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Abstract: CNN-based trackers, especially those based on Siamese networks, have recently attracted
considerable attention because of their relatively good performance and low computational cost.
For many Siamese trackers, learning a generic object model from a large-scale dataset is still a
challenging task. In the current study, we introduce input noise as regularization in the training
data to improve generalization of the learned model. We propose an Input-Regularized Channel
Attentional Siamese (IRCA-Siam) tracker which exhibits improved generalization compared to the
current state-of-the-art trackers. In particular, we exploit offline learning by introducing additive
noise for input data augmentation to mitigate the overfitting problem. We propose feature fusion from
noisy and clean input channels which improves the target localization. Channel attention integrated
with our framework helps finding more useful target features resulting in further performance
improvement. Our proposed IRCA-Siam enhances the discrimination of the tracker/background and
improves fault tolerance and generalization. An extensive experimental evaluation on six benchmark
datasets including OTB2013, OTB2015, TC128, UAV123, VOT2016 and VOT2017 demonstrate superior
performance of the proposed IRCA-Siam tracker compared to the 30 existing state-of-the-art trackers.

Keywords: Siamese networks; convolutional neural network; visual tracking; noise regularization;
attentional mechanism

1. Introduction

Visual Object Tracking (VOT) is a promising and fundamental research area in computer vision
applications including robotics [1], video understanding [2], video surveillance [3] and autonomous
driving [4]. Given the initial state of a target object (generally specified by a bounding box) in a video,
the aim of an object tracker is to estimate the spatial trajectory of the target object in the upcoming
frames. Despite a significant progress made in the field of VOT, it remains a challenging problem
owing to diverse real-world challenges such as scale variations, occlusion, background clutter, fast
motion, and illumination variations.

Deep trackers take the benefits from pretrained deep neural networks and have shown
outstanding performance [5–10]. These deep trackers extract features from off-the-shelf pretrained
models as a backbone feature extractor known as deep features for better discrimination. The pretrained
models are trained over ImageNet [11] for image classification tasks such as VGGNet and AlexNet.
Many computer vision sub-fields employ pretrained models to benefit from transfer learning [12,13].
However, it can be observed that during tracking, these models may not fully adapt the specific
target features and online learning may steer to overfitting [14]. Recently, deep Siamese-based
trackers [10,15–17] have become popular since they achieve good performance with relatively low

Sensors 2020, 20, 3780; doi:10.3390/s20133780 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2289-2284
https://orcid.org/0000-0003-0239-6785
http://dx.doi.org/10.3390/s20133780
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/13/3780?type=check_update&version=2


Sensors 2020, 20, 3780 2 of 20

computational cost. Deep neural networks are composed of multiple hidden layers, which enable
learning complex relationships between the inputs and outputs. However, due to limited training
data, deep network models are prone to over-learn the training dataset which may lead to overfitting
problem [18]. Dropout [18] and additive noise [19] can be employed to handle this issue in
deep neural networks. There exists many approaches to handle overfitting problem by using
spatio-residual modules [20], regularizers [5,21], integrating context information [22], or factorized
convolution [23]. Another limitation is that online learning is an expensive process and requires more
computational resources.

Our proposed methodology tackles aforementioned challenges by adopting an input
regularization using similarity matching learning function. To validate the basic concept, we used
SiameseFC [15] as our baseline tracker. It is important to improve the training process by including
novel data augmentation techniques to enhance the generalization ability of deep trackers. We propose
data augmentation by introducing noise into the training dataset. Introducing noise is similar to
instructing a network not to change its output and it may be considered a special kind of input
regularization. The proposed data augmentation method increases the accuracy and reduces the
generalization error and overfitting problem.

Certain convolutional feature channels contribute more than the others, employing a channel
attention mechanism can enhance the tracking performance. A channel attention mechanism is
considered to be a process of weighting specific features because of their potential to model context
information. The inclusion of attention mechanism has already been shown to be beneficial in visual
object tracking. ACFN [24] used spatial attention to select a subset of correlation filters for tracking.
RASNet [25] employs different kinds of attention models to highlight the dominance or weakness of
channels. It is necessary to suppress irrelevant channels while providing higher weights to the more
useful channels. Based on these observations, we incorporate a channel attentional mechanism within
Siamese framework to enhance the tracking performance. We adapted feature fusion and a special kind
of attention mechanism in our tracking framework to generate more discriminative target features.

In the current work, we propose an Input-Regularized Channel Attentional Siamese (IRCA-Siam)
network to learn efficient target boosted features and enhance its discriminative ability. Early feature
fusion is helpful for encoding adaptive target representations while suppressing noisy information.
Moreover, the proposed network exploits the relationship among feature channels at a high level to
learn informative and meaningful channels while suppressing trifling channels. The proposed tracker
is evaluated over OTB2013 [26], OTB2015 [27], temple color-128 [28], UAV123 [29], VOT2016 [30],
and VOT2017 [31] datasets and compared with 30 state-of-the-art methods. The proposed tracker has
consistently shown improved performance compared to these trackers.

We summarize our main contributions as follows:

• We propose an additive noise as input regularization to improve deep network generalization.
• Early feature fusion mechanism is proposed to learn better target feature representation.
• An adaptive channel attention mechanism is integrated to give more weight to the important

channels compared to the less important ones using a skip connection.
• Robustness of the proposed tracker is evaluated on the six benchmark datasets. Our experiments

demonstrate better performance of the proposed tracker compared to the 30 state-of-the-art methods.

2. Related Work

In this section, we review different deep learning methods using additive noise. We also discuss
closely related tracking approaches including deep features based trackers, Siamese-based and
attention-based trackers. A detailed study may be found in recent surveys [6,9,32,33].

2.1. Deep Learning with Noise

Deep Neural Network (DNN) models have shown significant importance due to improved
performance in various computer vision problems such as image classification, semantic segmentation,
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and action recognition. However, due to limited training data, networks may lead to overfitting.
Dropout is an often used method to handle overfitting issue by randomly dropping out values in the
hidden units in the network model [18]. However, it is still unclear how to select the best dropout
rate to perform well and how can we maximize the benefit from optimization as well as preventing
model from overfitting [19]. Instead of using dropout, many researchers used additive noise to handle
overfitting problem [19,34,35]. Increased dropout rate may cause information loss especially when
target size is small and decreased dropout may not be able to avoid overfitting. Noh et al. [19] used
additive noise as regularizer from marginalized noise instead of dropout approach. Bishop et al. [34]
showed that additive noise effect is similar to Tikhonove regularization. Liu et al. [36] used noise layer
to prevent their network from adversarial attacks. Fiaz et al. [6] studied the performance of trackers
on noisy inputs during tracking. In contrast, we propose an additive noise as input regularization
to improve the generalization error in the visual object tracking domain. Proposed regularization
improves the tracking performance during the inference. We also verified the performance of our
framework by inducing a noise layer before each convolutional layer. Experimental results showed
that inducing a noise layer for each convolutional layer reduces the tracking performance compared to
adding noise in the input data.

2.2. Deep Feature-Based Trackers

Recently, deep learning approaches have boosted the tracking performance due to their inherent
characteristics. However, employing deep learning in visual tracking have several limitations.
For example, deep learning requires more computational resources and have higher time complexity.
The ground truth for the reference target object is provided only on the first frame of the video.
To benefit from deep learning and limited available training data, deep features are combined into
correlation filter tracking to boost the tracking performance. For instance, DeepSRDCF [5], CF2 [8],
and FCNT [37] take the leverage from deep learning by extracting deep features at multiple layers from
pretrained models such as VGG [38] or AlexNet [39]. Deep features from different layers were exploited
to enable the capabilities of accuracy and robustness for the visual tracking [7,23,40,41]. Bhat et al. [41]
revealed that pretrained models do not always fetch performance boost due to incompatible resolutions,
unseen target objects and increasing dimensions. On the other hand, deep learning can also be used
as classification or regression networks for visual tracking [22,42,43]. CNN-SVM [44] employs CNN
model and performs classification task using SVM with saliency map. The TSN tracker [45] used
CNN to encode temporal and spatial information for classification. The MDNet [21] is a multi-domain
online deep tracker performing tracking as classification task, and capturing the domain dependent
information during online tracking within a particle filter framework.

The online model update is performed to adapt different appearance variations of the target, but it
may lose target under scenarios such as occlusion, deformation, or background clutter. Online learning
requires extra computational cost to update the model parameters. Although CNN-based models have
fewer parameters than RNN-based models, frequent model update incur extra computational cost
therefore, such trackers may have limited real-world applications.

2.3. Siamese Network-Based Trackers

A Siamese network comprises of two parallel Convolutional Neural Networks (CNN) streams that
are used to learn the similarity between input images in embedded space and to fuse them to produce
an output [46]. Owing to their inherent characteristics such as accuracy and speed, Siamese networks
are popular in the visual tracking community [10,15–17,47]. A SiameseFC [15] extracts input image
features using an embedded CNN model and fuses them by using a correlation layer, to generate a
response map. CFNet [10] is an improved version of the SiameseFC and it integrates a correlation
filter layer as a differentiable layer within template branch. On the other hand, GOTURN [16] involves
the use of a Siamese network as a feature extractor and the use of fully connected layers for fusing
embedded features. The GOTURN tracker performs regression between two consecutive frames.
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The SINT [17] formulates the tracking problem as a verification task to learn the similarity between
inputs. These approaches have secured much importance due to their performance, but overfitting
might occur if trained on small datasets. The proposed tracking algorithm enhances the discriminative
ability of Siamese tracking framework by exploring data augmentation using additive noise.

2.4. Attention Mechanism-Based Trackers

Recently, attention mechanisms have become popular owing to their improved learning
capabilities. CSRDCF [48] constructs a unique spatial reliability map to impose constraints on
correlation filters within a correlation tracking framework. AFS-Siam [49] selects the discriminative
kernels from different convolutional layers. Choi et al. [24] proposed ACFN and used spatial attention
to select a subset of correlation filters for visual object tracking. RTT [50] used multi-directional
recurrent filters to learn the target object appearance. The objective of using a channel attention
mechanism has enabled the tracker to learn the most critical information to adapt the target appearance.
However, the attention mechanism within convolutional layers has not been fully exploited. On the
basis of these considerations, we introduced a channel attention mechanism to highlight the importance
of discriminative features. Our technique showed high performance by offline learning efficient
discriminative features.

3. The Proposed Input-Regularized Channel Attentional Siamese (IRCA-Siam) Network

Overall framework of the proposed IRCA-Siam network is shown in Figure 1. Compared to
the previous deep trackers, IRCA-Siam exploits additive noise in the input data within Siamese
framework to handle overfitting problem. We propose an early feature fusion mechanism for better
target localization. We also integrate a channel attention mechanism within IRCA-Siam to highlight
the more useful and discriminative features for improved tracking.

3.1. Fully Convolutional Siamese Network

The building block of the proposed framework is SiameseFC tracker proposed by Bertinetto et al. [15].
SiameseFC formulates the tracking problem, to learn a similarity map from embedded CNN models, as a
cross-correlation problem within a Siamese network architecture. The embedded CNN model consists of
two parallel branches, one representing the target and the other representing the search region. In visual
tracking, the target template is provided in the first frame of the as an exemplar z. The objective of
SiameseFC is to find the most similar region from the search region (larger in size than the template) x for
subsequent frames as:

g(z, x) = θ(z) ∗ θ(x) + b, (1)

where ∗ represents the cross-correlation, θ(·) denotes the embedded space, and b represents the offset
of the similarity value. From Equation (1), we note that SiameseFC uses feature representation and
discriminative learning to produce a similarity map by using a single function θ(·). The performance
of both tasks may lead to overfitting the model to the training data. We therefore propose noisy
regularized feature fusion to overcome the challenges faced by SiameseFC and to improve the
generalization capability of the tracker. We also highlight the importance of discriminative channel
feature information.

3.2. Input Regularization and Feature Fusion

In the current study, a data augmentation mechanism is introduced for Siamese networks
to overcome their limitations. Existing Siamese trackers suffer due to low fidelity of the target
representation. We propose an input regularization during the training of Siamese trackers.
Introducing noise into the input can be regarded as input regularization, and it encourages the
model to learn various aspects of the object and increases its robustness against noise during testing.
The features from both branches are fused (as shown in Figure 1) such that the model can learn the
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target features under noise or disturbance to enhance its accuracy in real-world noisy environment.
It may be noted that during tracking, a target may observe noise leading to performance degradation.
The proposed feature fusion mechanism helps to overcome this limitation.

Template
(135x135x3)

Search Region
(263x263x3)

Noisy Template
(135x135x3)

Response Map
(17x17x1)

Channel Attention 
Network

Noisy Search 
Region
(263x263x3)

Element-wise Summation

Cross-correlation Operation

Conv Batch Norm

Relu Pooling

𝜽 : Convolutional Model

7x7x256

23x23x256

Skip Connection

Z

X

Figure 1. Proposed IRCA-Siam tracking framework. The inputs are fused after MaxPool layer for
exemplar and search branches. Channel attentional network is integrated for exemplar branch using a
skip connection.

We induce random Gaussian noise into the input patches to obtain noisy images with mean
µ and standard deviation σ. A Gaussian noise map G ↪→ RandG(µ, σ2) is constructed and added
with the input, where RandG(·) is a random number generator function based on Gaussian density
function. In contrast to existing Siamese networks, the proposed model accepts four inputs, namely a
target patch (z), a noisy target patch (G + z), a search patch (x), and a noisy search patch (G + x).
Low-level features from noisy and clean images are fused to encode the spatial target information for
better localization.

In practice, we fuse features from target patch and noisy target patch as:

Z = B(z) + B(G + z), (2)

where B represents a convolutional block including a convolutional layer, a normalization layer,
a rectifier layer, and a pooling layer. Similarly, features from search and noisy search patches are
fused as:

X = B(x) + B(G + x), (3)

The proposed framework is summarized as:

g(z, x) = (∆(θ(Z))⊕ θ(Z)) ∗ θ(X) + b, (4)

where ∆(.) denotes the channel attention and ⊕ represents the element-wise addition operation.
The channel attention network is explained in Section 3.3.

During testing, we do not require noisy template and noisy search region. Instead, we provide
the same template and search region that are provided to the other two inputs.
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3.3. Channel Attention Network

A convolutional feature channel can be considered to be equivalent to a specific type of visual
pattern. SiameseFC treats the feature channels for both the exemplar and search branches equally,
which leads to performance degradation. However, the proposed channel attention mechanism
exploits the relationship among channels and assigns more weights to channels that contribute more to
target discrimination and localization. The objective is to enhance the adaptation capacity of the model
to capture target variations. We incorporate a channel attention mechanism in the template branch as
shown in Figure 1. There exists many channel attentional networks to calibrate the channel information
such as SENet [51] and SA-Siam [52] which employ only global max-pooling and multi-perceptron
layer. Choi et al. [24] proposed ACFN and used spatial attention to select a subset of correlation filters
for visual object tracking. On the other hand, our channel network fuses the channel coefficients from
global max-pooling and global average pooling and then forwards to convolutional layer. The global
max-pooling exploits the finer and distinctive target information while global average pooling reflects
the overall knowledge of the target for proposed channel attention.

The proposed channel attention mechanism is a lightweight network, as depicted in Figure 2.
The input for this network is the output features θ(z) from the last convolutional layers. This network
passes the inputs to Global Average Pooling (GAP) and Global Maximum Pooling (GMP) layers.
The outputs of these layers are fused using an element-wise operation to form a Global Descriptor
(GD). The GD is feed forwarded to a dimensionality reduction layer, a rectifier activation layer, and a
dimensionality increasing layer and then relayed to a Sigmoid activation layer to provide the final
weights of the input features.

The input to the channel attentional mechanism is represented as C = θ(Z) from Equation (4).
The Global Descriptor (GD) is calculated using element-wise operation (⊕) between the outputs from
GAP and GMP layers as:

GD = GAP(C)⊕ GMP(C). (5)

The weights for input features are computed as:

α = σ(fc2(Relu(fc1(GD))))), (6)

where fc1 and fc2 denote fully connected layers, Relu represents rectifiers layer, and σ is the Sigmoid
function as f (x) = 1

1+e−x . It is assumed that C has k feature channels such that C = [c1, c2, ...ck].

ĉk = αk × ck, (7)

where αk represents the kth weight for channel ck. Then the final output of channel attention will be
∆(C) = ∆(θ(Z)) = [ĉ1, ĉ2, ...ĉk].

The output of proposed channel attention element-wise is added to the θ(Z) using skip connection
as shown in proposed framework Figure 1. Proposed channel attention is only applied in the template
branch of our framework to exploit the target feature channels.

Global Avgpooling

Global Maxpooling

R
e

lu

FC
2

Si
gm

o
id

Element-wise Multiplication Element-wise Summation

FC
1

Figure 2. Channel attention network.
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4. Experiments

4.1. Implementation Details

We train proposed model over GOT-10K dataset [53] which contains more than 10,000 video
sequences. The proposed network accepts four input image patches. During offline training, the input
size for the template and noisy template is 127× 127× 3, while that for search region and noisy search
region is 255× 255× 3. For noisy images, µ is fixed at zero and σ is set to 0.09 which is obtained
empirically and discussed in Section 4.3. During data curation, we crop the input patches such that
the target object resides at the center as it reflects the most influential region for tracking performance.
During training, we regularize our input using Gaussian additive noise such that it refrains to distract
against noise at inference time. The model was trained offline end-to-end using a stochastic gradient
method for 50 epochs. We set the momentum to 0.9 and the weight decay to 5× 10−4, while the
learning rate started at 10−2 and later decreased to 10−5. During training, we adopt the following loss
function to update the model parameters:

L(g, y) =
1
|δ| ∑

(k)∈δ

log(1 + exp(−g(k)× y(k)), (8)

where g represents the response map, y ∈ {+1,−1} denotes ground-truth label, k shows the position
in the response, and δ indicates the set of positions in the search window on the score map.

During testing, we set template and noisy template is 135× 135× 3, while that for search region
and noisy search region is 263× 263× 3. During the inference, the maximum location on the response
map represents the new estimated target location. To overcome the problem of scale variations,
we constructed a pyramid over three scales (0.963, 1, 1.0375) based on previously estimated location
for the current frame and selected the best score for target scale estimation. The code was implemented
in python 3.7 and PyTorch 1.0.1 and all the experiments were performed using 1 GPU NVIDIA TITAN
Xp over i7 3.6GHz CPU (PRIME Z370-A II) with 32G memory.

4.2. Comparison with State-of-the-Art Trackers

An extensive experimental evaluation is performed for six datasets including Object Tracking
Benchmark 2013 (OTB2013) [26], OTB2015 [27] TempleColor128 (TC-128) [28], UAV123 [29],
VOT2016 [30], and VOT2017 [31]. OTB2013 [26] comprises 50 different challenging videos,
while OTB2015 [27] is an extended version containing 100 sequences. TC-128 [28] contains 128
colored challenging sequences. UAV123 contains 123 videos captured from Unmanned Aerial Vehicle
(UAV) at a low-altitude [29]. Precision and success metrics were used to perform a comparison
for aforementioned datasets. The precision is computed using the Euclidean distance between the
ground-truth center and the predicted center as:

Pgp =
√
(xg − xp)2 + (yg − yp)2, (9)

where (xg, yg) denote the ground-truth center location, and (xp, yp) represent the predicted target
center position in a frame. A frame is considered successful if the precision is within a threshold of
Pgp which is set Pgp equal to 20 pixels in the current work. Similarly, success is determined from the
overlap score between the ground-truth bounding box rg and the predicted bounding box rt as:

OS =
|rt ∩ rg|
|rt ∪ rg|

, (10)

where | · | indicate the number of pixels, ∩ shows the intersection of two regions while ∪ indicates the
union of two regions. If the overlap score (OS) exceeded 0.5, the frame is classified as having been tracked
successfully; otherwise, the tracking is classified as failure. We performed One Pass Evaluation (OPE) to
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validate our tracking method [9]. We also performed evaluation over VOT2016 [30] and VOT2017 [31].
The tracker is re-initialized during the evaluation if it encounters failure. We used the Expected
Average Overlap (EAO), Accuracy (A), and Robustness (R) parameters for the evaluation for VOT2016
and VOT2017 datasets. Accuracy represents the average overlap score between estimated bounding
box and ground truth. Robustness means the number of times a tracker failed. EAO computes the
expected overlap score for typical short-term sequence lengths over an interval by averaging the scores
for the expected average overlap curve [54].

We compared our method with 30 state-of-the-art trackers including SiamTri [55], CSRDCF [48],
CNNSI [56], SRDCF [57], Staple [58], TRACA [59], SiameseFC [15], CFNet [10], ACFN [24], SiamFc-lu [60],
HASiam [61], SiamFCRes22 [62], Kuai et al. [63], MSN [64], MLT [65], KCF [66], SCT [67], OA-LSTM [68],
ECOhc [23], DSiam [69], MEEM [70], CCOT [40], SAMF [71], CMKCF [72], SATIN [73], GradNet [74],
SiameseRPN [75] DSST [76], MemTrack [14], MemDTC [77], and UDT [78].

4.2.1. Evaluation over OTB Datasets

We present precision and success plots for the OTB2015. We compared IRCA-Siam with other
state-of-the-art methods including TRACA, SRDCF, staple, SiamTri, CFNet, SiamFC, UDT, and CNNSI.
Figure 3 demonstrates that the proposed algorithm IRCA-Siam showed better tracking performance
compared to other trackers. IRCA-Siam achieved 62.5% and 83.5% success and precision respectively,
which is 3.9% and 6.3% gain in performance compared to baseline SiamFC tracker. We compared
our method with Siamese-based trackers including SiamTri, SiameseFC, CFNet, UDT, and CNNSI as
shown in Figure 3. These tracking approaches take two inputs, but our approach takes four inputs.
During training, we train our model such that it withholds discriminative ability for better localization.
Our method has achieved 2.1% and 2.3%, 4.5% and 2.7%, and 5.3% and 4.7% superior performance
in terms of precision and success, respectively, compared to correlation filter-based trackers such as
TRACA, SRDCF, and Staple, respectively.

(a) Precision plot over OTB2015. (b) Success plot over OTB2015.

Figure 3. Performance comparison over OTB2015.

We also present the success scores for OTB2013 and OTB2015 in Table 1. The table also displays the
average speed in units of Frames Per Second (FPS). The table shows that MSN [64] and HASiam [61]
achieved success score more than 63.0 for OTB2013. Compared to these trackers, IRCA-Siam secured
superior success score of 65.3. We also observed that our algorithm surpassed the other methods
over OTB2015. Futhermore, our algorithm performs tracking at 77 FPS and is a real-time tracker.
Although TRACA [59], SiamTri [55], Staple [58], SiamFC-lu [60], and SiameseFC [15] show higher
tracking speed than our algorithm, they are less successful for OTB2013 and OTB2015.
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Table 1. Performance comparison of IRCA-Siam with other trackers over OTB2013 and OTB2015 using
success and speed in FPS.

Tracker OTB2013 OTB2015 FPS Real-Time

TRACA [59] 65.2 60.3 101 Yes
SiamTri [55] 61.5 59.0 85 Yes
CSRDCF [48] 59.9 58.2 24 No
ACFN [24] 60.7 57.5 15 No
CNNSI [56] 53.9 52.2 <1 No
SRDCF [57] 62.6 59.8 6 No
Staple [58] 59.3 57.8 80 Yes
SiamFc-lu [60] - 62.0 82 Yes
HASiam [61] 64.0 61.1 30 Yes
Kuai et al. [63] - 62.2 25 No
MSN [64] 64.3 59.7 40 Yes
MLT [65] 62.1 61.1 48 Yes
SiameseFC [15] 60.7 58.2 86 Yes
CFNet [10] 58.9 58.6 43 Yes
UDT [78] 61.9 58.7 70 Yes

IRCA-Siam 65.3 62.5 77 Yes

4.2.2. Challenge-Based Comparison

We present the evaluation of IRCA-Siam for various tracking challenges and compared with other
state-of-the-art methods including TRACA, SRDCF, staple, SiamTri, CFNet, SiamFC, UDT, and CNNSI
over OTB2015 in terms of success and precision in Figures 4 and 5 respectively. IRCA-Siam showed the
best performance over fast motion, motion blur, deformation, in-planar rotation, out-of-planar rotation,
occlusion, illumination variations, and scale variations challenges in terms of success. IRCA-Siam did
not perform well over low-resolution videos and background clutter but ranked second with a minor
difference as shown in Figure 4. SiamTri and TRACA surpassed our method with less than 1.0% for
low-resolution and background clutter. However, overall, our tracker performed best for most of the
challenges in terms of success.

We present precision plots for different challenges in Figure 5. Our algorithm showed better
performance for eight challenges including fast motion, scale variations, illumination variations,
occlusion, deformation, motion blur, in-plane rotation and low resolution. IRCA-Siam showed second
best performance for out-of-view, low resolution, and background clutter. However, the difference
between the top ranked compared with our method is less than 1.0%. As our approach ranked best for
the rest of the challenges, such a minor difference can be ignored. We notice that other Siamese-based
trackers are trained from raw images and do not perform well against different challenges. However,
we train our model with regularized input such that it preserves the discriminative ability for better
localization against noise during test time. This approach helped our method to perform better for
most of the challenges in terms of both success and precision as shown in Figures 4 and 5 respectively.

4.2.3. Qualitative Analysis

We performed the qualitative analysis of the proposed method over CarScale, FaceOcc1, Skiing,
and Jogging-1 sequences as shown in Figure 6. In CarScale sequence, IRCA-Siam performed better
compared to others as its bounding box enclose most region of the vehicle while others less. Almost all
the trackers tackled the FaceOcc1 sequence successfully. However, IRCA-Siam and TRACA succeeded
to track the skier in Skiing sequence. The proposed method also performed efficiently for occlusion in
Jogging-1 sequence.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4. Success plots over OTB2015 for different challenges such as (a) fast motion, (b) scale variation,
(c) motion blur, (d) deformation, (e) illumination variation, (f) out-of-plane rotation, (g) fast motion,
(h) occlusion, (i) out-of-view, (j) low resolution, and (k) background clutter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5. Precision plots over OTB2015 for different challenges such as (a) fast motion, (b) scale
variation, (c) motion blur, (d) deformation, (e) illumination variation, (f) out-of-plane rotation, (g) fast
motion, (h) occlusion, (i) out-of-view, (j) low resolution, and (k) background clutter.

4.2.4. Evaluation over TC128 Dataset

We validate the proposed IRCA-Siam tracker over TC128 benchmark dataset and showed the
precision and success in Table 2. We compared our method with UDT [78], Kuai et al. [63], KC [66],
MLT [65], SCT [67], SiameseFC [15], CFNet [10], Staple [58], CNNSI [56], OA-LSTM [68], and SRDCF [57].
The proposed method secured the first rank compared to other trackers with maximum precision score
74.5 and success 55.0.
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Figure 6. Qualitative analysis over CarScale, FaceOcc1, Skiing, and Jogging-1 sequences.

Table 2. Comparison of the proposed method with various state-of-the-art methods over TC128 using
precision, success and speed in FPS.

Trackers Precision Success FPS

UDT [78] 71.7 50.7 70
Kuai et al. [63] 71.6 52.3 25
KCF [66] 54.9 38.7 160
MLT [65] - 49.8 48
SCT [67] 62.7 46.6 40
SiameseFC [15] 68.8 50.3 86
CFNet [10] 60.7 45.6 43
Staple [58] 49.8 80
CNNSI [56] 63.8 44.8 <1
OA-LSTM [68] 70.8 49.5 11.5
SRDCF [57] - 50.9 6

IRCA-Siam 74.5 55.0 77

4.2.5. Evaluation over UAV123 Dataset

This benchmark contains 123 videos captured from an Unmanned Aerial Vehicle (UAV) at a
low-altitude. We opted to validate the proposed method over UAV123 dataset and showed the precision
and success in Table 3. We compared IRCA-Siam with trackers including MLT [65], Kuai et al. [63],
KCF [66], SRDCF [57], ECOhc [23], MEEM [70], SAMF [71], and DSST [76]. The results showed
that IRCA-Siam demonstrated outstanding performance compared to other methods and secured best
precision 74.5 and success 52.0.
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Table 3. Comparison of the proposed method with various state-of-the-art methods over UAV123
using precision and success.

Trackers Precision Success

MLT [65] - 43.5
Kuai et al. [63] 73.0 50.9
KCF [66] 54.9 38.7
SRDCF [57] 67.7 46.4
ECOhc [23] 72.5 50.6
MEEM [70] 62.7 39.2
SAMF [71] 59.2 39.6
DSST [76] 58.6 35.6

IRCA-Siam 74.5 52.0

4.2.6. Evaluation over VOT2016 and VOT2017 Dataset

We present the performance comparison over VOT2016 and VOT2017 in Tables 4 and 5 respectively.
We compared our method over VOT2016 with various state-of-the-art trackers such as MemTrack [14],
MemDTC [77], ECO [23], HASiam [61], Staple [58], SRDCF [57], DSiam [69], MLT [65], CCOT [40],
UDT [78], SiameseFC [15], CMKCF [72], and SiamFCRes22 [62]. We observe that CCOT [40] secured
best EAO 0.33 but our IRCA-Siam algorithm showed better accuracy and robustness for VOT2016 dataset.
CMKCF [72] have shown lower robustness compared to our method but its accuracy is lower than
ours. Moreover, our method showed best accuracy 0.56 compared to other state-of-the-art methods
for VOT2016.

Performance comparison over VOT2017 is shown in Table 5. We compared our tracker with
other trackers over VOT2017 dataset are CSRDCF [48], MemTrack [14], MemDTC [77], SRDCF [57],
MSN [64], DSST [76], SATIN [73], SiameseFC [15], GradNet [74], SiameseRPN [75], and SiamFCRes22 [62].
We note that SATIN [73] showed best EAO score but its accuracy and robustness it not better than our
algorithm. Furthermore, our algorithm showed best accuracy 0.52 and robustness 0.29 compared to other
state-of-the-art algorithms.

Table 4. Performance comparison for different trackers over VOT2016.

Trackers Overlap (↑) Robustness (↓) EAO (↑)

MemTrack [14] 0.53 1.44 0.27
MemDTC [77] 0.51 1.82 0.27
ECO [23] 0.54 - 0.37
HASiam [61] - - 0.27
Staple [58] 0.53 0.38 0.29
SRDCF [57] 0.54 0.42 0.25
DSiam [69] 0.49 2.93 0.18
MLT [65] 0.53 - -
CCOT [40] 0.54 0.24 0.33
UDT [78] 0.54 - 0.22
SiameseFC [15] 0.53 0.46 0.23
CMKCF [72] 0.53 0.18 0.30
SiamFCRes22 [62] 0.54 0.38 0.30

IRCA-Siam 0.56 0.19 0.30
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Table 5. Performance comparison for different trackers over VOT2017.

Trackers Overlap (↑) Robustness (↓) EAO (↑) FPS

CSRDCF [48] 0.49 0.49 0.25 13
MemTrack [14] 0.49 1.77 0.24 50
MemDTC [77] 0.49 1.77 0.25 40
SRDCF [57] 0.49 0.97 0.12 6
MSN [64] 0.50 0.46 0.26 40
DSST [76] 0.39 1.45 0.08 24
SATIN [73] 0.49 1.34 0.28 24
SiameseFC [15] 0.50 0.59 0.19 86
GradNet [74] 0.50 0.37 0.24 80
SiameseRPN [75] 0.49 0.46 0.24 200
SiamFCRes22 [62] 0.50 0.49 0.23 70

IRCA-Siam 0.52 0.29 0.25 76

4.3. Ablation Study

In this section, we investigate the effect of input additive noise and noise layers before
convolution layers during the training. During testing, we neither provide input noise nor noise
layers. We performed different experiments for SiameseFC and proposed (IR-Siam) method as shown
in Figure 7. We also evaluated the performance of the proposed channel attention with additive noise
named IRCA-Siam as shown in Figure 1. We performed our ablation study over OTB2015 dataset and
showed the performance in precision and success.

In our framework, noise is added to inputs as regularization instead of dropout approach.
Liu et al. [36] used noise layer to prevent their network from adversarial attacks. Therefore, we also
used noise layer before convolutional layers to verify the improvement of generalization error using
noise layer within convolutional model θ. We present the additive noise as input regularization as well
as noise layer within Siamese tracking framework as shown in Figure 7. In Figure 7a shows the baseline
SiameseFC tracking framework. We used a noise layer and placed before each convolutional layer to
learn the noisy gradients during back propagation. Figure 7b presents the SiameseFC with noise layer
before each convolutional layer. Similarly, Figure 7c,d represents the proposed framework without
channel attention and, with and without noise layer, respectively. In our ablation study, we preformed
different experiments to show the impact of addition of noise layer within Siamese framework.

Element-wise SummationCross-correlation Operation

A B

Conv Batch Norm Relu Pooling Noise

(a)

A B

(b)

A

(c) (d)

Added 
Noise

B
Added 
Noise

A
Added 
Noise

B
Added 
Noise

Figure 7. Added noise to inputs and different convolutional layers for SiameseFC and proposed
framework. (a) shows the baseline SiameseFC, (b) indicates the SiameseFC with noise layers before
convolutional layers, (c) represents the proposed framework without channel attention, and (d) shows
the proposed framework with noise layers before convolutional layers and without channel attention.
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First, we evaluate the performance of additive input noise. In this study, we used Salt and Pepper
(S&P) and Gaussian noise as input noise. For S&P noise, we use three different probabilities (0.09,
0.05, and 0.03), similarly we use three different σ (0.09, 0.05, and 0.03) with mean (µ) zero for Gaussian
input noise computation as shown in Figure 8. We observe that SiameseFC showed better performance
without addition of noise. On the other hand, our IR-Siam without channel attention improved the
tracking performance in the addition of Gaussian noise with σ = 0.09 and achieved precision = 81.9
and success = 61.9.

Clean Image Gaussian (σ=0.09) S&P (p=0.09) S&P (p=0.05) S&P (p=0.03)Gaussian (σ=0.05) Gaussian (σ=0.03)

Figure 8. Illustration of additive noises to inputs. Here σ represents the variance of Gaussian noise
while p denotes the probability for Salt and Pepper (S&P) noise.

We investigate the addition of input layers within the network architecture. We only added
Gaussian noise layers before convolution layers as shown in Figure 7. We observe that the
added noise layer degrades the performance for SiameseFC as well as our IR-Siam tracker.
From Table 6, we note that IR-Siam shows the tracking improvement when noise is added as input.
Moreover, we also find that the added channel attentional module shows tracking performance
improvement. Proposed IRCA-Siam with channel attention achieved best precision = 83.4 and
success = 62.5. The improved performance of IRCA-Siam reflects the importance of proposed channel
attention network as it efficiently highlights the important feature channels and reduces the significance
of the irrelevant ones.

Table 6. Ablation study performed over OTB2015 using precision and success.

Tracker Additive Input Noise Added Noise Layer before Added Noise Layer Type Precision Success

SiameseFC - - - 77.1 58.2
SiameseFC S&P (p = 0.09) - - 76.5 57.2
SiameseFC S&P (p = 0.05) - - 75.2 54.8
SiameseFC S&P (p = 0.03) - - 73.5 52.9
SiameseFC Gaussian (µ = 0, σ = 0.09) - 76.9 57.8
SiameseFC Gaussian (µ = 0, σ = 0.05) - - 75.7 56.4
SiameseFC Gaussian (µ = 0, σ = 0.03) - - 75.1 55.3
SiameseFC - Conv5 Gaussian (µ = 0, σ = 0.09) 76.8 56.5
SiameseFC - Conv5 Gaussian (µ = 0, σ = 0.05) 75.2 55.7
SiameseFC - Conv5 Gaussian (µ = 0, σ = 0.03) 74.1 53.9
SiameseFC - Conv1, Conv2, Conv3, Conv4, Conv5 Gaussian (µ = 0, σ = 0.09) 75.5 55.9
SiameseFC Gaussian (µ = 0, σ = 0.09) Conv1, Conv2, Conv3, Conv4, Conv5 Gaussian (µ = 0, σ = 0.09) 76.7 57.9

IR-Siam - - - 80.8 60..6
IR-Siam S&P (p = 0.09) - - 81.6 61.5
IR-Siam S&P (p = 0.05) - - 80.3 61.0
IR-Siam S&P (p = 0.03) - - 79.9 59.3
IR-Siam Gaussian (µ = 0, σ = 0.09) - - 81.9 61.9
IR-Siam Gaussian (µ = 0, σ = 0.05) - - 81.2 61.3
IR-Siam Gaussian (µ = 0, σ = 0.03) - - 80.1 60.4
IR-Siam - Conv6 Gaussian (µ = 0, σ = 0.09) 80.9 60.6
IR-Siam - Conv6 Gaussian (µ = 0, σ = 0.05) 80.2 60.1
IR-Siam - Conv6 Gaussian (µ = 0, σ = 0.03) 78.9 58.7
IR-Siam - Conv1, Conv2, Conv3, Conv4, Conv5, Conv6 Gaussian (µ = 0, σ = 0.09) 81.2 60.7
IR-Siam Gaussian (µ = 0, σ = 0.09) Conv1, Conv2, Conv3, Conv4, Conv5, Conv6 Gaussian (µ = 0, σ = 0.09) 80.5 59.5
IR-Siam - Conv1, Conv2, Conv6 Gaussian (µ = 0, σ = 0.09) 81.5 60.5
IR-Siam Gaussian (µ = 0, σ = 0.09) Conv1, Conv2, Conv6 Gaussian (µ = 0, σ = 0.09) 82.1 60.8

IRCA-Siam S&P (p = 0.09) - - 82.7 62.3
IRCA-Siam Gaussian (µ = 0, σ = 0.09) - - 83.4 62.5
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5. Conclusions

In this work, input-noise-based regularization is proposed to improve tracking generalization.
In addition, early feature fusion of noisy and clean channels is also proposed for better target
localization. In the same framework, channel attention has been proposed to select more informative
target features to improve tracking performance. For input-noise regularization, Gaussian noise
has been added to both the template and the search patches during the training. Feature fusion is
performed at low-level layers to make the tracking process more robust to noise and to improve target
localization. Channel attention has been used to highlight more descriptive features and to suppress
the noisy features. The proposed tracker has shown superior performance compared to 18 Siamese
trackers and 12 other existing trackers. The proposed tracker has shown promising performance for
fast motion, motion blur, deformation, in-plane rotation, out-of-plane rotation, occlusion, illumination
variations, and scale variation challenges.

Author Contributions: Conceptualization, M.F.; methodology, M.F.; validation, M.F., A.M. and S.K.J.; formal
analysis, S.S.F.; investigation, S.K.J., A.M.; resources, K.Y.B.; data curation, S.S.F. and K.Y.B.; writing—original draft
preparation, M.F. and A.M.; writing—review and editing, M.F., A.M. and S.K.J.; visualization, S.S.F.; supervision,
S.K.J., A.M.; project administration, S.K.J.; funding acquisition, S.K.J.; All authors have read and agreed to the
published version of the manuscript.

Acknowledgments: This study was supported by the BK21 Plus project (SW Human Resource Development
Program for Supporting Smart Life) funded by the Ministry of Education, School of Computer Science and
Engineering, Kyungpook National University, Korea (21A20131600005).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Gupta, M.; Kumar, S.; Behera, L.; Subramanian, V.K. A novel vision-based tracking algorithm for a
human-following mobile robot. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2016, 47, 1415–1427.
[CrossRef]

2. Renoust, B.; Le, D.D.; Satoh, S. Visual analytics of political networks from face-tracking of news video.
IEEE Trans. Multimed. 2016, 18, 2184–2195. [CrossRef]

3. Yao, H.; Cavallaro, A.; Bouwmans, T.; Zhang, Z. Guest editorial introduction to the special issue on group
and crowd behavior analysis for intelligent multicamera video surveillance. IEEE Trans. Circuits Syst.
Video Technol. 2017, 27, 405–408. [CrossRef]

4. Menze, M.; Geiger, A. Object scene flow for autonomous vehicles. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 3061–3070.

5. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Convolutional features for correlation filter based
visual tracking. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV)
Workshop, Santiago, Chile, 13–16 December 2015; pp. 58–66.

6. Fiaz, M.; Mahmood, A.; Jung, S.K. Tracking noisy targets: A review of recent object tracking approaches.
arXiv 2018, arXiv:1802.03098.

7. Qi, Y.; Zhang, S.; Qin, L.; Yao, H.; Huang, Q.; Lim, J.; Yang, M.H. Hedged deep tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 4303–4311.

8. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Hierarchical convolutional features for visual tracking.
In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV), Santiago,
Chile, 13–16 December 2015; pp. 3074–3082.

9. Fiaz, M.; Mahmood, A.; Javed, S.; Jung, S.K. Handcrafted and Deep Trackers: Recent Visual Object Tracking
Approaches and Trends. ACM Comput. Surv. (CSUR) 2019, 52, 43. [CrossRef]

10. Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H. End-to-end representation learning for
correlation filter based tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2805–2813.

http://dx.doi.org/10.1109/TSMC.2016.2616343
http://dx.doi.org/10.1109/TMM.2016.2614224
http://dx.doi.org/10.1109/TCSVT.2017.2669658
http://dx.doi.org/10.1145/3309665


Sensors 2020, 20, 3780 17 of 20

11. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL,
USA, 20–25 June 2009; pp. 248–255.

12. Zhou, X.; Yao, C.; Wen, H.; Wang, Y.; Zhou, S.; He, W.; Liang, J. East: An efficient and accurate scene text
detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5551–5560.

13. Jeon, M.; Jeong, Y.S. Compact and Accurate Scene Text Detector. Appl. Sci. 2020, 10, 2096. [CrossRef]
14. Yang, T.; Chan, A.B. Learning dynamic memory networks for object tracking. In Proceedings of the European

Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 152–167.
15. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks

for object tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam,
The Netherlands, 8–16 October 2016; pp. 850–865.

16. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings
of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016;
pp. 749–765.

17. Tao, R.; Gavves, E.; Smeulders, A.W. Siamese instance search for tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 1420–1429.

18. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

19. Noh, H.; You, T.; Mun, J.; Han, B. Regularizing deep neural networks by noise: Its interpretation and
optimization. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach,
CA, USA, 4–9 December 2017; pp. 5109–5118.

20. Song, Y.; Ma, C.; Gong, L.; Zhang, J.; Lau, R.W.; Yang, M.H. Crest: Convolutional residual learning for visual
tracking. In Proceedings of the IEEE International Conference on Computer Vision(ICCV), Venice, Italy,
22–29 October 2017; pp. 2555–2564.

21. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
26 June–1 July 2016; pp. 4293–4302.

22. Mueller, M.; Smith, N.; Ghanem, B. Context-aware correlation filter tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1396–1404.

23. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 6638–6646.

24. Choi, J.; Jin Chang, H.; Yun, S.; Fischer, T.; Demiris, Y.; Choi, J.Y. Attentional correlation filter network
for adaptive visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4807–4816.

25. Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning attentions: Residual attentional siamese
network for high performance online visual tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Late City, UT, USA, 18–22 June 2018; pp. 4854–4863.

26. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 25–27 June 2013; pp. 2411–2418.

27. Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE TPAMI 2015, 37, 1834–1848. [CrossRef]
28. Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark.

IEEE Trans. Image Process. 2015, 24, 5630–5644. [CrossRef]
29. Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the

European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016;
pp. 445–461.

30. Kristan, M.; Pflugfelder, R.; Lebeda, K. The Visual Object Tracking VOT2016 challenge results. In Proceedings
of the European Conference on Computer Vision (ECCV) Workshop, Amsterdam, The Netherlands,
8–10 October 2016; pp. 777–823.

http://dx.doi.org/10.3390/app10062096
http://dx.doi.org/10.1109/TPAMI.2014.2388226
http://dx.doi.org/10.1109/TIP.2015.2482905


Sensors 2020, 20, 3780 18 of 20

31. Kristan, M.; Leonardis, A.; Matas, J.; Felsberg, M.; Pflugfelder, R.; Cehovin Zajc, L.; Vojir, T.; Hager, G.;
Lukezic, A.; Eldesokey, A.; et al. The visual object tracking vot2017 challenge results. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1949–1972.

32. Marvasti-Zadeh, S.M.; Cheng, L.; Ghanei-Yakhdan, H.; Kasaei, S. Deep learning for visual tracking:
A comprehensive survey. arXiv 2019, arXiv:1912.00535.

33. Li, P.; Wang, D.; Wang, L.; Lu, H. Deep visual tracking: Review and experimental comparison.
Pattern Recognit. 2018, 76, 323–338. [CrossRef]

34. Bishop, C.M. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 7, 108–116.
[CrossRef]

35. Rifai, S.; Glorot, X.; Bengio, Y.; Vincent, P. Adding noise to the input of a model trained with a regularized
objective. arXiv 2011, arXiv:1104.3250.

36. Liu, X.; Cheng, M.; Zhang, H.; Hsieh, C.J. Towards robust neural networks via random self-ensemble.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 369–385.

37. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision(ICCV), Santiago, Chile, 13–16 December 2015;
pp. 3119–3127.

38. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

39. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems 30, Lake Tahoe, CA, USA,
3–6 December 2012; pp. 1097–1105.

40. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous
convolution operators for visual tracking. In Proceedings of the European Conference on Computer Vision
(ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 472–488.

41. Bhat, G.; Johnander, J.; Danelljan, M.; Shahbaz Khan, F.; Felsberg, M. Unveiling the power of deep
tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,
8–14 September 2018; pp. 483–498.

42. Han, B.; Sim, J.; Adam, H. Branchout: Regularization for online ensemble tracking with convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 3356–3365.

43. Yun, S.; Choi, J.; Yoo, Y.; Yun, K.; Young Choi, J. Action-decision networks for visual tracking with deep
reinforcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2711–2720.

44. Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with
convolutional neural network. In Proceedings of the International Conference on Machine Learning,
Lille, France, 6–11 July 2015; pp. 597–606.

45. Teng, Z.; Xing, J.; Wang, Q.; Lang, C.; Feng, S.; Jin, Y. Robust object tracking based on temporal and spatial
deep networks. In Proceedings of the IEEE International Conference on Computer Vision(ICCV), Venice,
Italy, 22–29 October 2017; pp. 1144–1153.

46. Fiaz, M.; Mahmood, A.; Jung, S.K. Deep Siamese Networks toward Robust Visual Tracking. In Visual Object
Tracking in the Deep Neural Networks Era; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78985-157-1.

47. Rahman, M.M.; Fiaz, M.; Jung, S.J. Efficient Visual Tracking with Stacked Channel-Spatial Attention Learning.
IEEE Access 2020, 8, 100857–100869. [CrossRef]

48. Lukezic, A.; Vojir, T.; Cehovin Zajc, L.; Matas, J.; Kristan, M. Discriminative correlation filter with channel
and spatial reliability. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6309–6318.

49. Fiaz, M.; Rahman, M.M.; Mahmood, A.; Farooq, S.S.; Baek, K.Y.; Jung, S.K. Adaptive Feature Selection
Siamese Networks for Visual Tracking. In Proceedings of the International Workshop on Frontiers of
Computer Vision, Kagoshima, Japan, 20–22 February 2020; pp. 167–179.

50. Cui, Z.; Xiao, S.; Feng, J.; Yan, S. Recurrently target-attending tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 1449–1458.

http://dx.doi.org/10.1016/j.patcog.2017.11.007
http://dx.doi.org/10.1162/neco.1995.7.1.108
http://dx.doi.org/10.1109/ACCESS.2020.2997917


Sensors 2020, 20, 3780 19 of 20

51. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Late City, UT, USA, 18–22 June 2018; pp. 7132–7141.

52. He, A.; Luo, C.; Tian, X.; Zeng, W. A twofold siamese network for real-time object tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Late City, UT, USA,
18–22 June 2018; pp. 4834–4843.

53. Huang, L.; Zhao, X.; Huang, K. Got-10k: A large high-diversity benchmark for generic object tracking in the
wild. arXiv 2018, arXiv:1810.11981.

54. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.;
Pflugfelder, R. The visual object tracking vot2015 challenge results. In Proceedings of the IEEE International
Conference on Computer Vision(ICCV) Workshop, Santiago, Chile, 13–16 December 2015; pp. 1–23.

55. Dong, X.; Shen, J. Triplet loss in siamese network for object tracking. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 459–474.

56. Fiaz, M.; Mahmood, A.; Jung, S.K. Convolutional neural network with structural input for visual object
tracking. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus,
8–12 April 2019; pp. 1345–1352.

57. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for
visual tracking. In Proceedings of the IEEE International Conference on Computer Vision(ICCV), Santiago,
Chile, 13–16 December 2015; pp. 4310–4318.

58. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H. Staple: Complementary learners for real-time
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1401–1409.

59. Choi, J.; Chang, H.J.; Fischer, T.; Yun, S.; Lee, K.; Jeong, J.; Demiris, Y.; Young Choi, J. Context-aware deep
feature compression for high-speed visual tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Late City, UT, USA, 18–22 June 2018; pp. 479–488.

60. Li, B.; Xie, W.; Zeng, W.; Liu, W. Learning to Update for Object Tracking With Recurrent Meta-Learner.
IEEE Trans. Image Process. 2019, 28, 3624–3635. [CrossRef]

61. Shen, J.; Tang, X.; Dong, X.; Shao, L. Visual object tracking by hierarchical attention siamese network.
IEEE Trans. Cybern. 2019, 50, 3068–3080. [CrossRef]

62. Zhang, Z.; Peng, H. Deeper and Wider Siamese Networks for Real-Time Visual Tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 4591–4600.

63. Kuai, Y.; Wen, G.; Li, D. Masked and dynamic Siamese network for robust visual tracking. Inf. Sci. 2019,
503, 169–182. [CrossRef]

64. Gao, M.; Jin, L.; Jiang, Y.; Guo, B. Manifold Siamese Network: A Novel Visual Tracking ConvNet for
Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1612–1623. [CrossRef]

65. Choi, J.; Kwon, J.; Lee, K.M. Deep meta learning for real-time target-aware visual tracking. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019;
pp. 911–920.

66. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef]

67. Choi, J.; Jin Chang, H.; Jeong, J.; Demiris, Y.; Young Choi, J. Visual tracking using attention-modulated
disintegration and integration. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4321–4330.

68. Du, Y.; Yan, Y.; Chen, S.; Hua, Y.; Wang, H. Object-Adaptive LSTM Network for Visual Tracking.
In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20–24 August 2018; pp. 1719–1724.

69. Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; Wang, S. Learning dynamic siamese network for visual
object tracking. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 1763–1771.

70. Zhang, J.; Ma, S.; Sclaroff, S. MEEM: Robust tracking via multiple experts using entropy minimization.
In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland,
6–12 September 2014; pp. 188–203.

http://dx.doi.org/10.1109/TIP.2019.2900577
http://dx.doi.org/10.1109/TCYB.2019.2936503
http://dx.doi.org/10.1016/j.ins.2019.07.004
http://dx.doi.org/10.1109/TITS.2019.2930337
http://dx.doi.org/10.1109/TPAMI.2014.2345390


Sensors 2020, 20, 3780 20 of 20

71. Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the
European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 254–265.

72. Huang, B.; Xu, T.; Jiang, S.; Chen, Y.; Bai, Y. Robust Visual Tracking via Constrained Multi-Kernel Correlation
Filters. IEEE Trans. Multimed. 2020. [CrossRef]

73. Gao, P.; Yuan, R.; Wang, F.; Xiao, L.; Fujita, H.; Zhang, Y. Siamese attentional keypoint network for high
performance visual tracking. Knowl. Based Syst. 2019, 2019, 105448. [CrossRef]

74. Li, P.; Chen, B.; Ouyang, W.; Wang, D.; Yang, X.; Lu, H. Gradnet: Gradient-guided network for visual object
tracking. In Proceedings of the IEEE International Conference on Computer Vision(ICCV), Seoul, Korea,
27 October–2 November 2019; pp. 6162–6171.

75. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with siamese region proposal
network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Late City, UT, USA, 18–22 June 2018; pp. 8971–8980.

76. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 39, 1561–1575. [CrossRef]

77. Yang, T.; Chan, A.B. Visual Tracking via Dynamic Memory Networks. IEEE Trans. Pattern Anal. Mach. Intell.
2019. [CrossRef]

78. Wang, N.; Song, Y.; Ma, C.; Zhou, W.; Liu, W.; Li, H. Unsupervised Deep Tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June
2019; pp. 1308–1317.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMM.2020.2965482
http://dx.doi.org/10.1016/j.knosys.2019.105448
http://dx.doi.org/10.1109/TPAMI.2016.2609928
http://dx.doi.org/10.1109/TPAMI.2019.2929034
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Deep Learning with Noise
	Deep Feature-Based Trackers
	Siamese Network-Based Trackers
	Attention Mechanism-Based Trackers

	The Proposed Input-Regularized Channel Attentional Siamese (IRCA-Siam) Network
	Fully Convolutional Siamese Network
	Input Regularization and Feature Fusion
	Channel Attention Network

	Experiments
	Implementation Details
	Comparison with State-of-the-Art Trackers
	Evaluation over OTB Datasets
	Challenge-Based Comparison
	Qualitative Analysis
	Evaluation over TC128 Dataset
	Evaluation over UAV123 Dataset
	Evaluation over VOT2016 and VOT2017 Dataset

	Ablation Study

	Conclusions
	References

