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Abstract: Cognitive radio networks (CRNs), which allow secondary users (SUs) to dynamically
access a network without affecting the primary users (PUs), have been widely regarded as an effective
approach to mitigate the shortage of spectrum resources and the inefficiency of spectrum utilization.
However, the SUs suffer from frequent spectrum handoffs and transmission limitations. In this paper,
considering the quality of service (QoS) requirements of PUs and SUs, we propose a novel dynamic
flow-adaptive spectrum leasing with channel aggregation. Specifically, we design an adaptive leasing
algorithm, which adaptively adjusts the portion of leased channels based on the number of ongoing
and buffered PU flows. Furthermore, in the leased spectrum band, the SU flows with access priority
employ dynamic spectrum access of channel aggregation, which enables one flow to occupy multiple
channels for transmission in a dynamically changing environment. For performance evaluation, the
continuous time Markov chain (CTMC) is developed to model our proposed strategy and conduct
theoretical analyses. Numerical results demonstrate that the proposed strategy effectively improves
the spectrum utilization and network capacity, while significantly reducing the forced termination
probability and blocking probability of SU flows.

Keywords: cognitive radio networks; flow-adaptive spectrum leasing; channel aggregating

1. Introduction

With the rapid development of wireless communication and the explosive growth of mobile
service demand, the under-utilization of the limited wireless spectrum resources has become
particularly prominent [1,2]. Cognitive radio networks (CRNs) have been regarded as a promising
technology to improve spectrum utilization and alleviate the shortage of spectrum resources [3], where
secondary users (SUs) adaptively access the spectrum without affecting transmissions of the primary
users (PUs) in a dynamically changing environment [4]. CRNs achieve more flexible and effective
spectrum resource allocation through dynamic spectrum access [5].

However, the conventional CRNs always assure the access priority of the PUs, whereas the quality
of service (QoS) of the SUs is usually overlooked [4]. Specifically, in overlay CRNs [6], SUs suffer from
frequent spectrum handover and forced termination due to PUs’ activities [3]. In underlay CRNs [7],
SUs are subject to strict transmission restrictions to avoid interference with PUs [8]. Guaranteeing the
QoS for the SU has always been a challenging task [9,10].

The exclusive channel allocation is an effective way to solve the performance degradation of
SUs [11,12]. Among existing exclusive channel allocation techniques, spectrum leasing (SL) is an
effective approach to improve the SUs’ QoS [13,14], where the PUs lease a part of the licensed spectrum
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resources to the SUs and gain the appropriate remuneration [15]. Unlike the spectrum access in
conventional CRNs, SUs have access priority in the leased spectrum band of leased cognitive radio
network (L-CRN). Only in the unleased spectrum band (N-CRN) do the PUs still have the priority of
channel access. SL is an effective way to alleviate the degradation of SUs’ performance due to forced
termination and transmission restrictions [16].

The cooperative SL schemes [11,17–20] consider that multiple SUs lease a part of a licensed
spectrum band from one PU. Meanwhile, the literature [15,16,21–23] analyzes the scenario where
multiple PUs provide leased spectrum resources to SUs. In [23], the fixed spectrum leasing (FSL)
scheme between PU and SU is investigated. The scope of leased channels in FSL does not change,
and such presets degenerate the spectrum utilization in a dynamically changing environment [9].
Different dynamic spectrum leasing (DSL) strategies [24–26] have been proposed in the literature.
A traffic-adaptive spectrum leasing (TASL) scheme is proposed in [9]. The TASL adjusts the time
length of each leasing period according to the amount of the real-time generation secondary packets.
Furthermore, a three-dimensional CTMC model is established for the proposed TASL. A three-tier
spectrum sharing framework was designed in [24], which allows the network operators to dynamically
make two choices: one is to freely access the spectrum of uncertain channel quality, and the other is to
lease the spectrum of better channel quality. However, those existing works on DSL in CRNs share
some common assumptions. First, the number of channels allocated by each SU is fixed in L-CRN,
which usually fails to adapt the real-time demand of heterogeneous users [4]. Second, those strategies
adopt exclusive access, which allows PUs to access only unleased spectrum and SUs to access only
leased band. The design is not applicable when PUs or SUs demand surges. It is still a research
challenge to design spectrum leasing strategies adapted to the dynamic changing environment [27].

In this paper, we propose a novel flow-adaptive spectrum leasing with channel aggregation in
multichannel CRNs. Specifically, the proposed SL strategy takes into account the real-time demand
changes of users in a dynamic environment, and adaptively adjusts the proportion of leased channels
based on the number of ongoing and buffered PU flows. In L-CRN, the flexible spectrum access of SU
adopts dynamic channel aggregation, which enables flows to occupy multiple adjacent channels or
non-adjacent spectrum holes. Moreover, Energy efficiency is a very important metric in CRNs [28,29].
This work does not include energy efficiency, which is planned as future work. In summary, the main
contributions of the paper are outlined as follows:

• We propose a channel adjustment algorithm for dynamic spectrum leasing, which adaptively
adjusts the proportion of leased spectrum according to the amounts of ongoing and buffered
PU flows.

• We adopt the dynamic spectrum access strategy with channel aggregation for the SU flows in the
leased spectrum band, which enables each SU flow to occupy multiple spectrum holes based on
the available spectrum resource and SU requirements.

• We employ both priority access and opportunistic access in L-CRN and N-CRN, in order to
provide more flexible channel allocation when the demand of flow surges.

• We develop CTMC to model our proposed strategy and conduct theoretical analyses.
The performance for the system is appraised by different metrics. Numerical results demonstrate
that the proposed DFSL effectively enhances the network capacity, and improves the forced
termination probability and blocking probability of SU flows.

The remainder of this paper is organized as follows. The network scenario is introduced in
Section 2. In Section 3 the dynamic spectrum leasing strategy in CRNs and price function are described,
followed by Section 4 in which the dynamic spectrum access with channel aggregation is presented.
For analyzing the system performance, the continuous time Markov chain (CTMC) model is established
in Section 5. In Section 6, the numerical results are explained; thereafter we conclude the paper in
Section 7.
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2. Network Scenario

We consider the infrastructure of a centralized cognitive radio network which consists of a central
base station, and multiple PUs and SUs, as illustrated in Figure 1. The central base station plays
a role as a coordinator, for example, to obtain the flow information, perform spectrum leasing and
allocate spectrum resources. As shown in Figure 2, the licensed spectrum in the CRN is divided into
M ∈ Z+ channels, where Z+ represents the set of positive integers. The PUs are authorized to access
these channels, and can lease a part of licensed channels to the SUs. The leased frequency band is
called the leased cognitive radio network (L-CRN). Similarly, the remaining unleased channels are
denoted as N-CRN. In the proposed strategy, the number of leased channels, which is denoted by L,
is adaptively adjusted according to the transmission requirements of the PUs, and the value range is
L ≤ Lmax < M, where Lmax ∈ Z+ represents the maximum number of channels that the central base
station can allocate to the L-CRN.

Figure 1. Illustration of the centralized CRN scenario.

Figure 2. Channel assignment in the cognitive radio network (CRN).

When spectrum resources are scarce, the flows can be buffered in the queues; the maximum
capacity of the PU queue and the SU queue are denoted by QPU and QSU , respectively. It is
worth noting that an important characteristic of our priority queues is that each queue only holds
homogeneous services. The flows in the queues follow the first come first served (FCFS) rule.

The traffic flows are sent by the users and can be divided into a series of data packets in the
medium access control layer [30,31]. We model traffic at the flow level (at the transportation layer,
such as TCP/UDP flows) since modeling at this level captures the dynamics related to the arrival and
departure of flows [32]. In our analysis, we assume that the flow arrivals of PUs and SUs follow Poisson
processes [30] with rates λP and λS, respectively. The service times are exponentially distributed with
service rates µP and µS in one channel. The channels are homogeneous for flows, and the guard band
between the channels is ignored. Therefore, the service rate of i aggregated channels is iµP.

Compared to the duration between consecutive service events, the time for channel sensing or
spectrum handover is very short, which is ignored in the analysis [30]. It is supposed that the spectrum
sensing carried out by SUs has sufficient accuracy and the effect of sensing failure at the flow level is
ignorable [33]. It is assumed that flows are independent of each other, and the strategy works with
spectrum adaptation. Once accepted, the flow level service will not be terminated due to channel
variations with the help of advanced physical and the medium access control layer techniques [30].
Given the above assumptions, we regard the performance obtained from the theoretical analyses as
ideal compared with the results based on more realistic conditions.

3. Dynamic Adaptive Leased Spectrum Allocation and Price Function

We propose a dynamic flow-adaptive leased spectrum strategy (DFSL), which is distinct from
the previous spectrum leasing schemes where the number of leased channels is fixed. DFSL not only
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meets the spectrum requirements of PUs, but also leases as many channels as possible to SUs, in order
to improve spectrum utilization and users’ QoS.

3.1. Dynamic Adaptive Leased Channel Adjustment

The key of DFSL in multichannel CRNs is the flexible and variable number of leased channels.
In the proposed DFSL algorithm, the number of leased channels adaptively changes according to the
number of ongoing and buffered PU flows in the CRN. It means that L is not adjusted according to a
fixed time point or period. On the contrary, the DFSL algorithm is only executed upon the demand of
PU flow changes, such as PU flow arrival or departure events.

Algorithm 1 describes the specific process of adjusting the number of leased channels according
to requirements of PU flows. In the algorithm, the requirements of PU flows in the CRN are expressed
in four levels: high, medium, low and ultra-low. In order to distinguish these levels, the algorithm
sets the corresponding high threshold, middle threshold and low threshold, which are denoted by θh,
θm and θl , respectively, and the value ranges of the thresholds are 1 > θh > θm > θl > 0. When the
proportion, which is the ratio of the number of ongoing and buffered PU flows to the total number of
channels, is within [1, θh], the corresponding proportion is at a higher level. When the proportion is
within [θh, θm], the proportion is intermediate. If the proportion is within [θm, θl ], the proportion is at
a low level. Otherwise, the proportion is at an ultra-low level.

Algorithm 1 Flow-adaptive leased channel adjustment algorithm.
Input: ε, η, φ, M, Lmax,
Input: h, m, l : 1 > h > m > l > 0 ;
Input: θh, θm, θl : 1 > θh > θm > θl > 0.
Output: L.

1: if ε+η+φ
M ≤ θl then . The proportion of PU flows is at the ultra-low level.

2: L1 = Lmax
3: if L1 + ε ≤ M then
4: L = L1
5: else
6: L = M− ε

7: if θl <
ε+η+φ

M ≤ θm then . The proportion of PU flows is at the low level.
8: L1 = bh · Lmaxc
9: if L1 + ε ≤ M then

10: L = L1
11: else
12: L = M− ε

13: if θm < ε+η+φ
M ≤ θh then . The proportion of PU flows is at the medium level.

14: L1 = bm · Lmaxc
15: if L1 + ε ≤ M then
16: L = L1
17: else
18: L = M− ε

19: if θh < ε+η+φ
M ≤ 1 then . The proportion of PU flows is at the high level.

20: L1 = blLmaxc
21: if L1 + ε ≤ M then
22: L = L1
23: else
24: L = M− ε

25: return L

The higher the proportion level, the more the PU flows are transmitted and buffered in the CRN,
so the fewer the channels that can be leased. The maximum number of leased channels is denoted
by Lmax. When the spectrum resource is sufficient, the numbers of leased channels corresponding to
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high, medium, low and ultra-low levels are l · Lmax, m · Lmax, h · Lmax and Lmax, respectively, where
l, m, h(0 < l < m < h < 1) are the three parameters. In Algorithm 1, ε represents the number of the
ongoing PU flows in the unleased channel. η is the number of the ongoing PU flows in the leased
spectrum band. Denote φ as the number of the buffering PU flows in queue. M represents the total
number of channels in CRN. L is the number of leased channels for SU. As illustrated in Algorithm 1,
the number of adaptive leased channels is limited to Lmax. The calculation of Lmax is described in the
following model. When channel resources are scarce, in order to guarantee the QoS requirements of
the PUs, the number of leased channels depends on the total number of channels and the number of
PU flows in the N-CRN.

When the number of PU flows in the system changes, the flow-adaptive leased channel
algorithm is performed to determine L. Fortunately the algorithmic complexity of DFSL is very
low, and the increase of the number of users and channels will not affect the calculation efficiency.
However, the increases of arrival rate and service rate of PU flows will shorten the time interval of
implementing the algorithm.

3.2. Price Function

The price function of the leased channels is analyzed in this subsection. To stimulate SL
from the PU’s perspective, there must be adequate remuneration from SU for the leased channels.
Therefore, two aspects are taken into account in the design of the pricing scheme. On the one hand,
the SL price should be ascending as the number of leased channels increases. On the other hand,
with the improvement of the SUs’ QoS, the leasing price must be correspondingly increased [34].

Therefore, the price function is expressed as P = aLb, where L represents the average number of leased

channels during the spectrum lease period. In this study, L is calculated as L = ∑
X∈S

V
∑

i=1
jilr(X), and

0 ≤ L ≤ Lmax.
a and b denote the SUs’ QoS in the aspects of PSU

B and PSU
F respectively. a and b are non-negative

values which are expressed as follows, where α is a scaler for normalization.

a = α(1− PSU
B ), (1)

b =

{
1 + PSU

F L < 1

2− PSU
F L ≥ 1

, (2)

We choose PSU
F to be the exponential ingredient on account of the fact that PSU

F has a greater
impact on users’ QoS than PSU

B [35]. Thus, we define the price function as follows:

P = α(1− PSU
B )( ∑

X∈S

V

∑
i=1

jilr(X))b, (3)

From (2) and (3), we can conclude that the leasing reward becomes a higher value when the
number of leased channels increases or PSU

B and PSU
F decrease, and vice versa.

4. Dynamic Spectrum Access with Channel Aggregation

In [36], dynamic channel aggregation (DCA) strategies with spectrum adaptation in cognitive
radio networks are proposed. However, the spectrum leasing is not taken into account in the design
of DCA, which makes it difficult to guarantee SUs’ QoS. The proposed DFSL extends [36] in the
adaptive SL and dynamic spectrum access. The DFSL employs a dynamic access mode that combines
priority access and opportunistic access. In this way, PU flows can preferentially access N-CRN and
opportunistically access L-CRN. Correspondingly, SU flows have the priority over the leased channels
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and can opportunistically access the unlease spectrum. Each PU flow only occupies one channel.
The situation of the SU flows is different. The SU flow adopts channel aggregation with spectrum
adaptation [37]. On one hand, when the PU appears on the unleased channel occupied by the SU flow,
the ongoing SU flow can jump to another idle channel. On the other hand, the number of aggregated
channels for an ongoing SU flow can be adaptively changed according to the number of occupied
channels [38].

Different spectrum access strategies in CRNs have been proposed in the literature. Among them,
ref. [36] conducted the analysis of the static access strategy, dynamic spectrum access without channel
aggregation, the dynamic fully adjustable strategy and the dynamic partially adjustable strategy.
The numerical results demonstrate that the dynamic fully adjustable strategy (a, W, V) has significant
advantages in higher capacity and lower forced termination probability, where W and V are the lower
limit and the upper limit of aggregation channels for SU flows, respectively. It is also pointed out in [36]
that reducing the lower limit or increasing the upper limit can be used to increase the system capacity,
and the channel splitting technique is too complicated [30]. Therefore, the proposed dynamic channel
access strategy in this paper sets the lower limit of channel aggregation to the smallest positive integer.
Moreover, expanding on the dynamic fully adjustable (a, W, V), we propose the waiting queue for the
would-be-blocked flows, and QPU and QSU are the maximum capacities of buffered PU flows and SU
flows, respectively. In the next subsections, the process of flow arrival and departure is introduced.

4.1. PU Arrivals

First of all, the flow-adaptive leased channel algorithm is performed to determine L when a new
PU flow arrives. The channel aggregation and spectrum adaptation are not enabled for PUs. In other
words, each PU flow always occupies one channel in the system. Because of the spectrum adaptation
for SU traffic mentioned in Section 2, if the number of idle channels in the N-CRN is larger than or equal
to one when a new PU flow arrives, the flow starts to transmit and has no impact on the adaptive SUs’
traffic. If there is no idle channel in the N-CRN, the central base station can only forcibly interrupt one
ongoing SU flow in the N-CRN for the newly arrived PU flow. If all the unleased channels are already
occupied by the PU flows and there are idle leased channels in the L-CRN, the new PU flow traffic can
opportunistically access the leased channel. Otherwise, the newly arrived PU flow is buffered in the
queue for PU flows. If the queue for PU flows is full, the newly arrived PU flow only can be blocked.
The procedure when a new PU flow arrives is illustrated in Figure 3. For simplicity and clarity of
expression, in the figures, PU flow and SU flow are denoted by PU and SU, respectively.

4.2. SU Arrivals

Differently from PU flow, the SU flow can aggregate multiple channels or occupy one channel
for transmission according to channel availability. When a new SU flow arrivals and there is at least
one idle channel in the L-CRN, the new SU flow starts transmission. If there is no idle channel in the
L-CRN, but there are SU flows in the L-CRN with the number of aggregated channels exceeding 1,
the ongoing SU flow with the largest number of aggregated channels donates a channel for the new
SU flow. If the number of occupied channels for all SU flows in the L-CRN is 1, and there is at least one
PU flow in L-CRN, one of PU flows in the leased spectrum band has to be terminated for the new SU
flow. If there are idle channels after all the SU flows have access to the network, the ongoing SU flows
in L-CRN can aggregate multiple channels until they reach the upper limit value V. If the number of
occupied channels for all SU flows in the L-CRN is 1, and there is no idle channel, the new SU flow can
access the N-CRN if it is available. Note that the number of unleased channels occupied by the SU
flow is fixed as 1, because the SU flow in the N-CRN is at risk of being interrupted by the new PU flow.
When there is no idle and available channel, the new SU flow can only be buffered in the queue for SU
flows. In the worst case, if there are not enough buffer rooms for SU flow, the newly arrived SU flow
only can be blocked. The procedure when a SU flow arrives is illustrated in Figure 4.
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Figure 3. The procedure when a new primary user (PU) arrives.

Figure 4. The procedure when a new secondary user (SU) arrives.

4.3. PU Departs

First of all, when a PU flow completes the transmission and departs the network, the flow-adaptive
leased channel algorithms are used to determine L. The departure of PU flow in the N-CRN vacates an
unleased channel. If there is an ongoing PU flow occupying the leased channel, the central base station
hands over one PU flow from the leased channel to the unleased channel. If there is no PU flow in
the L-CRN, a waiting PU flow in the queue accesses the unleased channel. Otherwise, the vacated
unleased channel is allocated to the buffered SU in the queue. If there is no buffered flow, the unleased
channel only can be temporarily idle.

If a PU flow departs from L-CRN and vacates an unleased channel, it means that there is no
buffered SU flow in the queue. The vacated leased channel is allocated to the PU flow buffered in
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the queue. Otherwise, the vacated leased channel is idle. The procedure when a PU flow departs is
illustrated in Figure 5.

Figure 5. The procedure when a PU departs.

4.4. SU Departs

When an SU flow in the L-CRN departs, a leased channel is vacated. If there is a SU flow in the
queue, the buffered SU flow accesses the vacant leased channel. On the other hand, an ongoing SU
flow in the N-CRN is handed over from the unleased channel to the L-CRN. If none of these conditions
exist, the vacated channel is allocated to a buffered PU flow in the queue. Otherwise the leased channel
is temporarily idle.

When a SU flow in N-CRN completes the transmission and departs from the network, meaning that
there is no buffered PU flow at the time, then a buffered SU flow accesses the N-CRN. Otherwise, the
vacated unleased channel is temporarily idle. The procedure when a SU flow departs is illustrated in
Figure 6.

Figure 6. The procedure when a SU departs.
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5. CTMC Model and Analysis

5.1. CTMC Model for DFSL

In this section, we establish CTMC to model the dynamic flow-adaptive spectrum leasing
strategy with channel aggregation in multichannel CRNs. Let X represent the general state,
and (X = yn, jn, yl , j1l , ..., jil , ..., jVl , yq, jq), where yn and yl represent the numbers of ongoing PU flow in
the unleased spectrum band and the leased channels, respectively. Similarly, jn is the number of SU
flows accessed in the unleased spectrum band, and jil denotes the number of ongoing SU flows with i
aggregated channels in the L-CRN. yq and jq represent the number of buffered PU flows and SU flows
in the queue, and the capacity of the queues for PU flows and the queue for SU flows are QPU and
QSU , respectively. For any state X, the total number of occupied channels in the unleased spectrum
band and the leased channels are expressed as bn(X) and bl(X), respectively. According to the CTMC,

we have bn(X) = yn + jn and bl(X) = yl +
V
∑

i=1
jil . The feasible state set of the system is represented as S,

and S = {X|yn, jn, yl , j1l , ..., jil , ..., jVl , yq, jq ≥ 0; yn + jn < M− L; yl +
V
∑

i=1
jil ≤ L; yq ≤ QPU ; jq ≤ QSU .

As mentioned Section 2, the flow arrivals of PUs and SUs are assumed to follow Poisson processes
with rates λP and λS, respectively. The service times are exponentially distributed with service rates
µP and µS in one channel, and the service rate of i aggregated channels is iµP. In Algorithm 1,
for assuring the QoS requirements of the PU flows in the CRN, the number of dynamically leased
channel L is limited to Lmax. The maximum number of unleased channels should not be less than the
average expected required by the PU flow, which is expressed as M− Lmax ≤ dλP/µPe. Therefore,
Lmax = dM− λP/µPe in the proposed DFSL strategy.

The transition rates in a CTMC are defined to be conditioned only on the current state of the
process, and the exponential distribution has a memoryless property. Therefore, the procedures when
the PU flows arrive/depart in the system are of birth-death process (BDP). In the BDP, the states
represent the number of ongoing PU flows in the system. The state transitions have two types;
namely, “births” and “deaths”. When birth happens, the number increases by one. On the contrary,
when “death” happens, the number decreases by one [38]. The transition rates are indicated in the
Figure 7. The procedures when the SU flows arrive/depart can be derived in a similar way. Details of
the transitions of DFSL upon a PU flow arrival, a PU flow departure, a SU flow arrival and a SU flow
departure can be found in Tables 1–4, respectively.

5.2. CTMC Performance Analysis

In the CTMC performance analysis for DFSL, the stability probability of the state X is represented
by r(X), where X ∈ S. pαβ denotes the state transition rate from one feasible state α to another
state β, and 0 ≤ pαβ ≤ 1. According to the state transitions presented in Tables 1–4, transition rate
matrix Q can be established, with each element representing the corresponding transition rate. By the
normalization equation and global balance equation of transition rate matrix Q, we can calculate the
steady state probability r(X) of the Markov model as follows

 rQ = 0
∑

x∈S
r(x) = 1 (4)

Once the r(X) are decided from Equation (4), the performance for the system could be appraised
by different metrics. Then, we present the derivations of mathematical expressions in terms of multiple
performance metrics.
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5.2.1. Spectrum Utilization

In our model and analysis, the ratio, which is the average number of occupied channels for the
feasible state over the total number of channels in the CRN, reflects the spectrum utilization of the
system [32]. Let UCRN be the spectrum utilization; then we obtain that

UCRN = ∑
X∈S

b(X)

M
r(X)

= ∑
X∈S

bn(X) + bl(X)

M
r(X)

= ∑
X∈S

yn + jn + yl +
V
∑

i=1
jil

M
r(X).

(5)

Figure 7. SU network capacity versus λP.

Table 1. Transitions of DFSL when a PU arrives.

Event Destination State Transition Rate Conditions

PU arrival. There is a idle
channel in N-CRN. (yn+1, jn, yl , j1l , ..., jil , ..., jVl , yq, jq) λP

bn(X) < M− L,
θl <

ε+η+φ
M ≤ θm

PU arrival. There is no idle
channel in N-CRN. A SU in
N-CRN is forced terminated.

(yn+1, jn − 1, yl , j1l , ..., jil , ..., jVl , yq, jq) λP

bn(X) = M− L,
jn > 0,
bl(X) = L

PU arrival. There is no idle
channel and SU in N-CRN.
New PU accesses in L-CRN.

(yn, jn, yl+1, j1l , ..., jil , ..., jVl , yq, jq) λP
bn(X) = M− L,
jn = 0, bl(X) < L

PU arrival. New PU is buffered
in queue. (yn, jn, yl , j1l , ..., jil , ..., jVl , yq+1, jq) λP

bn(X) = M− L,
jn = 0, bl(X) = L,
yq < QPU

PU arrival. New PU is blocked. (yn, jn, yl , j1l , ..., jil , ..., jVl , yq, jq) λP

bn(X) = M− L,
jn = 0, bl(X) = L,
yq = QPU

Table 2. Transitions of DFSL when a PU departs.

Event Destination State Conditions

PU in N-CRN depart. (yn − 1, jn, yl , j1l , ..., jil , ..., jVl , yq, jq)
jq = 0 or bl(X) < L;
yq = 0

PU in N-CRN depart.
A PU in queue accesses. (yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq) yq > 0

PU in N-CRN depart. A ongoing
PU handover from L-CRN to N-CRN. (yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq)

jq = 0, yl > 0,
yq = 0

PU in N-CRN depart.
A SU in queue accesses. (yn − 1, jn, yl , j1l , ..., jil , ..., jVl , yq, jq − 1)

jq > 0; yl = 0;
bl(X) = L; yq = 0.

PU in L-CRN depart. (yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq − 1) jq = 0; yq = 0
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Table 3. Transitions of DFSL when a SU arrives.

Event Destination State Transition Rate Conditions

SU arrival. There is a
idle channel in L-CRN. (yn, jn, yl , j1l , ..., jil + 1, ..., jVl , yq, jq − 1) λS bl(X) < L; jq = 0

SU arrival. There is no
idle channel in L-CRN.
A aggregating SU donates
a channel for new SU.

(yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq) λS

bl(X) = L;
yl > 0; jq=0;
bn(X) = M− L;
m = max{i|jil > 0,
1 ≤ i ≤ V}

SU arrival. There is no
available channel in
L-CRN. A PU in L-CRN
is forced terminated.

(yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq) λS

bl(X) = L;
yl > 0; jq=0;
bn(X) = M− L

SU arrival. There is no
available channel and PU
in L-CRN. New SU
accesses in N-CRN.

(yn − 1, jn, yl , j1l , ..., jil , ..., jVl , yq, jq − 1) λS

bl(X) = L;
yl = 0; jq=0;
bn(X) < M− L

SU arrival. New SU is
buffered in queue. (yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq − 1) λS

bl(X) = L;
yl = 0;
bn(X) = M− L;
jq < QSU

SU arrival. New SU
is blocked. (yn, jn, yl − 1, j1l , ..., jil , ..., jVl , yq, jq − 1) λS

bl(X) = L;
yl = 0;
bn(X) = M− L;
jq = QSU

Table 4. Transitions of DFSL when a SU departs.

Event Destination State Conditions

SU depart. There is a idle channel
in L-CRN. (yn, jn, yl , j1l , ..., jil − 1, ..., jVl , yq, jq)

jq = 0; yq = 0;
jn = 0

SU depart. There is no idle channel
in L-CRN. A aggregating SU donates
a channel for new SU.

(yn, jn, yl , j1l , ..., jil − 1, ..., jVl , yq, jq − 1) jq > 0

SU depart. There is no available
channel in L-CRN. A PU in
L-CRN is forced terminated.

(yn, jn − 1, yl , j1l , ..., jil − 1, ..., jVl , yq, jq) jq = 0; jn > 0

SU depart. There is no available
channel and PU in L-CRN. New
SU accesses in N-CRN.

(yn, jn, yl , j1l , ..., jil − 1, ..., jr+i
l − 1,

..., jVl , yq, jq)

jn = 0; jq = 0;
r = min{i|jil > 0,
1 ≤ i < V}

SU depart. New SU is buffered
in queue. (yn, jn − 1, yl , j1l , ..., jil , ..., jVl , yq, jq)

jq = 0 or
bl(X) < L

SU depart. New SU is blocked. (yn, jn, yl , j1l , ..., jil , ..., jVl , yq, jq − 1) jq > 0; bl(X) = L

5.2.2. Network Capacity

The network capacity represents the average number of finished flows per time unit. It is expressed
by summing up the probability of the stationary of the states and the flow service rate. Denote ρP
and ρS as the capacity of primary network and the capacity of secondary network, respectively.
We have that,

ρP = ∑
X∈S

(yn + yl)µPr(X), (6)
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ρS = ∑
X∈S

(jn +
V

∑
i=1

jil)µSr(X). (7)

5.2.3. Blocking Probability

The blocking probability represents the probability that the new flow can only be blocked or
dropped when there are not enough available channels in the system. The PU flows can preferentially
access N-CRN and opportunistically access L-CRN. So, the PU flow will be blocked only when the
following conditions occur at the same time. There is no idle channel in CRN; no ongoing SU flow
exists in N-CRN; and the queue for PU flows is saturated. Consequently, the blocking probability of
PU flow, PPU

B , can be expressed as

PPU
B = ∑

X∈S;b(X)=M;
jn=0;yq=QPU

r(X). (8)

SUs, which lease a part of licensed channels, can preferentially access to the leased channels and
opportunistically access the unleased spectrum band. Therefore, the new SU flow will be blocked only
if (a) there is no available channel and no aggregation SU flow in CRN, (b) no ongoing PU flow exists
in L-CRN and (c) there is no waiting room in the queue for SU flows. The blocking probability of SU
flow, PSU

B , is obtained as

PSU
B = ∑

X∈S;jq=QSU ;yl=0;
b(X)=M;∀i>1,jil=0.

r(X). (9)

5.2.4. Forced Termination Probability

The forced termination probability refers to the probability that the ongoing flow is forced to be
interrupted because of the arrival of the other flows with high access priority. In our proposed DFSL
strategy, the PU flow, which opportunistically accesses L-CRN, may be interrupted by the new SU
flow, when there is no available channel. Let PPU

F denote the forced termination probability of PU flow,
which is calculated as follows,

PPU
F = ∑

X∈S;yn>0;
M=b(X).

yl
L

λS

(1− PPU
B )λP

r(X). (10)

Differently from other spectrum access schemes in CRNs, only the ongoing SU flows in the
N-CRN have the risk of being forcibly interrupted. The forced termination probability of the SU flows
is represented by PSU

F ; then we obtain that

PSU
F = ∑

X∈S;jn>0;
b(X)=M.

jn
(M− L)

λp

(1− PSU
B )λS

r(X). (11)

6. Performance Evaluations

In this section, the simulation and numerical results are presented to evaluate the performance of
the DFSL with channel aggregating. According to [32], we assume a CRN with six channels in the
licensed spectrum; i.e., M = 6. The arrival rates and service rates for flows are set as λP = 2, λS = 4,
µP = 1 and µS = 1. The capacities of the queue for PU flows and SU flows are QSU = 2 and QPU = 2,
respectively. The default values for adaptive leased channel adjustment are configured as l = 0.3,
m = 0.6, h = 0.8, θl = 0.25, θl = 0.5 and θm = 0.75.
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As we model the system performance at flow level, following the common practice of flow-level
analysis with CTMC, we address the stochastic behavior of traffic flows using Poisson process for
arrivals and exponential distribution for flow durations. Therefore, the simulation is only carried
out based on those distributions for validating the correctness of the mathematics model. Indeed,
the stochastic nature of mobile radio channel and the uncertainty of interference will influence the
statistics of traffic flows. The simulation study of real-measurement-based flow statistics shows that
the result of CTMC models can still offer a relative precise reference for the system performance [38].
A more comprehensive system-level simulation is planned as future work. In the following subsections,
we investigate the multiple metrics of DFSL through MATLAB calculations and simulations.

6.1. Network Capacity

Figure 8 provides the SU network capacity performance comparison between the proposed
scheme and the other methods. With higher λP, the network capacity of SU flow for the proposed
DFSL and the dynamic channel aggregation without spectrum leasing (DCA) have continuously
decreased. However, the decrease in network capacity of the proposed DFSL is much smaller than that
of the DCA. This is because in DCA, the PU flow has access priority to all channels, and the increased
λP may make SU flow unable to access the network or even be forcibly interrupted. In DFSL, the SU
flows obtain the priority to access the leased channels. The increased λP can only affect the SU who
opportunistically accesses the N-CRN.

From Figure 8, we observe that the SU network capacities in traffic-adaptive spectrum leasing
(TASL) and fixed spectrum leasing scheme (FSL) hardly change with the increase of λP. This is because
the SU network capacities in TASL and FSL are only affected by the number of SU packets and leased
channels, respectively. When λP < 4, the SU network capacity of DFSL is higher than that of TASL.
However, TASL obtains better capacity than DFSL does after λP = 4.

Figure 8. SU network capacity versus λP.

The PU network capacity (ρP) as a function of PU flow arrival rate (λP) is plotted in Figure 9.
With higher λP, the PU network capacity of three strategies initially increases almost linearly. However,
the increase rates of ρP in DFSL and FSL are smaller than that in DCA after λP = 4. Especially due to
the restriction of fixed leased channels, the increase rate of PU network capacity in FSL flattens out.
From Figures 8 and 9, we can observe that compared with the channel access strategy without spectrum
leasing, both FSL and DFSL improve the capacity of SU flows for the same configuration. However,
the capacity of PU has decreased, which is the main side effect of the channel access strategy with
spectrum leasing. From Figure 9, we can observe that the loss of PU capacity in FSL is more serious
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than that of DFSL, when PU flow arrival rate increases. The reason is that although the principle of
FSL is simple, the channel allocation cannot be changed according to the requirements of PU.

Figure 9. PU network capacity versus λP.

6.2. Blocking Probability

Figure 10 depicts the SU flow blocking probability (PSU
B ) as the PU flow arrival rate (λP) varies.

With the increase of λP, channel resources are gradually scarce. In the proposed DFSL, the blocking
probability of the threshold θl = 0.25, θm = 0.5 and θh = 0.75 is higher than the case where the
threshold is θl = 0.35, θm = 0.7 and θh = 0.85. For instance, when the PU flow arrival rate is 4 in
Figure 10, the SU flow blocking probability is higher by 15% in the system configured as θl = 0.35,
θm = 0.7 and θh = 0.85 than that configured as θl = 0.25, θm = 0.5 and θh = 0.75. The reason is that in
the flow-adaptive leased channel adjustment algorithm, the smaller the threshold value, the fewer the
channels that can be leased when the PU arrival rate increases.

Figure 10. SU blocking probability versus λP.

The blocking probability of PU flow (PPU
B ) is illustrated in Figure 11 as λP varies. Obviously PPU

B
becomes higher as PU flows become more active in three schemes. From Figure 11, we observe that
the overall PPU

B in DFSL is improved compared to the other schemes. This is because the resource
allocation does not adapt to the dynamically changing of PUs demands in FSL and TASL. When λP > 4,
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the gap between the three lease schemes is greater, and the disadvantage of PPU
B in FSL and TASL

is more obvious. For instance, when the PU flow arrival rate is 5 in Figure 11, the PU flow blocking
probability is higher by 63.5% in TASL than that in our proposed DSFL.

Figure 11. PU blocking probability versus λP.

6.3. Forced Termination Probability

The forced termination probability of SU flows (PSU
F ) as a function of the PU flow arrival rate

(λP) is plotted in Figure 12. With higher λP, PSU
F in DFSL and DCA has deteriorated. However, the

forced termination probability of SU flows in DFSL is much lower than that in DCA. In particular, the
increased rate of SU flow forced termination probability flattens out after λP = 3. The reason is that
the PU flow only interrupts the ongoing SU flow in N-CRN, and the SU flows in the leased channels
are not affected by PU activities. DFSL has effectively improved the forced termination probability of
SU flows.

Figure 12. SU forced termination probability with λP.

7. Conclusions

In this paper, we propose a novel dynamic flow-adaptive spectrum leasing with channel
aggregation (DFSL) for multi-channel CRNs. DFSL provides insights on the design of effective
spectrum resource allocation in dynamically changing environments. A leasing algorithm is developed
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to adaptively adjust the portion of leased channels. In the leased spectrum band, the SU with spectrum
priority access adopts the dynamic channel aggregating. The developed analytical models were
validated by simulations. The calculations and results demonstrate that the DFSL effectively improves
the performance of SU.

Author Contributions: Methodology and writing, X.X.; formal analysis, supervision and project administration,
F.Z.; conceptualization and software, L.J. and X.X.; data curation, Z.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (grant numbers
61772184, 61732017, 61502162, 61572219, 61702175 and 61471164), the Fundamental Research Funds for the
Central Universities, the Key R&D Project of Hunan Province of China (numbers 2018GK2014 and 2016JJ4014),
the Hunan Natural Science Foundation of China (number 2018JJ2059), the Scientific Research Fund of Hunan
Provincial Education Department (numbers 16C0301 and 14B033), the Open Fund of State Key Laboratory of
Geo-Information Engineering (number SKLGIE2018-M-4-2), the Science and Technology Planning Project of
Yiyang (number 2015JZ28), the Scientific Research Project of Hunan City University (number 2014xj18), the Science
and Technology Program of Guangzhou under Grant (number 201804010293). and the Scientific Research Project
of the Department of the Natural Resources of Hunan Province (number 201910).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xin, C.; Song, M. Analysis of the On-Demand Spectrum Access Architecture for CBRS Cognitive Radio
Networks. IEEE Trans. Wirel. Commun. 2019, 19, 970–978. [CrossRef]

2. Xiao, Z.; Liu, H.; Havyarimana, V.; Li, T.; Wang, D. Analytical Study on Multi-Tier 5G Heterogeneous Small
Cell Networks: Coverage Performance and Energy Efficiency. Sensors 2016, 16, 1854–1855. [CrossRef]

3. Liang, W.; Ng, S.X.; Hanzo, L. Cooperative overlay spectrum access in cognitive radio networks.
IEEE Commun. Surv. Tutor. 2017, 19, 1924–1944. [CrossRef]

4. Hassan, M.R.; Karmakar, G.C.; Kamruzzaman, J.; Srinivasan, B. Exclusive use spectrum access trading
models in cognitive radio networks: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2192–2231. [CrossRef]

5. Fan, X.; Huo, Y. Blockchain Based Dynamic Spectrum Access of Non-Real-Time Data in Cyber-Physical-Social
Systems. IEEE Access 2020, 8, 64486–64498. [CrossRef]

6. Li, M.; Yin, H.; Huang, Y.; Wang, Y.; Yu, R. Physical Layer Security in Overlay Cognitive Radio Networks
With Energy Harvesting. IEEE Trans. Veh. Technol. 2018, 11, 11274–11279. [CrossRef]

7. Woongsup, L. Resource Allocation For Multi-Channel Underlay Cognitive Radio Network based on Deep
Neural Network. IEEE Commun. Lett. 2018, 9, 1.

8. el Tanab, M.; Hamouda, W. Resource allocation for underlay cognitive radio networks: A survey.
IEEE Commun. Surv. Tutor. 2017, 19, 1249–1276. [CrossRef]

9. Tan, X.J.; Zhan, W. Traffic-adaptive spectrum leasing between primary and secondary networks. IEEE Trans.
Veh. Technol. 2018, 67, 6546–6560. [CrossRef]

10. Huang, X.; Tang, X.; Hu, F. Dynamic Spectrum Access for Multimedia Transmission Over Multi-User,
Multi-Channel Cognitive Radio Networks. IEEE Trans. Multimed. 2020, 22, 201–214. [CrossRef]

11. Fan, R.; Chen, W.; Jiang, H.; An, J.; Yang, K.; Xing, C. Dynamic Spectrum Leasing with Two Sellers. IEEE Trans.
Veh. Technol. IEEE TVT 2018, 6, 4852–4866. [CrossRef]

12. Huang, S.; Shah-Mansouri, V.; Safari, M. Game-Theoretic Spectrum Trading in RF Relay-Assisted Free-Space
Optical Communications. IEEE Trans. Wirel. Commun. 2019, 18, 4803–4815. [CrossRef]

13. El-Howayek, G.; Jayaweera, S.K. Distributed dynamic spectrum leasing (d-dsl) for spectrum sharing over
multiple primary channels. IEEE Trans. Wirel. Commun. 2011, 10, 55–60. [CrossRef]

14. Zeng, F.; Xu, J. Leasing-Based Performance Analysis in Energy Harvesting Cognitive Radio Networks.
Sensors 2016, 16, 305. [CrossRef]

15. Bastami, A.H.; Kazemi, P. Cognitive Multi-Hop Multi-Branch Relaying: Spectrum Leasing and Optimal
Power Allocation. IEEE Trans. Wirel. Commun. 2019, 18, 4075–4088. [CrossRef]

16. Shen, S.; Lin, X.; Lok, T. Dynamic Spectrum Leasing under Uncertainty: Modeling, Analysis and Algorithms.
IEEE Trans. Veh. Technol. 2015, 11, 5149–5159. [CrossRef]

17. Xu, Y.; Wang, L.; Fischione, C.; Fodor, V. Distributed Spectrum Leasing via Vertical Cooperation in Cognitive
Radio Networks. IEEE Trans. Wirel. Commun. 2016, 15, 1588–1601. [CrossRef]

http://dx.doi.org/10.1109/TWC.2019.2950197
http://dx.doi.org/10.3390/s16111854
http://dx.doi.org/10.1109/COMST.2017.2690866
http://dx.doi.org/10.1109/COMST.2017.2725960
http://dx.doi.org/10.1109/ACCESS.2020.2985580
http://dx.doi.org/10.1109/TVT.2018.2868902
http://dx.doi.org/10.1109/COMST.2016.2631079
http://dx.doi.org/10.1109/TVT.2018.2808279
http://dx.doi.org/10.1109/TMM.2019.2925960
http://dx.doi.org/10.1109/TVT.2018.2806308
http://dx.doi.org/10.1109/TWC.2019.2929387
http://dx.doi.org/10.1109/TWC.2010.110310.100638
http://dx.doi.org/10.3390/s16030305
http://dx.doi.org/10.1109/TWC.2019.2920871
http://dx.doi.org/10.1109/TVT.2014.2382610
http://dx.doi.org/10.1109/TWC.2015.2493066


Sensors 2020, 20, 3800 17 of 17

18. Feng, J.; Zhang, R.; Hanzo, L.; Ng, S.X. Cooperative Medium Access Control Based on Spectrum Leasing.
IEEE Trans. Veh. Technol. 2014, 63, 297–307. [CrossRef]

19. Toroujeni, S.M.M.; Sadough, S.M.; Ghorashi, S.A. Spectrum Leasing for Ofdm-based Cognitive Radio
Networks. IEEE Trans. Veh. Technol. 2013, 62, 2131–2139. [CrossRef]

20. Shao, C.; Roh, H.; Lee, W. Aspiration Level-based Strategy Dynamics on the Coexistence of Spectrum
Cooperation and Leasing. IEEE Commun. Lett. 2014, 18, 70–73. [CrossRef]

21. Alcaraz, J.J.; van der Schaar, M. Coalitional Games with Intervention: Application to Spectrum Leasing in
Cognitive Radio. IEEE Trans. Wirel. Commun. 2014, 13, 6166–6179. [CrossRef]

22. Gavili, A.; ShahbazPanahi, S. Optimal Spectrum Leasing and Resource Sharing in Two-way Relay Networks.
IEEE Trans. Signal Process. 2014, 62, 5030–5045. [CrossRef]

23. Zhang, R.; Zeng, F.; Cai, C.; Xiao, X.; Xiao, Z.; Havyarimana, V. Dynamic Channel Assembling Strategy in
Cognitive Radio Networks with Channel Leasing. In Proceedings of the IEEE International Conference on
High Performance Computing and Communications, Zhangjiajie, China, 25 May 2019.

24. Saha, G.; Abouzeid, A.A.; Matinmikko-Blue, M. Online Algorithm for Leasing Wireless Channels in a
Three-tier Spectrum Sharing Framework. IEEE/ACM Trans. Netw. 2018, 26, 2623–2636. [CrossRef]

25. Liu, Z.; Zhao, M.; Chan, K.Y.; Yuan, Y.; Guan, X. Approach of Robust Resource Allocation in Cognitive Radio
Network With Spectrum Leasing. IEEE Trans. Green Commun. Netw. 2020, 4, 413–422. [CrossRef]

26. Yang, Y.; Zhang, Q.; Wang, Y.; Emoto, T.; Akutagawa, M.; Konaka, S. Multi-strategy Dynamic Spectrum
Access in Cognitive Radio Networks: Modeling, Analysis and Optimization. China Commun. 2019, 16,
103–121.

27. Zhai, C.; Zhang, W.; Adaptive Spectrum Leasing with Secondary User Scheduling in Cognitive Radio
Networks. IEEE Trans. Wirel. Commun. 2013, 12, 3388–3398. [CrossRef]

28. Mesodiakaki, A.; Adelantado, F.; Alonso, L.; Verikoukis, C. Performance Analysis of a Cognitive Radio
Contention-Aware Channel Selection Algorithm. IEEE Trans. Veh. Technol. 2015, 5, 1958–1972. [CrossRef]

29. Zhang, H.; Nie, Y.; Cheng, J.; Leung, V.C.M.; Nallanathan, A. Sensing Time Optimization and Power
Control for Energy Efficient Cognitive Small Cell with Imperfect Hybrid Spectrum Sensing. IEEE Trans.
Wirel. Commun. 2017, 16, 730–743. [CrossRef]

30. Jiao, L.; Balapuwaduge, I.A.M.; Li, F.Y.; Pla, V. On the Performance of Channel Assembling and
Fragmentation in Cognitive Radio Networks. IEEE Trans. Wirel. Commun. 2014, 13, 5661–5675. [CrossRef]

31. Tragos, E.Z.; Zeadally, S.; Fragkiadakis, A.G.; Siris, V.A. Spectrum Assignment in Cognitive Radio Networks:
A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1108–1135. [CrossRef]

32. Balapuwaduge, I.A.M.; Jiao, L.; Pla, V.; Li, F.Y. Channel Assembling with Priority-based Queues in Cognitive
Radio Networks: Strategies and Performance Evaluation. IEEE Trans. Wirel. Commun. 2014, 13,630–645.
[CrossRef]

33. Shi, C.; Wang, Y.; Zhang, P. Joint Spectrum Sensing and Resourceallocation for Multi-band Cognitive
Radio Systems with Heterogeneousservices. In Proceedings of the GLOBECOM, Anaheim, CA, USA,
3–7 December 2012; pp. 1180–1185.

34. Li, F.; Lam, K.; Li, X.; Liu, X.; Wang, L.; Leung, V.C.M. Dynamic Spectrum Access Networks with
Heterogeneous Users: How to Price the Spectrum? IEEE Trans. Veh. Technol. 2018, 16, 5203–5216. [CrossRef]

35. Wang, J.; Zeng, Q.-A.; Agrawal, D.P. Performance Analysis of a Preemptive and Priority Reservation Handoff
Scheme for Integrated Service-based Wireless Mobile Networks. IEEE Trans. Mob. Comput. 2003, 2, 65–75.
[CrossRef]

36. Jiao, L.; Li, F.Y.; Pla, V. Dynamic Channel Aggregation Strategies in Cognitive Radio Networks with Spectrum
Adaptation. In Proceedings of the GLOBECOM, Houston, TX, USA, 5–9 December 2011; pp. 1–6.

37. Al-Dulaimi, A.; Anpalagan, A.; Al-Rubaye, S.; Ni, Q. Adaptive Management of Cognitive Radio Networks
Employing Femtocells. IEEE Syst. J. 2017, 11, 2687–2698. [CrossRef]

38. Jiao, L. Channel Aggregation and Fragmentation for Traffic Flows; Springer: Berlin/Heidelberg, Germany, 2020.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2013.2272895
http://dx.doi.org/10.1109/TVT.2012.2231102
http://dx.doi.org/10.1109/LCOMM.2013.112613.132085
http://dx.doi.org/10.1109/TWC.2014.2333512
http://dx.doi.org/10.1109/TSP.2014.2339793
http://dx.doi.org/10.1109/TNET.2018.2877184
http://dx.doi.org/10.1109/TGCN.2020.2988975
http://dx.doi.org/10.1109/TCOMM.2013.061713.121564
http://dx.doi.org/10.1109/TVT.2014.2341115
http://dx.doi.org/10.1109/TWC.2016.2628821
http://dx.doi.org/10.1109/TWC.2014.2322057
http://dx.doi.org/10.1109/SURV.2012.121112.00047
http://dx.doi.org/10.1109/TWC.2013.120713.121948
http://dx.doi.org/10.1109/TVT.2018.2818749
http://dx.doi.org/10.1109/TMC.2003.1195152
http://dx.doi.org/10.1109/JSYST.2016.2537644
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Network Scenario
	Dynamic Adaptive Leased Spectrum Allocation and Price Function
	Dynamic Adaptive Leased Channel Adjustment
	Price Function

	Dynamic Spectrum Access with Channel Aggregation
	PU Arrivals
	SU Arrivals
	PU Departs
	SU Departs

	CTMC Model and Analysis
	CTMC Model for DFSL
	CTMC Performance Analysis
	Spectrum Utilization
	Network Capacity
	Blocking Probability
	Forced Termination Probability


	Performance Evaluations
	Network Capacity
	Blocking Probability
	Forced Termination Probability

	Conclusions
	References

