
displayed as a pop-up message.

Incident message
i.e., A drowsy driver, critical zone or extreme weather
condition. It is displayed as a pop-up message with an
alert sound to get the driver’s attention.

Nominal Scenario

In this section, the nominal scenario of communication between IoT devices is described.
The sequence diagram in Figure 6 shows that the nominal scenario is divided into two sub-processes;
registration and messaging. In the registration step, for every time slot (15 s), the IoT device sends the
collected data to the central server via the Internet (1). The central server saves the collected data in
the database server (2). In addition, the server looks for the IoT devices nearby places such as road
section, roundabouts, traffic signals, or others (3). Subsequently, an invitation is sent to the devices in
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the same location to communicate through one of the available Blockchain layers (4). After accepting
the invitation, (5) the second sub-process begins.

In the messaging step, the IoT devices are now connected to each other and can share data
between them. The IoT devices send the message via the Blockchain network. Following the mining
process (6), the message is added to the smart contract so that every device connected to this server
Blockchain layer can receive it (7).

5. Performance Evaluation and Discussion

The performance of software solution can be assessed by applying different methodologies [49,50].
In particular, it is fundamental to evaluate the specific properties needed for the smooth functioning
of the solution. The main properties of the proposed solution are execution time, costs, availability,
integrity, immutability, and security as shown in Figure 8. All these properties must provide the
highest performance in order to allow the flawless operations of the solution. Thus, this paper will
address these properties to assess the overall performance of the solution.

EVALUATION OF THE SOLUTION

Security
(Blockchain Framework)

Security
(Web and Web services)

Injection

Broken Authentication

Sensitive Data Exposure

XML External Entities
(XEE)

Broken Access Control

Security
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Insecure Deserialization

Using Components
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CostAvailability
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Figure 8. System evaluation diagram.

5.1. Costs

The Testnet of the Ethereum network was used to deploy the prototype of the smart contract.
In this section the costs of the creation and execution of the smart contract are analyzed. The following
values, valid in January 2020 were used: 1 gas_1 wei (0.000000001 ETH) and 1 ETH $161,92 US.
The minimum gas value to be used in a transaction was set at 1 wei; the average gas value was
approximately 0.006845 Ethereum at the moment of analysis.

1 Gas = 0.006845 Ethereum (ETH)

Gas Price = 6,138,887 Gwei
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Table 6 presents the execution costs of various functions of the app. As summarized, the creation
and deployment of the prototype on the Blockchain is the most expensive, $0.07572 US. However,
it is worth mentioning that this is a one-time cost to set up and initialize the system. Moreover, this
cost can be minimized by removing Truffle, which is the framework used for building, deploying,
and managing smart contracts. It also includes features such as a “Migrations” contract to manage the
deployment cycle.

Table 6. Costs of the different functions in the Smart Contract based on 1 ETH = 161,92 USD and
1 gas = 0,000000001 ETH Rates.

Function Gas Used Price

Deploy Contract 389,473 0.07572 (one time / Truffle)

SetMessage 140,345–257,488 0.02486–0.0456

Get Message 0 0

The SetMessage function is not expensive, as it costs on average $0.03523 US. However, there are
significant variations of the costs of “SetMessage” functions due to variable message input lengths.
Nevertheless, the cost of one byte is set at 136 gas ($0.00003 US). In contrary, the GetMessage function
does not require any additional cost because mining is not necessary while receiving messages from
the blocks and no updates are needed for the smart contract.

5.2. Execution Time

One of the main criteria for evaluation of transportation management systems such as DISV
is execution time. In fact, even a minor delay in sending or receiving messages can lead to severe
disruptions of the system. For the proper functioning of the framework for communication between
vehicles and all other actors in the transportation system based on blockchain technology, it is
fundamental to ensure the timely addition of each message to the smart contract as the mining
process relies on complex problem solving.

Considering that the proposed prototype is a real time application, execution time is very
important. In computational tests, the call times for each function of the Android application are
measured. In order to assess the performance of the Ethereum private Blockchain proposed solution,
a server with a Configuration of 64 GB Ram and a Core i7-000 was used.

Figure 9 shows that the response time of the server of the GetMessage function is significantly
shorter than the response time of the SetMessage.In fact, calling the GetMessage function needs
between 1 milliseconds and up to almost 10 milliseconds when the server get 1000 requests. Therefore,
there is no big difference in execution time between calling the GetMessage function one time or
hundreds of times. However, calling the SetMessage function requires a lot of time because the
message should be mined in order to add it into the smart contract. When the server receives ten
requests of calling the SetMessage function, it takes 1.64 s and more than 90 s in the case of five hundred
requests. Due to several factors, the computational study showed that is not recommended that the of
list SetMessage exceeds 25 messages.
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Figure 9. Execution time of the different functions in the Decentralized IoT solution for Vehicles
communication (DISV) in milliseconds.

Real time execution is one major property of DISV since any transaction should take a very small
running time. Therefore, it was recommended in the proposed architecture to use the Blockchain layer
in every zone so the server receives and sends a small number of messages.

In addition to using many Blockchain layers, the Android application removes the old and
duplicated messages so the smart contract contains only the necessary messages. Using the
recommended architecture, in DISV, the response time of the messaging server is usually between 0
and 3 s. Hence, DISV can be considered a real-time application (RTA).

5.3. Memory and Power Consumption

Since DISV uses Blockchain for the IoT, it is critical to evaluate Power and Memory consumption,
considering that IoT devices usually have very low power and computational capacities. A Huawei P8
Lite with a Configuration of 2 GB Ram, Li-Po 2500 mAh battery and a Hisilicon Kirin 620 Processor
was used in computation tests in the demo. Figure 10 demonstrates that the memory consumption
of the developed Android solution is significantly lower than the consumption of other commercial
applications, such us Facebook app (134 MB), WhatsApp (106), and Skype (233 MB). Regarding Energy
Consumption, the proposed solution consumes electricity as average 23.43 mAh which is similar
to Skype app and Facebook, which consume respectively 21.66 mAh and 18.56 mAh, as illustrated
in Figure 11.
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Figure 10. Comparing Memory Consumption of DISV with commercial mobile applications.

Figure 11. Comparing Energy Consumption of DISV with commercial mobile applications.

5.4. Availability

Another critical property of transportation management systems such as DISV is availability.
More precisely, even the minor temporary shutdown of the system is likely to lead to traffic congestion
and crashes. Availability means that a system is online and ready for access at any time. A variety of
factors can cause a shutdown of the system (off-line), ranging from planned downtime for maintenance
to sudden failure. The decentralized and robust nature of the Blockchain prevents attacks such as a
denial-of-service (DoS) attack [51,52], which only target nodes [53], as the central party cannot be a
single point of failure [52,54]. Yet, the distribution of the Blockchain is not complete. The mining power
is typically limited to miners residing in approximately the same location. Thus, this enables isolating
them by hijacking some border gateway protocol (BGP) prefixed with a routing attack employing
the internet infrastructure [53]. Considering the comprehensiveness of the Internet, the Ethereum
Blockchain network must be always reachable. Solutions that are centralized but whose databases are
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distributed are vulnerable to routing attacks because of potentially hindered communication with and
between the physical databases. Thanks to the resiliency of the Blockchain malicious and damaged
nodes on the network can be handled [55,56].

One of the greatest threats to the availability of a Blockchain solution is 51% attacks, which is
the ability of someone controlling a majority of network hash rate to revise transaction history and
prevent new transactions from confirming. As opposed to a public chain, these messages delays are
combined with the heterogeneous power of miners in such a private chain could easily allow a 51%
attack and lead to the Blockchain anomaly.

5.5. Integrity

Integrity is another fundamental property of the systems which exchange sensitive data among
the users. Thus, it is necessary to assess the data integrity property of the proposed software solution.
Data integrity refers to the accuracy and reliability of data through the whole life cycle. It is critically
related to the concept of data security. Uncorrupted data is whole, and it remains unchanged in regard
to its complete state. It is essential for ensuring security to keep data consistent throughout its life
cycle. The reliability of data refers to compliance with the following standards:

- The accuracy of data – free from errors and confirmed by the protocol.
- The originality of data – accessible sources and preservation in the original form.
- Contemporary – data must be recorded at the exact time it was executed and observed.
- Legible – easy to understand, record permanently, and preserve original entries.
- An attributable – clear demonstration of who observed and recorded data, at what time, and what

it is about.

Cryptographic Hashing and Merkle Trees are in charge of keeping the integrity of the data on
public and private Blockchains intact. There are three main advantages of Merkle trees [56]. First,
they ensure the validity and integrity of data. Second, their proofs are fast and computationally easy
requiring less disk space or memory. Third, their management and proof needs minimal information to
be transmitted across networks. Moreover, Cryptographic Hashing is critical for keeping the integrity
and security of data recorded on Blockchain. Encryption guarantees security, whereas integrity is
achieved by ensuring that signatures update when the data is changed. Therefore, considering that
the DISV is based on blockchain technology, it ensures the communication between vehicles which
maintains data integrity at all times.

5.6. Consistency

One of the major criteria for a new system evaluation is consistency which refers to the requirement
that a series of measurements of the same project yields comparable results when different raters
perform it by the same method. The proposed solution has employed the Ethereum Blockchain to
build the consensus mechanism. Accordingly, as explained in [56], explicit reconciliation processes
are not required. The consistency mechanism is based on the assumption that the branch behind the
most Proof-of-Work represents the real branch. To ensure consistency, each block in the Blockchain
accepted by a node preserves the consistency of the local replica of the database. In a case of a
temporary disagreement among the nodes on the real consistent truths, Proof-of-Work enables the
automatic resolving of the fork. Honest nodes cannot under any circumstances adapt to inconsistent
chains. Within the network, the deeper buried blocks in the chain are always consistent. Considering
Proof-of-Work prevents unsolvable reconciliation process, it is evident that the Blockchain ensures
consistency in the proposed DISV system.

5.7. Confidentiality

Confidentiality in the context of computer systems allows authorized users to access sensitive
and protected data. Thus, it is necessary to build in specific mechanisms to ensure confidentiality and
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safeguard data from harmful intruders. Confidentiality in a Blockchain setting allows involved parties
to perform a transaction while preventing other participants from finding out certain facts or details
about the transaction. Unlike public Blockchain such as Ethereum and Bitcoin that reject the concept of
confidentiality and all their transactions are in the clear, confidentiality in private Blockchain can be
handled if both the transaction and the identities of participating nodes are protected. To achieve these
requirements, the proposed solution satisfies the following requirements:

- An unauthorized third party must be able to identify the counter-parties to a transaction in a
Blockchain until the counter parties reveal that information.

- Transaction details must be invisible to the person who is not involved in that particular
transaction until the participating parties don’t disclose their information.

5.8. Immutability

Immutability implies that alteration is not possible after the creation. To modify a transaction from
history, it is necessary to re-mine all the blocks before the given block, which will reflect subsequently
in each copy of the ledger in the network. It would also require rebuilding the Merkle tree of the block
in which the transaction is located and redoing of all the proof of work for that block. Moreover, as the
next block stores the hash of this block, it must also be re-mined. The subsequent block must be edited
with the new “previous block hash”, which leads to a different block hash. Such a hash in certain cases
would not match the set difficulty level, which implies re-mining of the block. In fact, the re-mining
will have to occur until the final block in the chain. Simultaneously, while the miner re-mines old
blocks, new blocks will be added to the chain. It means that in addition to re-mining the previous
blocks to edit a historical record, the miner will have to edit newly generated blocks at the same time.
This action is practically impossible due to the enormous computing power required. Accordingly,
immutability is guaranteed in the proposed DISV system.

5.9. Security

Open Web Application Security Project (OWASP) Foundation’s [57] top web vulnerabilities was
employed to assess the security of websites, web services, and the central server of the DISV system.
OWASP is a non-profit organization whose mission is to offer practical and unbiased information
on application security to security professionals and developers. It primarily focuses on the critical
vulnerabilities of web apps. The vulnerability assessment analysis detected ten of the most common
attacks presented in Table 7 together with security requirements needed to minimize vulnerability
combat attacks. The recommended requirement is incorporated into the system. However, newly
and complex attacks occur on a daily basis. Thus, applying the recommended prevention cannot
entirely prevent the attacks, but rather minimize the possibility of damaging or hacking the system.
The architecture and technology of Ethereum in regard to the smart contract have certain vulnerabilities,
which are listed in Table 8.

Attacks on Ethereum are most commonly in relation to the external call. However, some attacks
rely on particular functions and employ a loop in the smart contract.

The security of the proposed solution is considered high because it is using private Blockchain.
In Table 8, several recommendations are presented.
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Table 7. Open Web Application Security Project (OWASP) top web vulnerabilities and security and
privacy requirements.

No. System Attack Description Security and Privacy Requirements

A1 Injection

Injection Attacks (CRLF, LDAP, and SQL
injection) take part when untrusted data
is sent by an attacker to an interpreter
and then executed as a command
without adequate authorization.

The prevention is done by the system
by ensuring that data is separate
from queries and commands.

A2
Broken
Authentication

Broken Authentication and Session
Management vulnerabilities refer to
users being able to work around sessions
and authentic mechanisms or
manipulate them.

The prevention is done by the system
through strong storage mechanisms
and password policies.

A3
Sensitive Data
Exposure

Applications and APIs which do not
have proper protection of sensitive
data such as username and passwords
and financial information. Accordingly,
attackers can steal identities and commit
fraud upon accessing such information.

It is necessary to have SSL
incorporated into the system and to
transfer sensitive data only with
encryption such as AES-256. The
detection of insecure obfuscation
techniques is needed.

A4
XML External
Entities (XEE)

Exploitation of vulnerable XML
processors by attackers by uploading
XL and inserting hostile content in an
ML document. It can also be done
by exploiting vulnerable integrations,
dependencies, and code.

It is recommended to incorporate the
Rest paradigm into the system and
use data formats such as JSON. Also,
avoiding the serialization of sensitive
data is needed.

A5
Broken Access
Control

This vulnerability occurs when users can
access certain applications
functionalities that are not intended for
their use. Accordingly, they can modify
a URL as a way to reach other
functionalities.

It is necessary to incorporate a strong
access control mechanism into
the system.

A6
Security
Misconfiguration

This is the case of insecure and outdated
configurations and also not adequate
protection of directories and files by a
web server.

All components of an application,
including an operating system,
language runtime, and server must
be suitably hardened following
recommended best practices.

A7 Cross-Site Scripting

Attackers perform scripts using XSS in
the victim’s web service endpoint or
browser to redirect the user to malicious
sites, deface websites orhijack
user sessions.

To prevent malicious data from
harming the database or website the
system must render the correct data
(Validate the Data).

A8
Insecure
Deserialization

Insecure deserialization flaws allow an
attacker to execute remote code in the
application, elevate privileges, carry out
injection and delete or tamper with
serialized (written to disk) objects.

The system must incorporate SSL.

A9
Using Components
With Known
Vulnerabilities

Vulnerable components – frameworks,
libraries, etc must run with full privilege.

The system must use approved
enterprise libraries.

A10
Insufficient Logging
And Monitoring

The detecting time of a breach is
typically measured in weeks and
sometimes months. Thus, in sufficient
logging and ineffective integration,
relevant security incident response
systems allow attackers to reach other
systems and become a persistent threat.

Monitoring systems such as
Appdynamics and Dynatrace have
defined rules and send proactive
alerts. They should be incorporated
into the system.
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Table 8. Ethereum top web vulnerabilities and Security and privacy requirements.

No. System Attack Description Security and Privacy Requirements

AE1
Re-Entrancy
(DAO attack)

The smart contract of Ethereum can call
and use codes of other external contacts,
which can be hijacked and subsequently
forced to conduct new codes through, for
instance, a fallback function.

The transfer function should not
send more than 2,300 gas with the
external call, as it prevents the
destination address/contract from
calling another contract.

AE2
Arithmetic
Over/Under
Flows

The Ethereum Virtual Machine (EVM)
determines fixed-size data types for
integers. Attackers can exploit Variables in
Solidity in a case of unchecked user input
and performed calculations in numbers
outside the range of the data type storing
them them.

Protecting against under/overflow
vulnerabilities is performed by
designing or using mathematical
libraries to replace the standard math
operators, namely addition,
subtraction and multiplication.

AE3 Delegatecall

Ethereum developers use the CALL and
DELEGATECALL opcodes to modularize
their code. However, DELEGATECALL
can result in unintended code execution.

Solidity holds the library keyword to
implement library contracts. (Check
the Solidity Docs) Consequently, the
library contract is
non-self-destructable and stateless.

AE4
Default
Visibilities

Solidity functions include visibility
specifiers to dictate how functions are
permitted to be called. Incorrect use of
those specifiers results in
serious vulnerabilities

The visibility of all functions should
be specified in the contract.

AE5
Short
Address/Parameter
Attack

The parameters passed to the smart
contract are encoded by the ABI
specification. Sending encoded parameters
shorter than the expected parameter length
is possible.

Prior to sending the inputs to the
Blockchain, they should be validated
by the system.

midrule AE6
Unchecked CALL
Return Values

Performing external calls in solidity can be
done in several ways. Typically, the
transfer method is used to send ETH to
external accounts; while the send ()
function is employed for versatile external
calls. Moreover, the CALL is used directly
in solidity.

In all possible cases the transfer()
function should be used instead of
send() transfer() reverts when the
external transaction reverts.

AE7
Denial of
Service (DOS)

A DDoS attack on Ethereum Blockchain
indicates that an attacker intends to use all
resources of the network so that minors
cannot record or cater to other transactions.

Contracts must not loop through
data structures which allow artificial
manipulation by external users.

AE8
Tx.Origin
Authentication

Contracts authorizing users by the
tx.origin variable are vulnerable to
phishing attacks. These attacks trick users
to carry out authenticated actions on the
vulnerable contract.

Do not use tx.origin for authorization
in smart contracts.

6. Conclusions and Future Work

This paper introduced a new Decentralized IoT solution for Vehicles communication (DISV).
It incorporates three primary layers to explore the possibility of using Blockchain for communication in
the IoV. A prototype of the smart contract on the Testnet of Ethereum have been deployed. This study
considered several properties of the solution, including availability, integrity, and security to test
whether the Blockchain is an efficient and secure mechanism for IoV communications. The results
showed that DISV can be considered as a real time application as well as a solution for the main
challenges of Vehicle-to-X (V2X) communications such as security, centralization, and lack of privacy.
In addition, it can facilitate the data exchange and cooperation between cars, infrastructure, and other
actors of intelligent transportation systems. Moreover, DISV could be seen as an important element
of the Advanced Driver Assistance Systems (ADAS) that might enhance the transportation safety
and mobility. As a direction for future research, an enhanced version of DISV will be developed that
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includes reputation assessment system for unreliable data sources as in [58] Furthermore, a network
for vehicle-based on Blockchain to allow users paying for electrical charging, parking spaces, and tolls
through machine-to-machine transactions will be proposed.
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