
sensors

Article

Quantized Residual Preference Based Linkage
Clustering for Model Selection and Inlier
Segmentation in Geometric Multi-Model Fitting

Qing Zhao, Yun Zhang, Qianqing Qin and Bin Luo *

The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430072, China; zhaoqing@whu.edu.cn (Q.Z.); zhangyunmail@whu.edu.cn (Y.Z.);
qqqin@lmars.whu.edu.cn (Q.Q.)
* Correspondence: luob@whu.edu.cn; Tel.: +86-18627853175

Received: 22 April 2020; Accepted: 23 June 2020; Published: 7 July 2020
����������
�������

Abstract: In this paper, quantized residual preference is proposed to represent the hypotheses
and the points for model selection and inlier segmentation in multi-structure geometric model
fitting. First, a quantized residual preference is proposed to represent the hypotheses. Through
a weighted similarity measurement and linkage clustering, similar hypotheses are put into one
cluster, and hypotheses with good quality are selected from the clusters as the model selection results.
After this, the quantized residual preference is also used to present the data points, and through
the linkage clustering, the inliers belonging to the same model can be separated from the outliers.
To exclude outliers as many as possible, an iterative sampling and clustering process is performed
within the clustering process until the clusters are stable. The experiments undertake indicate that
the proposed method performs even better on real data than the some state-of-the-art methods.

Keywords: geometric model fitting; quantized residual; linkage clustering; sampling and clustering

1. Introduction

Traditionally, when dealing with geometric model fitting problems in computer vision,
it is considered that there is only one model instance in the data, and the classical method—random
sample consensus (RANSAC) [1]—is used to estimate the model. However, in most cases in computer
vision, there are actually more than one model instance in the data for most cases. Since real data
with multiple instances in computer vision are much more complicated, there is likely to be lots of
noise and outliers, and also pseudo-outliers [2] (data belonging to one model are usually outliers
to other models). Thus, basing the methods on the single model fitting methods (e.g., sequential
RANSAC [3,4] and multi-RANSAC [5]) usually fails when dealing with multiple geometric model
fitting problems.

As a matter of fact, the multi-model fitting problem can be considered to be a typical example
of a chicken-and-egg problem [6]: both the data-to-model assignments and model parameters
are unavailable, but given the solution of one subproblem, the solution of the other can be easily
derived. Most of the multi-model fitting methods first generate large amount of hypotheses, and then
conduct selection or representation on the hypotheses. Randomized Hough transform (RHT) [7]
selects good models for multiple instances by taking the peaks in the histogram built in the parameter
space, and residual histogram analysis (RHA) [8] finds the peaks of the residual histogram. The mean
shift clustering method introduced in [9,10] works in the parameter space to seek multiple models.
Robust preference analysis (RPA) [11] performs symmetric non-negative factorization on the cleaned kernel
matrix to extract the most representative models. Meanwhile, J-linkage [12,13] adopts a conceptual
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representation of points, and through the linkage clustering of the point preferences, it segments
the inliers into different models. T-linkage [14,15] uses relaxation of the binary preference function
and the soft Tanimoto distance to improve J-linkage for clustering. To find the inlier clusters, one of
the crucial problems is how to remove the outliers and noise. J-linkage and T-linkage get rid of outliers
and noise by means of an inlier threshold. Kernel fitting (KF) [16] makes use of the sorted residuals of
the hypotheses to build the Mercer kernel to elicit potential points belonging to a common structure
and, as a result, the outliers and noise can be removed. Adaptive kernel-scale weighted hypotheses
(AKSWH) [17] uses a simultaneous fitting and segmentation framework that simultaneously selects
good models and segments the inliers, and it can remove the outliers and noise by the iterative Kth
ordered scale estimator (IKOSE). Although a framework of simultaneous sampling and multi-model
fitting has been proposed [6] to solve multi-model fitting problems, the hypothesis generation
and model fitting are processed simultaneously, so this approach is prone to local optima.

Recently, a series of optimization-based methods [18–25] were proposed to solve the multi-model
fitting problem, in which [18–22] deal with the multi-model fitting problem as a multi-labelling problem
by using energy minimization function and successfully introducing spacial information of the inliers,
and [23–25] solve the problem by using hypergraphs [26] to describe the relationship of the minimum
sampling set and the hypotheses for inlier clustering. However, these optimization-based methods can
hardly handle the outliers and need extra inlier threshold or scale estimation techniques.

From the previous relevant work, preference analysis-based methods consisting of conceptual
preference [11–15] and permutation preference [16,17,27,28], are the mainstream when dealing with
multi-model fitting problems. However, conceptual preference by binarizing the residuals using an
inlier threshold in J-linkage [12,13], extremely compresses the differences between models and loses lots
of information. Although T-linkage [14,15] uses relaxation of the binary preference function and the soft
Tanimoto distance to improve the conceptual preference in J-linkage, increasing the information
and keeping the difference between models, which also keeps the differences between inliers belonging
to the same model. what’s more, the conceptual preference in J-linkage and T-linkage needs one inlier
threshold or one time constant for all the models to eliminate the impact of outliers, which is not
appropriate for most cases in multi-model fitting. Permutation preference simply uses of the order
number of the sorted residuals as the preference, which is very sensitive to the outliers and noise.
Since conceptual preference with binarizing the residuals will lose the differences between models,
but the relaxation of the binary preference function will increase the differences between the inliers
belonging to the same model. Considering to keep the differences between models and decrease
the differences between inliers belonging to one model, the quantized residual preference is proposed
in this paper, which make the preference for hypotheses and points by using the quantized value
of the residual to select good hypotheses and segment the inliers. In addition, in order to deal with
the outliers, we propose dichotomous method by preference linkage clustering of inliers and outliers
for each model.

A quantized residual-based two-stage multi-model fitting method is proposed in this paper to take
advantage of the similarities between not only the point set, but also the hypotheses. Both stages make
use of the quantized residual and contain a linkage cluster process, the difference is that the objects
used for clustering are not the same. The first part is model selection, which is designed to cluster
similar hypotheses and output several clusters with corresponding inlier sets. The output clusters
represent different models in the scene, however the inlier sets only contain a few points which fit
the models best. To obtain all the inliers of each model, the second part called inlier segmentation
is designed. For the purpose of accurately obtaining all the inlier point sets under the interference of
outliers, an alternate sampling and clustering strategy is adopted in the inlier segmentation, which
is able to distinguish inliers from outliers.

The model selection part is implemented by a bottom-up merging strategy with quantized residual
preference linkage clustering. Firstly, following the classical framework of multi-model fitting, we make
use of the spatial information and uniform sampling to generate hypothesis, which we conduct random
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sampling within subregions of the data space. Next, the hypotheses are weighted by sum of residuals
with a fixed number of inliers, and then quantized residual preferences are made for the hypotheses
for linkage clustering, which iteratively conducts bottom-up merging of two hypotheses with minimum
distances and update the preference with higher weight hypothesis. Finally, good hypotheses with
the minimum sum of residuals are then selected as the model selection results.

Unlike most of the current methods, where the inlier segmentation always needs an inlier
threshold or a scale estimation technique [17,29–31], the inlier segmentation in this paper is conducted
by linkage clustering of the quantized residual preference extracted from the corresponding
hypotheses residuals. The quantized residual preference for the point representation extracted from
the good hypotheses inliers allows robust identification of the inliers, and can separate inliers from
outliers quite well. Iterative inlier clustering and hypothesis sampling is performed to make the results
more stable and get rid of as many outliers as possible. This process works without an inlier threshold
or scale estimator, and can separate the inliers and outliers quite well.

Therefore, the contributions of this paper are three folds: (1) Quantized residual preference
is proposed to represent the hypotheses, and the weighted preference similarity is introduced
to measure the similarity of two hypotheses, which is used in the adjusted linkage clustering
for model selection. (2) Quantized residual preference is proposed to represent the points in linkage
clustering to segment inliers belonging to different models on data with outliers. (3) We conduct
the linkage clustering to generate only two clusters containing inlier cluster and outlier cluster
to separate inliers and outliers for each selected model one by one, which is integrated into an
alternate sampling and clustering framework.

The rest of this paper is organized as follows. In Section 2, we introduce the proposed
method in detail. The experiments in multi-structure geometric model fitting, including
multi-homography matrix estimation and multi-fundamental matrix estimation, are presented
in Section 3. Finally, we draw our conclusions in Section 4.

2. Materials and Methods

The two-stage method conducted in this paper follows the classical framework for multi-model
fitting, which firstly generates large amount hypotheses, then makes preference for the hypotheses,
and finally segments the inliers belonging to different models. Both stages make use of the quantized
residual and contain a linkage cluster process, the difference is that the objects used for clustering
are not the same.

In the model selection stage, a large amount of hypotheses will be generated and the sum of several
minimum residuals (hypothesis cost) will be calculated for every hypothesis to measure the quality
of the hypotheses. Then quantized residual preference will be made for the hypotheses to propose
linkage clustering, which is iteratively merging two hypotheses with minimum distance and updating
with the one of smaller sum of residuals. Finally hypotheses retained with small hypothesis cost
and considerable number of cluster members will be selected as the model selection results.

The inlier segmentation stage will be entered after the models are selected, quantized residual
preferences are generated based on the initial inliers of the selected hypotheses for the points, which
will be used to separate inliers and outliers for each selected models by linkage clustering. In addition,
an alternate sampling and clustering framework is proposed to make sure optimum division of
the inliers and outliers can be found.

In this section, we will first introduce how to calculate the quantized residual preference after
generating several hypotheses for linkage clustering to select models, and then we will carefully
explain how the quantized residual preference is used in linkage clustering under alternate sampling
and clustering framework to separate the inliers and outliers for each selected model one by one.
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2.1. Model Selection

The model selection algorithm is proposed to obtain all the valid models in the scene. The flow
chat of model selection is shown in Figure 1. Like most of the model fitting methods, a sampling
process to generate a great number of hypotheses will be conducted firstly. In addition, in order
to take advantage of the prior knowledge that inliers belonging to one model tend to be neighbours,
the hypotheses generation follows the random sampling process, but within a region. All the data
points are segmented into several subregions with the same size by Euclidean distance, and then
hypotheses are generated by random sampling within each subregion.

Figure 1. Model selection flow chart.

Given the data point set X = {x1, x2, ..., xN}, the hypotheses set H = {h̄1, h̄2, · · · , h̄j, · · · , h̄M}
after the hypothesis generation, and then the residual matrix R = {r1, r2, · · · , r j, · · · , rM}, where
r j = [r1,j, r2,j, · · · , ri,j, · · · , rN,j]

T refers to the residuals of hypothesis h̄j to all the data points in X, N
is the data number, and M is the number of hypotheses.

To calculate the hypothesis cost, we first need to sort the residuals of the hypothesis in ascending
order. If ŕ j = {rτi ,j|rτ1,j ≤ rτ2,j ≤ · · · ≤ rτN ,j, rτi ,j ∈ r j} is the ascending sorted residuals of hypothesis
h̄j, then the hypothesis cost hcj of h̄j is calculated by Equation (1).

hcj =
k

∑
i=1

rτi ,j (1)

in which 1 ≤ k ≤ N, and usually k = 20.
Hypotheses with lower cost will be used in the quantized residual preference linkage

clustering for selecting hypotheses with good quality. The quantized residual preference is actually
the quantization on R by Equation (2).

q̌i,j =

⌈ ri,j − rj
min

rj
max − rj

min

∗ θ

⌉
rj

max = max{r1,j, r2,j, · · · , ri,j, · · · , rN,j}

rj
min = min{r1,j, r2,j, · · · , ri,j, · · · , rN,j}

(2)

where θ refers to the quantization level. When using the quantized residuals to represent the hypotheses
or the data points, a valid quantization length λ is needed to decrease the complexity of the quantized
residual preferences.

qi,j =

{
q̌i,j q̌i,j <= λ

0 q̌i,j > λ
(3)

In this way, we can obtain the quantized residual matrix Q =

 q1,1 · · · q1,M
...

. . .
...

qN,1 · · · qN,M

, where each

column of Q is the quantized residual preference for the hypothesis, and each row of Q is the quantized
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residual preference for the data point. That is, the quantized residual preference for hypothesis h̄j

is the jth column of Q, i.e., qj = [q1,j, q2,j, · · · , qi,j, · · · , qN,j]
T .

Considering the impact of the inliers will be greater than the outliers for hypotheses, especially
when comparing two quantized residual preferences. The quantized residual weighted preference
similarity is defined by Equation (4), in which the more common elements between two quantized
residual preferences, the more similar they are, and the smaller the common quantized value (except 0),
the closer they are to a common model. A sample plot is presented in Figure 2 to show the effectiveness
of weighted preference similarity for comparing two hypotheses.

W(qi, qj) =
N

∑
t=1

ψ(qi,t, qj,t)

ψ(qi,t, qj,t) =

{
1/qi,t if qi,t == qj,t, qi,t 6= 0

0 else

(4)

(a) Initial inliers of the hypotheses (b) Quantized residual preference distance MDS of
the hypotheses

Figure 2. Hypotheses and their quantized residual preference distance (distance = 1/WS + 1) MDS.
(a) The initial k inliers with the kth minimum residuals for the three hypotheses. (b) The quantized
residual preference and the distance multidimensional scaling (MDS) points. Similar hypotheses
(hypothesis 1 and hypothesis 2) are closer in the distance MDS, while a different hypothesis
(hypothesis 3) is very far from hypothesis 1 and hypothesis 2.

The model selection process is actually a linkage clustering, which is aimed at clustering similar
hypotheses and selecting hypotheses close to the model in represent of each cluster. When conducting
linkage clustering, we iteratively merge the two hypotheses with the maximum similarity (minimum
weighted preference distance) and update the similarity matrix and clusters, until the maximum
similarity is less than a threshold. This threshold depends on the given valid quantization length. If the
two hypotheses have only one common item at the end of the valid quantization length, then the two
hypotheses are considered to be disrelated with high probability. Therefore, if the valid quantization
length is taken as 20, then according to Equation (4), the threshold should be 0.05. For the similarity
matrix updating, we preserve the similarity value of the hypothesis with the best quality (smaller
hypothesis cost) and set the similarity values of the other hypotheses to 0 to avoid repetitive clustering.
After the linkage clustering, models very different from each other are clustered into different classes,
and hypotheses with the minimum hypothesis cost are left to represent each cluster. As there will
also be some clusters consisting of bad hypotheses, we set a threshold(1% of the hypothesis number)
for the size of cluster to remove these clusters by taking advantage of the random sample consensus,
i.e., a good model will be more likely to be sampled repeatedly. The detailed model selection algorithm
is presented in Algorithm 1.
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Algorithm 1 ModelSelection

1: Calculate hypothesis cost for each hypothesis by Equation (1);
2: Calculate quantized residual preference for hypotheses by Equations (2) and (3);
3: Calculate the weighted preference similarity by Equation (4) between every two hypotheses,

and obtained similarity matrix;
4: Define each hypothesis as a cluster;
5: Merge the two cluster with maximum weighted preference similarity into one cluster;
6: Update the merged cluster with the quantized residual preference of smaller hypothesis,

and replace the cluster similarity, while set the similarity of the other cluster to 0;
7: Repeat from step 5, until the maximum weighted preference similarity is less ξ;
8: remove the clusters whose size is less than 0.01∗hypothesis number.

2.2. Inlier Segmentation

The model selection process usually makes it possible for us to find all the models in the data
set, except for the fact that the sampling is not sufficient. Meanwhile, through the model selection
process, we just obtain the model inlier sets with a fixed size and the hypothesis clusters, and most of
the time we need to obtain all the inliers of each model, so that we can perfectly separate the inliers
and outliers for each model. As a result, inlier segmentation is proposed to obtain all the inliers of each
model, under the circumstance that the parameters of each model are estimated. Similar to the model
selection algorithm, it also includes a random sampling process and a hierarchical clustering operation.
The difference is that the model selection algorithm randomly samples the sub-regions and clusters
the hypotheses to obtain multiple models, while the inlier segmentation algorithm randomly samples
the current inlier set and clusters each point to obtain all inliers belonging to each model.

When we obtain the exact model parameters, a direct and easy way to separate the inliers is to
set an inlier threshold to obtain the data points with residuals less than the threshold as the inliers.
However, most of the time, this direct method works poorly, in which only some of the inliers
can be separated. The exact true model parameters are very hard to find, and most of the time
the parameters we find are only approximate, so the inliers within the threshold make it difficult to fully
separate the inliers and outliers. In addition, when there is more than one model, one single threshold
will not be enough to separate all the models’ inliers. Although some scale estimators claim to estimate
the inlier scale, they have many limitations and require the noise distribution, which will usually
fail in a real data set, and they work poorly when the model is complicated (such as homography
matrix estimation and fundamental matrix estimation) and the data contain pseudo-outliers and noise.
In contrast, a clustering method, taking advantage of the consensus representation, can separate
the inliers and outliers without an inlier threshold or scale estimator. The use of the quantized residual
preference for the hypotheses is very robust and efficient for linkage clustering in the model selection
process to cluster similar hypotheses, and it can also be used to represent data points to separate
the inliers from the outliers. The flow chat of inlier segmentation is shown in Figure 3.

Figure 3. Inlier segmentation flow chart.
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For a better representation, we use the k points with minimum residuals of each selected model
by Algorithm 1, to generate hypotheses and make quantized residual preference for the data points.
We then conduct linkage clustering to generate only two clusters—inlier cluster and outlier cluster
for each selected model one by one. When conducting inlier and outlier clustering, an iterative
sampling and clustering framework is introduced to get a optimum result, which iteratively samples
the hypotheses from the inlier cluster and extract the quantized residual preference for the points
for inlier and outlier clustering, until the clustering result unchanged.

Given we get the selected models H̄ = {h̄1, h̄2, · · · , h̄j, · · · , h̄m} after model selection
in Algorithm 1, and the residual matrix R̄ = {r̄1, r̄2, · · · , r̄ j, · · · , r̄m} of all the selected models, where
r̄ j = [r̄1,j, r̄2,j, · · · , r̄i,j, · · · , r̄N,j]

T refers to the residuals of model h̄j to all the data points in X, N
is the data number, and m is the number of selected models. Then for each selected model we collect its
initial inlier set consisting of k points with minimum residuals. Since the proposed inlier segmentation
is actually to separate the inliers from the outliers for each selected model one by one, the following
will take model h̄j as example to further explain our method.

When collecting the initial inlier set of model h̄j, firstly the residuals r̄ j of model h̄j are sorted
in ascending order r̄ j = {r̄

τ
j
i ,j
|r̄

τ̄
j
1,j
≤ r̄

τ̄
j
2,j
≤ · · · ≤ r̄

τ̄
j
i ,j
≤ · · · ≤ r̄

τ̄
j
N ,j

, r̄
τ̄

j
i ,j
∈ r̄ j}. Then we collect

τ̄
j
k = [x

τ̄
j
1
, x

τ̄
j
2
, · · · , x

τ̄
j
k
] as the initial inlier set for selected model h̄j.

Then, several hypotheses will be generated through random sampling on initial inlier set τ̄
j
k,

which will be soon used to make quantized residual preference for the data points the same way
as the model selection process by Equations (2) and (3). As a consequence, more good hypotheses
close to the model h̄j will be used to produce the quantized residual preference for the data points,
and it will make the quantized residual preferences for the inliers to have more smaller quantized
values, and the quantized residual preferences for the outliers to have more bigger quantized values
(or 0), which will make it possible to separate inliers from the outliers for model h̄j. Supposing
we obtain the quantized residual preference matrix Q̄, where each row of Q̄ is the quantized residual
preference for the data point. That is, the quantized residual preference for data point xi is the ith
row of Q̄, i.e., q̄i = [q̄i,1, q̄i,2, · · · , q̄i,j, · · · , q̄i,m̄]. When comparing two quantized residual preferences q̄i
and q̄j, the distance measurement defined by Equation (5) is used. Figure 4 presents the MDS plot of
the quantized residual preference for the data points, from which we can see the inliers and outliers
are well separated.

W(qi, qj) =

1− ∑M
t=1 ϕ(qi,t ,qj,t)

max(ρ(qi),ρ(qj))
if max(ρ(qi), ρ(qj)) 6= 0

1 else

ϕ(qi,t, qj,t) =

{
1 if qi,t == qj,t, qi,t 6= 0

0 else

ρ(qi) =
M

∑
t=1

ϕ(qi,t, qi,t)

(5)
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(a) Model inliers (b) The MDS plot of the quantized
residual preference distance

Figure 4. The inliers and their corresponding quantized residual preference MDS plot. (a) The inliers
labeled with green triangles. (b) The corresponding quantized residual preference MDS plot and inliers
(from (a)) marked with green triangles and outliers with red squares. The quantization level θ is 500,
and the valid quantization length for preference λ is 20.

From Figure 4, we can see that the quantized residual preference for the points can separate
the inliers from the outliers easily. In addition, we then undertake linkage clustering with a fixed
cluster number of two to only cluster the inliers and outliers. To make the effect of the random
hypothesis sampling in the inlier set stable and ensure that it can easily reach convergence, an iterative
sampling and clustering framework is proposed to iteratively conduct the hypothesis sampling
and linkage clustering. Furthermore, in order to avoid non-convergence and instability of the sampling,
we use the inter-class variance (ICV) (Equation (6)) to measure the quality of the inlier cluster, i.e., good
inlier separation presents bigger inter-class variance. Please note that CI refers inlier cluster and CO
is outlier cluster, and r̄i represents the residual of xi to the model calculated from the inlier set CI
in Equation (6). The bigger the ICV value, the better the clustering result will be.

ICV =
card{Cin}

N
∗ (uin − u) +

card{Cout}
N

∗ (uout − u);

u =
1
N

N

∑
i=1

ri; uin =
1

card{Cin} ∑
xi∈Cin

r̄i;

uout =
1

card{Cout} ∑
xi∈Cout

r̄i;

(6)

Then the whole inlier segmentation process for model h̄j under iterative sampling and clustering
framework can be summarized. We first sample several hypotheses in the initial inlier set τ̄

j
k, and then

extract the quantized residual preference Q̄ and calculate the distance matrix for every two points. We
undertake linkage clustering with a fixed cluster number of two to cluster the inliers Cin and outliers
Cout , and then calculate the inter-class variance by Equation (6). We then replace the initial inlier set τ̄

j
k

with inliers Cin, and again conduct hypothesis sampling on the inlier set in turn, this way we iteratively
perform clustering then sampling, until the inlier set is unchanged or inter-class variance decreases.
The detailed algorithm is presented in Algorithm 2.
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Algorithm 2 InlierSegmentation

1: Calculate residuals for selected model h̄j;
2: Collect initial inlier set;
3: Generate hypotheses on inlier set, and Calculate residuals;
4: Calculate quantized residual preference for data points and preference distance between every

two data points;
5: Conduct linkage clustering to generate two clusters, take cluster more intersected with initial inlier

set as inlier set;
6: Calculate the inter-class variance ICV;
7: if The inlier cluster unchanged or the inter-class variance ICV decreases then
8: go to step 12;
9: else

10: Replace the initial inlier set with inlier set, and go back to step 3;
11: end if
12: Conduct step 1 to 11, until all the selected models are processed.

3. Experiment

In this section, we describe the experiments undertaken in multi-structure geometric model
fitting, including multi-homography estimation and multi-fundamental matrix estimation, which
are fundamental issues in image stitching [32] and visual localization [33]. Firstly, we describe
the model selection results, and then the inlier segmentation results are presented. Comparisons on
inlier segmentation with some of the state-of-the-art methods are made to present the characteristics of
the proposed method.

The AdelaideRMF [34] data set was used for the multi-homography and fundamental matrix
estimation. Some image pairs of the data set is shown in Figure 5. The data set contains matching
points in two uncalibrated images with gross outliers and the labels of the matching points
are manual-annotated. In the first case (plane segmentation) the (static) scene contains several planes,
each giving rise to a set of point correspondences described by a specific homography. The aim is to
segment different planes by fitting homographies to subsets of corresponding points. In the second
case (motion segmentation) the setup is similar, but the scene is not static, i.e., it contains several
objects moving independently each giving rise to a set of point correspondences described by a specific
fundamental matrix. The aim is to segment the different motions by fitting fundamental matrices
to subsets of corresponding points. In addition to the fitting preference images, we also use the overall
misclassification percentage (number of misclassified points divided by the number of all the points
in the data set) [35] to present the fitting performance when dealing with the multi-homography
and fundamental matrix estimation.

(a) Example image pair of homography case (b) Example image pair of fundamental case

Figure 5. Example image pairs of the AdelaideRMF data set.

3.1. Multi-Homography Matrix Estimation

In this part, we describe the estimation of the multi-homography matrix by the use of the proposed
method, and through the segmentation of the inliers belonging to the different homography models,
we can segment the different planes. By using the same data as [14], we are able to compare the results
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directly to PEARL, SA-RCM, J-linkage, and T-linkage. The misclassification accuracies in Table 1
for the above four methods were obtained from [14].

Table 1. Misclassification (%) for the multi-homography matrix estimation.

Methods PEARL J-Linkage T-Linkage SA-RCM Proposed

johnsona 4.02 5.07 4.02 5.90 5.09
johnsonb 18.18 18.33 18.33 17.95 14.18
ladysymon 5.49 9.25 5.06 7.17 1.69
neem 5.39 3.73 3.73 5.81 4.15
oldclassicswing 1.58 0.27 0.26 2.11 0.79
sene 0.80 0.84 0.40 0.80 0.40

As can be seen in Figure 6, the proposed method can detect almost all the models, and the
models are very close to the true models, except for the “johnsonb” data set. Five models are correctly
detected, and the other two models with a few inliers are missed. From Figure 7, it can be seen that
the proposed method can extract almost all the planes in the images, and the inlier points of the planes
can be clearly classified. Except for the “johnsonb” image, five out of seven planes are extracted, while
the other two planes with very fewer inliers are missed. Because the inliers are few in number and with
many outliers and noise, it is very hard to obtain a good sampling hypothesis in these two areas.
From the images, we can see that almost all the misclassified points are the points that are supposed
to be inliers but are divided into outliers for all the models, and the misclassification is a result of
the inliers not being fully extracted. Table 1 shows the misclassification results of the state-of-the-art
methods and the proposed method, where it can be seen that the proposed method obtains the lowest
misclassification result on the “johnsonb”, “ladysymon” and “sene” data sets, and the results on
the other three data sets are also very close to the lowest misclassification result.

(a) (b) (c)

(d) (e) (f)

Figure 6. Model selection results for multi-homography matrix estimation. (a) johnsona. (b) johnsonb.
(c) ladysymon. (d) neem. (e) oldclassicswing. (f) sene.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Results of the multi-homography matrix estimation of the proposed method. (a) johnsona.
(b) johnsonb. (c) ladysymon. (d) neem. (e) oldclassicswing. (f) sene.

The above experiments on each data set were undertaken iteratively 20 times, and then the result
with the minimum number of misclassified points was selected as the final result. The parameters
for the multi-homography matrix estimation are quite easy to set. For the hypothesis generation,
we set the minimum number of stable model inliers and the size of the sub-regions as k = 20,
the number of hypotheses randomly sampled from the sub-region as n = 50, and the number of

sub-regions m ≤
⌊

N
k

⌋
, where N is the number of points. In the model selection process (Algorithm 1),

the quantization level θ was set as 500, the valid quantization length for building the histogram
preference λ was set as 20, and the threshold δ to stop the linkage clustering was set to 0.05. In the
inlier segmentation process (Algorithm 2), θ and λ were the same as in the model selection process
(Algorithm 1), the cluster number Cn was set as 2, and the hypothesis number for sampling Hn was
set as 100. Most of the time, the parameters in the model selection process (Algorithm 1) and the inlier
segmentation process (Algorithm 2) do not need to be changed.

3.2. Multi-Fundamental Matrix Estimation

The proposed method was also used to estimate the multi-fundamental matrix in two-view images,
and through the classification of the inliers belonging to the different fundamental models, different
motions could be segmented. As in the multi-homography matrix estimation, the motion segmentation
accuracy is compared to PEARL, SA-RCM, J-linkage, and T-linkage, and the misclassification accuracies
in Table 2 for the above four methods were obtained from [14].

Table 2. Misclassification (%) for the mullti-fundamental matrix estimation.

Methods PEARL J-Linkage T-Linkage SA-RCM Proposed

biscuitbookbox 4.25 1.55 1.54 7.04 0
breadcartoychips 5.91 11.26 3.37 4.81 0.84
breadcubechips 4.78 3.04 0.86 7.85 0.87
breadtoycar 6.63 5.49 4.21 3.82 1.20
carchipscube 11.82 4.27 1.81 11.75 0
dinobooks 14.72 17.11 9.44 8.03 7.22
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The experiments on each data set for the multi-fundamental matrix estimation were undertaken
in the same way as the multi-homography matrix estimation experiments, i.e., the algorithm was
iteratively conducted 20 times on one data set, and then the result with the minimum number of
misclassified points was chosen as the final result.

From Figure 8, we can see that the proposed method performs quite well on the six images,
and the motion models for the six images are correctly detected, except for the “carchipscube” data
set, where the initial inlier set of the moving car contains two pseudo-outliers. Meanwhile, for the
inlier segmentation in Figure 9, all the motions can be extracted and segmented, with few misclassified
points, which can also be seen in the misclassification listed in Table 2. The proposed method performs
better than the other four methods on five out of six images, especially on the “biscuitbookbox”
and “carchipscube” data sets, where there are no misclassified points. The proposed method also
reaches quite a close misclassification result when compared to the lowest misclassification result
for the “breadcubechips” data set. From Figure 9, it can be seen that almost all the misclassified
points are the inliers that are classified as outliers to all the models, and there are very few points that
are classified as pseudo-outliers.

The parameters for the algorithm in these experiments needed a few changes when compared
to the parameters used in the multi-homography estimation experiments. The number of randomly
sampled hypotheses n needed to be increased for the larger size of MSS for the fundamental matrix
estimation (at least eight points are needed to estimate a fundamental matrix), so we set n = 80
for the multi-fundamental matrix estimation.

(a) (b) (c)

(d) (e) (f)

Figure 8. Model selection results for the multi-fundamental matrix estimation. (a) biscuitbookbox.
(b) breadcartoychips. (c) breadcubechips. (d) breadtoycar. (e) carchipscube. (f) dinobooks.



Sensors 2020, 20, 3806 13 of 17

(a) (b) (c)

(d) (e) (f)

Figure 9. Inlier segmentation results for the multi-fundamental matrix estimation. (a) biscuitbookbox.
(b) breadcartoychips. (c) breadcubechips. (d) breadtoycar. (e) carchipscube. (f) dinobooks.

3.3. Computational Time Analysis

To further compare the performance of the algorithms, the computational time of ours
in various scenarios is counted and compared with the T-Linkage method as the state-of-art.
However, the computational time and specific values of parameters in different scenarios have not
been given by the literature of the T-Linkage method, so we implemented the T-Linkage method
according to [14], achieved similar accuracy to [14] by adjusting the parameters and then counted
the calculation time. When comparing with the T-Linkage method in computational time, we found
that the it is closely related to the number of points and models, the ratio of outliers, and the value
of the thresholds. The detail results can be seen in Tables 3 and 4. Both methods run in MATLAB
and the environment of hardware is i7-9017, Core8 and 16G RAM.

Table 3. Computational time of T-Linkage and our method in each homography scene.

Scene Points Models Outlier
Rate (%)

Methods Number of
Samples

Computational
Times (ms)

johnsona 373 4 20.91 T-Linkage 2000 346

Ours 950 473

johnsonb 649 7 12.02 T-Linkage 4000 977

Ours 1650 953

ladysymon 237 2 32.49 T-Linkage 2000 249

Ours 600 284

neem 241 3 36.51 T-Linkage 2000 281

Ours 600 305

oldclassicswing 379 2 32.45 T-Linkage 2000 322

Ours 950 387

sene 250 2 47.2 T-Linkage 2000 293

Ours 650 314



Sensors 2020, 20, 3806 14 of 17

Table 4. Computational time of T-Linkage and our method in each fundamental scene.

Scene Points Models Outlier
Rate (%)

Methods Number of
Samples

Computational
Times (ms)

biscuitbookbox 259 3 37.45 T-Linkage 2000 305

Ours 1040 463

breadcartoychip 237 4 34.6 T-Linkage 2000 287

Ours 960 431

breadcubechips 230 3 35.22 T-Linkage 2000 284

Ours 960 405

breadtoycar 166 3 33.73 T-Linkage 2000 213

Ours 720 316

carchipscube 165 3 36.36 T-Linkage 2000 204

Ours 720 313

dinobooks 360 3 43.06 T-Linkage 2000 473

Ours 1440 549

From the above two tables, it can be found that in most cases, T-Linkage method takes less
time than ours. This is mainly because that our method performs random sampling and linkage
clustering in both two stages, and uses an alternate sampling and clustering strategy in the inlier
segmentation stage to eliminate the interference from outliers, which will increase the computational
time. However, our algorithm basically does not require parameter adjustment in various scenarios,
which can save a lot of time for parameter adjustment and improve the applicability of the algorithm.

3.4. Computational Complexity Analysis

The computational complexity of the multi-model fitting algorithms mainly exists in the need
for a large number of sampling and the calculation of the similarity between every two points
for clustering. Since the value of each parameter is not given in the literature of the T-Linkage
method, it is difficult to quantitatively evaluate the computational complexity, but we can give
a qualitative analysis.

When calculating the similarity value, a continuous exponential function is used by T-Linkage
method to describe the distance from the point to the model, mapping the residual between 0
and 1. However, the quantized residual is used by our algorithm to describe the distance between
the point and the model. It only needs to find the maximum and minimum residuals and divide
the remaining residuals according to the quantization level, and then take the valid quantization length
for subsequent processing. Therefore, the computational complexity here is significantly lower than
the T-Linkage method.

However, in terms of sampling, our two-stage method is significantly more complex than
T-Linkage method. In the model selection stage, we randomly sample in the sub-region of the scene,
generate a large number of hypotheses and cluster the hypothesis models to get all the valid models.
Next, in the inlier segmentation stage, we randomly sample the current inlier set of each model,
generate a large number of hypotheses, and cluster the points to obtain all the inliers of each model.
Unlike our method, after random sampling and obtaining a large number of hypotheses, the T-Linkage
method only clusters the points which needs to adjust the threshold of inliers for each application case.

In general, our two-stage method has less computational complexity when calculating similarity
and greater computational complexity in the number of random samples. Since random sampling
is required in both stages, the computational complexity of our method is greater than T-Linkage
method in total.
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4. Conclusions

In this paper, we have proposed a robust two-stage multi-model fitting method, which is composed of
model selection and inlier segmentation. During the model selection, the quantized residual preference
is extracted for the hypothesis linkage clustering to obtain the main structure models in the data.
The inlier segmentation process is then performed as an iterative sampling and clustering process using
the quantized residual preference of the points. The experimental results show that the model selection
method can successfully detect models that are very close to the true models. Furthermore, the inlier
segmentation method can separate the inliers from the outliers for the different models, and the
proposed method outperforms the state-of-the-art methods in multi-structure geometric model fitting.
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