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Abstract: The reconstruction of fine-scale information from sparse data measured at irregular
locations is often needed in many diverse applications, including numerous instances of practical fluid
dynamics observed in natural environments. This need is driven by tasks such as data assimilation
or the recovery of fine-scale knowledge including models from limited data. Sparse reconstruction is
inherently badly represented when formulated as a linear estimation problem. Therefore, the most
successful linear estimation approaches are better represented by recovering the full state on an
encoded low-dimensional basis that effectively spans the data. Commonly used low-dimensional
spaces include those characterized by orthogonal Fourier and data-driven proper orthogonal
decomposition (POD) modes. This article deals with the use of linear estimation methods when
one encounters a non-orthogonal basis. As a representative thought example, we focus on linear
estimation using a basis from shallow extreme learning machine (ELM) autoencoder networks that
are easy to learn but non-orthogonal and which certainly do not parsimoniously represent the data,
thus requiring numerous sensors for effective reconstruction. In this paper, we present an efficient
and robust framework for sparse data-driven sensor placement and the consequent recovery of
the higher-resolution field of basis vectors. The performance improvements are illustrated through
examples of fluid flows with varying complexity and benchmarked against well-known POD-based
sparse recovery methods.
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1. Introduction

The challenge of multiscale flow sensing lies in the use of fewer sensors than there are
scales. Therefore, deciphering the true multiscale behavior of the system is often accomplished
through post-processing. In the case of simulations, the sensor (grid points) budgets are limited by
computational considerations; therefore, it is necessary to resort to coarse-grained models which in
turn are expected to produce nearly accurate outcomes as full-resolution models. Such a situation is
commonly encountered in atmospheric turbulence sensing closer to the surface—in a region called
the atmospheric boundary layer—where simulation-based research [1,2] has served as a key enabler
for the extraction of the explainable knowledge of coherent structures and underlying mechanisms.
In recent times, a major driver for the direct measurement of atmospheric turbulence data has been
the use of swarms of unmanned vehicles [3,4] flying in the atmosphere, whose capability to extract
the wind velocity vectors [5,6] and turbulent statistics of the atmospheric boundary layer [7] have
been demonstrated using simulations. This current numerical exploration from our group is one step
towards the ultimate goal of the sparse sensing of turbulent fields using unstructured measurements
within large flow fields leveraging unmanned aerial vehicle dynamics. In such practical situations
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as those discussed above, measurement data represent the absolute truth and are often acquired
from very few probes, limiting their in-depth analysis. A common recourse is to combine such sparse
measurements with physics-based priors, either in the form of idealized simulations (data assimilation),
phenomenology or knowledge of a sparse basis to recover detailed information (sparse recovery).

A second example arises from situations (e.g., computational simulations) in which the data are
often in surplus and consequently offer the best avenue for the in-depth analysis of realistic flows
due to the high density of computational grid probes. With the growth in computing power and the
resulting ability to generate big data, it is easy to recognize the need for rapid low-dimensional analysis
tools [8–12] and evolutionary models [12–16] and regenerate the high-dimensional state without
a significant loss of information [17]. Thus, tools for encoding information into a low-dimensional
feature space complement sparse recovery tools that decode compressed information. This, in essence,
is a key aspect of leveraging machine learning for fluid flow analysis [18,19] and broadly speaking fo
the recovery of coarse-grained information [20].

This work focuses on the algorithmic aspects of recovering a high-dimensional field from sparse
data through data-informed sensor placement for accurate reconstruction of the full system state
in situations such as those listed above. Although their deployment in practical settings is not
demonstrated here, the underlying principles are expected to guide users of the technology.

Regarding related work on linear estimation in the basis space, at a conceptual level,
sparse recovery is deeply connected to compressive sensing (CS) [21–24] which has made it possible
to directly sample [18] data in real-time without having to collect high-resolution information and
then perform downsampling. Of course, in the case of direct sampling, the recovery algorithm
needs a generic or data-driven basis in which the data are sparse. The recovery of fine-scale
information from sparse data has been gaining traction in various manifestations including gappy
proper orthogonal decomposition (GPOD) [25,26], Fourier-based compressive sensing (CS) [21–24] and
Gaussian kernel-based kriging [27–29]. A tangential application of such ideas is in the acceleration of
nonlinear model order reduction using sparse sampling for hyper-reduction [30–33]. Sparse recovery
techniques such as GPOD [25,26,30] utilize the knowledge of the POD basis computed offline
from the data ensemble to recast the reconstruction problem in the feature space and solve it
using least-squares minimization approaches. Derivatives [25,27,30,34] of this approach include
an iterative formulation [25,27,30,34] to successively approximate the POD basis in the event that
the low-dimensional basis is not known a priori. Nevertheless, these iterative approaches remain
impractical on account of their limited accuracy and computational cost.

While data-driven POD-based approaches can optimally represent the data, they do not generalize
well. Therefore, their use in practice requires a priori knowledge of the basis vectors. One way to
overcome this stringent requirement is to adopt computational simulations of the twin dynamical
system or model simulations to build the basis library. Nevertheless, such methods find tremendous
value in data-driven modeling (machine learning, Koopman operator models [13,35]) applications and
the nonlinear model order reduction [10] of systems that are statistically stationary.

Alternatively, one can use a generic basis such as Fourier or wavelets that may not always be
effective at dimensionality reduction on a data-driven basis, especially for inhomogeneous fluid flow
phenomena with multiple scales and sharp gradients. The resulting higher-dimensional feature space
requires more sensors for accurate reconstruction. Consequently, such flow systems are invariably
under-sampled during sensing, partially due to the algorithm. To recover the higher-dimensional
state, the best sparse solution is often sought instead of a least-squares estimate that overfits to the
undersampled data. The success of compressive sensing (CS) [21–24] lies in achieving this using
l1-norm regularized least-squares reconstruction.

Sparsity-promoting l1 regularized reconstruction can also be combined with a data-driven POD
basis, such as in the reconstruction of sparse flow fields from particle image velocimetry (PIV) data [18]
and pressure measurements around a cylinder surface [19]. Thus the choice of basis has an impact on
algorithmic design.



Sensors 2020, 20, 3752 3 of 31

Regarding sensor placement and sparse recovery, in addition to the choice of the basis space and
its relationship with the inversion algorithm, the choice of sparse measurement locations impacts
sparse recovery. The sparse measurement locations determine what information pertaining to the
physical system is collected and in turn determines the quality of the sparse recovery. In general,
identifying “optimal” sensing locations for spatio-temporal fields is an NP-hard problem and an open
topic of research. However, greedy smart sampling methods have been reported in the literature
such as using extrema of POD-basis vectors [36,37], hyperreduction approaches such as DEIM for
sensing [31,38] and objective-based matrix condition number minimization (or maximization, as the
case may be) using both explicit [26,39] and submatrix volume maximization using QR-pivoting [40].
All these methods have primarily been employed with simulation or experimental (using particle
image velocimetry (PIV)) data, where the distributed information of the field is available to identify
sensor placement. In addition, there is a vast amount of interesting literature on the greedy sensing
of network dynamics with discrete events where extreme event detection, such as faults, is required;
for example, water [41–43] or communication networks. Given that the interest in this paper is
“super-resolution” or the sparse recovery of continuous fields from sparse measurements, we focus on
techniques such as DEIM and QR-pivoting-based matrix conditioning.

Contribution of This Work

In this article, we explore the use of an arbitrary data-driven basis for sensor placement and sparse
recovery applications. Such situations may be encountered in machine learning applications where
basis spaces that do not optimally span the data may be readily available from other stages of the
data science workflow. An example of such a basis is the modes from dynamic mode decomposition
(DMD) [35] or projections available in extreme learning machine (ELM)-based autoencoders [44–46],
among others. Such DMD and ELM modes are known to be non-orthogonal, unlike POD-modes,
and their suitability for data-driven sensor placement/sparse recovery has not been explored to
our knowledge. Further, the arbitrary non-orthogonal basis suffers from a lack of parsimony for
low-dimensional representation and a lack of inherent hierarchy, resulting in larger sensor budgets,
inaccurate reconstruction, ineffective sensor placement due to basis non-orthogonality and the
enhanced complexity of the inverse problem solution. To this end, we develop a framework that
combines the Gram–Schmidt orthogonalization of the arbitrary data-driven basis with well known
methods for data-driven sensor placement and linear sparse estimation.

We systematically analyze the accuracy of this integrated sparse reconstruction (SR) framework
by comparing it with the corresponding POD-based SR—a standard approach for the linear sparse
estimation of fluid flows. The analysis focuses on comparing the basis structure, the basis dimension
for a chosen representation accuracy, the basis hierarchy for the chosen datasets and the interplay
of SR accuracy with sensor budget and placement. In particular, the effect of sensor placement
on sparse recovery has barely been explored in the literature and provides an insight into the
practical limitations of sparse recovery design. In this way, the current effort builds on our earlier
research [47,48] that characterized this interplay. For this study, we chose two use cases to demonstrate
the methods: a low-dimensional cylinder wake flow at a laminar Reynolds number (Re = 100) and
higher dimensional sea surface temperature field from NOAA.

The rest of manuscript is organized as follows. In Section 2, we review the basics of sparse
reconstruction theory and different choices of data-driven bases including POD and ELM. Section 3
discusses the role of measurement locations and reviews the approaches for data-driven sensor
placement. In Sections 4 and 6, we summarize the different algorithms employed for SR and training
data generation. Section 7 compares the structure of the different data-driven bases, while Section 8
compares their performance for the different use cases. We summarize the major conclusions from this
study in Section 9.
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2. Recovering Resolved Fields from Sparse Data Using Linear Estimation

For certain high-resolution data of fluid flow at any particular instant, x ∈ RN , the corresponding
sparse representation may be written as x̃ ∈ RP with P� N. Then, the sparse reconstruction problem
is to recover x given x̃ along with information of the sensor locations in the form of the measurement
matrix C ∈ RP×N as

x̃ = Cx. (1)

Often, in practice, it is only the sensor locations that are available; therefore, an imaginary
reconstruction grid may be designed to suit the desired end goals. In this way, the measurement matrix
C shows how the sparse data x̃ (of dimension P) are downsampled from better-resolved sensor data,
x (of dimension N). In this article, we focus on vectors x that have a sparse representation in a basis
space Φ ∈ RN×K such that K � N and yielding x = Φa. Naturally, the recovery of lost information is
never absolute, as the reconstruction problem is ill-posed; i.e., there are more unknowns than equations
in Equation (1), which rules out least-squares solutions such as x = C+ x̃.

2.1. Sparse Reconstruction Theory

Sparse reconstruction has theoretical foundations in inverse problem frameworks [49] applied
to diverse fields such as geophysics [50,51] and image processing [52]. Many signals tend to be
“compressible” or sparse in some K-sparse bases Φ; i.e.,

x =
Nb

∑
i=1

φiai or x = Φa, (2)

where Φ ∈ RN×Nb and a ∈ RNb with K significant or non-zero elements. In general, K is not known
a priori for an unknown system with only sparse data available. Further, it is not always obvious
which K of the Nb basis vectors φi results in the most accurate reconstruction. A prudent and common
approach is to adopt a more exhaustive basis set of dimension Nb ≈ P > K for a desired K, all of which
will be naturally smaller than the dimension N of the full-field data, and then to search for the optimal
K-sparse solution. In practice, it makes sense to have K, Nb � N, especially if the choice of basis is
optimal, such as for data-driven POD modes. Therefore, the choice of Φ, K, N and Nb represents the
overall problem design. While standard image compression techniques (with transform coding in
JPEG and JPEG-2000 compression standards [53]) adopt a sample-and-then-compress approach—i.e.,
they collect a high-resolution sample, transform it to a Fourier or wavelet basis space and retain
only a suitable K-sparse structure—techniques such as compressive sensing [21,23,54–56] and sparse
reconstruction [12,17,26,39,48] directly infer the K-sparse coefficients by essentially combining the
steps in Equations (1) and (2) as below:

x̃ = CΦa = Θa, (3)

where Θ ∈ RP×Nb relates the basis coefficients a in the feature space and the sparse data x̃ in the
physical space. The challenge of recovering x from the underdetermined system in Equation (1) arises
from C being ill-conditioned and N � P. However, when x is sparse in Φ, the recovery of a ∈ RK

using Equation (3) becomes feasible as K ∼ P; that is, solving for K unknowns (in a) using P constraints
(x̃), as per Equation (6). Commonly, the s-norm regularized least squares error s is minimized, which is
chosen appropriately to recover x as per Equation (2). The l2-regularized method estimates a such that
the expression in Equation (4) is minimized.

‖x̃−Θa‖2
2 + λ‖a‖2

2. (4)
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The exact expression for a uses the left pesudo-inverse of Θ, as given in Equation (4),

a = (Θ)+ x̃, (5)

where Θ+ =
(
ΘTΘ + λI

)−1
ΘT x̃ . This regularized least-squares approach is nearly identical to

the GPOD algorithm of Everson and Sirovich [30] when Φ is the POD basis. However, X̃ in GPOD
contains zeros as placeholders for all the missing elements, whereas the above formulation retains
only the measured data points. A possible method to enhance the sparsity of the resulting a is
to minimize ‖a′‖0; i.e., minimize the number of non-zero elements such that Θa′ = x̃. It has
been shown [57] that P = K + 1 (P > K in general) independent measurements are sufficient
to recover the sparse coefficients with high probability using l0 reconstruction. On the other
hand, when employing P ≤ K independent measurements, the probability of recovering the
sparse solution is diminished. Compressed sensing [58–61] overcomes the computational difficulties
with NP-complex l0-reconstruction using l1 methods that guarantee the near-exact recovery
of K-sparse coefficients. The reconstruction of l1 is a relatively simple convex optimization
problem as compared to l0 and solvable using linear programming techniques such as basis
pursuit [21,54,62], shrinkage [63] and sequential thresholded least-squares approaches [64].
These different methods solve the constrained reconstruction problem in Equation (6)
with complexity O(N3) for Nb ≈ N at the cost of needing P > O(Klog(Nb/K))
measurements [21,54,58] to exactly reconstruct the K-sparse vectors.

l1 reconstruction : a = min ‖a′‖1 such that Θa′ = x̃

l1 cost function to minimize : min ‖x̃−Θa‖2
2 + λ‖a‖1

(6)

As reported in prior efforts [47,48], the interplay between the design choices of Nb, K, P and the choice
of algorithm are non-trivial and impact the reconstruction quality. For clarity, Nb is the candidate
basis dimension, meaning that Nb / N and K is the desired system reconstruction dimension, which
determines the best possible sparse recovery quality; P is the available sensor budget. Often, P ≥ K
is required for reasonably accurate sparse recovery. In addition to the sensor budget, the sensor
placement also plays an important role as it is tied to the structure of individual basis functions in Φ to
determine the condition of Θ. Therefore, it makes sense to ensure the sensor–basis vector relationship
helps improve the sparse recovery quality. Often, this involves placing sensors in such a way that the
measurement basis (rows of C) is incoherent with the data basis Φ. Smart sensor placement strategies
provide a more structured approach by taking into account the underlying physics and coherence of
the data.

2.2. Computation of Data-Driven Basis

Given the central role that basis choice plays in the sparse recovery of continuous fields,
especially with limited data, it is important to consider φis that are customized to the data. Among other
factors, such as the carrying signatures of the physical phenomena, this also results in a parsimonious
representation of the data. In fact, it has been shown [18] that the data-driven POD basis outperforms
the generic cosine basis when performing reconstruction with small amounts of data, while the
accuracy becomes comparable with more data. In this work, we explore two classes of data-driven
spaces, namely POD and extreme learning machine (ELM) bases, with POD-based SR serving as a
benchmark for data-driven SR.

Proper Orthogonal Decomposition (POD) Basis

Proper orthogonal decomposition (POD) is a popular approach for dimensionality reduction.
The POD modes are computed from the eigendecomposition of the symmetric, positive,
definite two-point spatial (or temporal) correlation tensor of the data snapshots. The appropriately
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scaled eigenvectors represent the singular vectors or POD modes in space or time—as the case may
be—for a given dataset. These POD modes or singular vectors form an orthogonal basis that optimally
represents the data snapshots in terms of the least-squares approach. Therefore, the detailed flow field
can be reconstructed using only a few (relative to the system state dimension) coefficients; therefore,
this is attractive for dimensionality reduction. Obviously, not all systems have a fast decaying singular
value spectrum; therefore, the extent of dimension reduction is problem-dependent. Given that fluid
mechanics problems typically have a much larger state dimension than the number of snapshots
(N � M), the POD problem is reformulated as the eigendecomposition of the two-point temporal
correlation tensor of dimension M×M [65]. Denoting the full state data snapshots as X ∈ RN×M

(different from x ∈ RN) where N, M are the state and snapshot dimensions, the symmetric temporal
correlation matrix C̄M ∈ RM×M (Equation (7)) can be built and the eigendecomposition performed as
shown in Equation (8).

C̄M = XTX. (7)

C̄MV = VΛ. (8)

where V = [v1, v2, . . . , vM] represent the eigenvectors and the diagonal elements of Λ denote the
eigenvalues [λ1, λ2, . . . , λM]. . The POD/singular value decomposition (SVD) modes Φ and coefficients
a (for the linear expansion as shown in Equation (2)) can then be estimated as per Equations (9) and (10).

Φ = XV
√

Λ−1. (9)

a = ΦTX. (10)

The method of snapshots limits the maximum number of POD basis vectors to M, which is typically
smaller than the dimension of full state vectors, N. Further dimension reduction may be achieved
using singular value thresholding such that K < M modes are retained.

2.3. ELM Autoencoder Basis

In this paper, we explore methods for dealing with unconventional data-driven bases that are
commonly encountered in sparse data-driven modeling. For example, it is not uncommon to adopt
radial basis functions (RBFs) to generate continuous representations of discrete measurements due to
their suitability for representing a wide variety of unknown flow physics [11]. In this work, we leverage
bases generated from extreme learning machines (ELMs) [44,45]—a class of shallow neural network
regressors employing a Gaussian prior that was used as encoder–decoder maps for a given data set by
Zhou et al. [46,66,67]. The ELM-autoencoder is a single hidden-layer feedforward neural network
(SLFN) with randomized projection followed by the Gaussian activation of the data onto hidden nodes
and a linear map to the output (the same as the input). By setting the number of hidden nodes to a
small fraction of the input/output feature dimension, we generate sparse representations of the state,
as shown in Figure 1. Given snapshots of data X ∈ RN×M (or simply xj ∈ RN for j = 1 . . . M), we relate
the full state data to a K-dimensional feature space vector using the ELM autoencoder, as shown below
in Figure 1 and Equation (11).

xj =
K

∑
i=1

φia
j
i =

K

∑
i=1

φihi(xj) =
K

∑
i=1

φig(wT
i xj + bi) (11)

where xj ∈ RN is a snapshot of the input data with j as the snapshot index, wi ∈ RN is the random
input weight vector, bi is the random bias, g(.) is the activation function (chosen as the Gaussian;
i.e., g(z) = e−(z

2)) operating on the linearly transformed input state to yield and hi and φi ∈ RN

(Φ ∈ RN×K) are the weights that map hidden layer features to the output. In matrix form, the linear
Equation (11) can be written as in Equation (12), where a is the matrix of outputs (with elements aj

i)
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from the hidden layer and h(xj) = [h1(xj), · · · , hk(xj)] = [aj
1, · · · , aj

k], which represents the output
corresponding to the input snapshot xj.

Figure 1. Schematic of the extreme learning machine (ELM) autoencoder network. In this architecture,
the output features are the same as input features.

X = Φa; a =

 a1
1 · · · a1

k
...

. . .
...

aM
1 · · · aM

k


T

=

 h(x1)
...

h(xM)


T

=

 h1(x1) · · · hk(x1)
...

. . .
...

h1(xM) · · · hk(xM)


T

(12)

The output weights in matrix form for a given X are shown in Equation (13).

X =

 x1
1 · · · x1

N
...

. . .
...

xM
1 · · · xM

N


T

; Φ =

φ1
1 · · · φN

1
...

. . .
...

φ1
k · · · φN

k


T

(13)

Using Equation (12), Φ is estimated in a least squares sense as in Equation (14).

Φtrain = Φ = Xa+ = Xa+train (14)

The columns of Φ represent the ELM-basis, and the density of the hidden layer determines the
effective system dimension. However, a major drawback of this basis is the lack of orthogonality.
It is well known that orthogonal bases yield parsimonious representations of the data as compared
to their non-orthogonal counterparts, therefore requiring fewer sensors for a similar reconstruction
quality [47]. In addition, basis orthogonality is useful for data-driven sensor placement using methods
such as discrete empirical interpolation method (DEIM) [31]. To this end, we extend the ELM basis
generation with a Gram–Schmidt procedure (Algorithm 1) to generate an orthogonal ΦELM−GS which
spans more or less the same subspace as ΦELM. This particular step represents a one-time cost but can
result in greatly improved properties for sparse recovery, as will be seen from the results presented in
the later sections.
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Algorithm 1: Gram–Schmidt Orthogonalization of ELM Basis (ELM-GS)
input :N dimensional non-orthogonal basis [φ1,φ2,. . . ,φK]
output :N dimensional orthogonal basis [φorth

1 ,φorth
2 ,. . . ,φorth

K ]

1 Define the projection: Π(φ, φorth) =

〈
φorth, φ

〉〈
φorth, φorth

〉
2 for k = 1 to K do
3 if k = 1 then
4 φOrth

k = φ1;
5 else
6 φOrth

k = φk - ∑k−1
j=1 Π(φ, φorth)φk

7 end
8 end

3. Sensor Placement, Data Basis and Incoherence

It is well known that recovery quality is tied to sensor placement (structure of measurement
matrix, C), budget and the choice of basis, Φ [48]. Specifically, the sensor placement needs to be
incoherent with respect to the low-dimensional basis Φ [23], and this is usually accomplished by
using a randomized measurement matrix for Φ. In this study, we restrict ourselves to single-pixel
measurements with C of the form C← [e$1 , e$2 , . . . , e$p ]

T , where e$p is column vector with zeros and
a value of one at the sensor index p. The purpose of making C (Equations (1)–(3)) incoherent with
respect to the basis Φ is to ensure that the measurements distributed in space excite the different modes
and ensure CΦ is not rank-deficient. This is usually quantified in terms of the coherency number, µ,
as shown in Equation (15) [68],

µ(C, Φ) =
√

N · max
i≤P, j≤K

∣∣〈ci, Φj〉
∣∣ , (15)

where ci is a row vector in C (i.e., ci = e$j ) and φj is a column vector of Φ. µ which typically ranges
from 1 (incoherent) to

√
N (coherent). The smaller the µ, the fewer measurements are needed to

reconstruct the data. There are many metrics that can be leveraged for improving sensor placement.
However, identifying a truly optimal sensor arrangement is combinatorially hard and therefore
an active area of research. There is a current search for greedy sensor placement algorithms with
near-optimal performance by leveraging a variety of optimization surrogates [26,37,69,70]. In the
context of flow reconstruction, sensor placement can be viewed as a problem of identifying and
activating only a few rows of the basis matrix Φ such that the matrix Θ (for P = K = Nb) or its
variants M = ΘTΘ or M = ΘΘT (depending on if P > K = Nb or P < K = Nb respectively) have low
condition numbers, as schematically illustrated in Figure 2.

Figure 2. Schematic illustration of sparse sensor placement. The pastel-colored rectangles represent
rows activated by the sensors denoted in the measurement matrix through dark squares.
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In this study, we consider two different greedy approaches for nearly optimal sensor placement in
sparse recovery applications, namely the discrete empirical interpolation method (DEIM) [31,71] and
reduced matrix QR-factorization with column pivoting [40] instead of choosing sensors at random
locations within the region. These approaches are summarized below for completeness.

The most simple and efficient sensor placement strategy is to sample at random locations by
choosing the first P values from a random permutation of the entire sensor array of dimension N.
Several ideas can also be adopted, such as K-means clustering, as was used in [12].

Sensors generated from the pivot matrix in QR factorization (with column pivoting) are designed
to minimize the condition number of the matrix Θ or M = ΘΘT to improve the full state recovery.
Specifically, the reduced matrix QR factorization [72] decomposes any given real matrix A ∈ RS×T

with a full column rank into a unitary matrix Q ∈ RS×T and an upper triangular matrix R ∈ RT×T .
QR factorization with column pivoting yields AD = QR, with D ∈ RT×T being a square column
permutation matrix containing ones and zeros such that the diagonal values of R , rii form a decreasing
sequence. Therefore, choosing the first P columns of A and first P rows of D maximizes the determinant
of the submatrix AD for a given budget P. Given that the measurement matrix C selects columns
of ΦT (or rows of Φ) and interpreting AD as ΘT = ΦTCT , the connection between the permutation
matrix D and the measurement matrix C can be directly observed. Using C = DT ensures that the
submatrix volume of Θ is maximized and its condition number minimized. We refer the reader to the
work presented in [40,48] for a more detailed discussion of the algorithm.

In contrast, the discrete empirical interpolation method (DEIM) [31,71] iteratively tests the
linear dependence of the columns of Θ = CΦ to identify each sensor location. Here, we identify
interpolation points (with indices $j) with the most linear dependence error relative to previously
determined interpolation points. The primary idea behind DEIM is to estimate a high-dimensional
state using information at sparsely sampled interpolation points which can be adopted for sensor
placement in sparse recovery. While the sequence of input bases is not critical for the QR-pivoting
based approach, it is important for DEIM. Therefore, the sensor placement will depend on basis
choice. Secondly, the orthogonality of the basis ensures the interpolation indices are hierarchical and
non-repeating. Therefore, the sensor placement methods are not as effective with non-orthogonal bases.

4. Sparse Recovery Algorithm

In addition to basis generation and data-driven sensor placement, the choice of linear estimation
approaches is also critical (Section 2.1). This choice depends on the combination of sensor budget
and basis dimension. In this work, we adopt the l2 sparse reconstruction (summarized through
Equations (3) and (4)) with K ≤ M basis vectors (Φ), which is also the dimension of the feature
vector a. Least-squares reconstruction demands the candidate basis dimension, Nb, be the same as K,
the reconstruction dimension. The naming convention adopted is as follows: xj ∈ RN denotes the
instantaneous jth full flow state with the entire dataset of M snapshots denoted by X ∈ RN×M.
The algorithm used in this work applies to both single and batch-style reconstruction in series
and parallel.

One can construct the measurement matrix—i.e., C ∈ RN×N or C ∈ RP×N—depending on the
dimension of the sparse data vector; that is, whether x̃j ∈ RN or RP. In this work, we consistently use
the high-dimensional version of x̃j which is similar to the earlier work on gappy POD methods [30].
For high-resolution data xj ∈ RN with a chosen basis of φk ∈ RN , the low-dimensional features,
aj ∈ RK, are obtained as per Equation (16). We also define the masked (incomplete) data x̃j ∈ RN ,
corresponding measurement matrix C ∈ RN×N and mask vector m ∈ RN . Since the GPOD results
in a larger measurement matrix (N × N ) with numerous rows of zeros, the mask vector (containing
1s and 0s) bypasses the added computational complexity by operating on xj through a point-wise
multiplication operator < · >; i.e., x̃j =< mj · xj >, where each element of xj multiplies with the
corresponding element of mj. This compact representation allows the mj to be different for each
snapshot if desired.
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xj =
K

∑
k=1

φkaj
k; x̃j =< m · xj >= Cxj. (16)

In SR, we recover the full data from the masked data given in Equation (17) by estimating the
coefficients āj (in the l2 sense) with the basis φk generated offline. As the masked basis vectors are not
necessarily orthogonal, the coefficient vector āj is approximated by minimizing the least-squares error
Ej (Equation (18)).

x̃j ≈ m
K

∑
k=1

āj
kφk. (17)

Ej =

∣∣∣∣∣
∣∣∣∣∣x̃j −m

K

∑
k=1

āj
kφk

∣∣∣∣∣
∣∣∣∣∣
2

2

=
∣∣∣∣∣∣x̃j −m · Φāj

∣∣∣∣∣∣2
2
=
∣∣∣∣∣∣x̃j − CΦāj

∣∣∣∣∣∣2
2
=

∣∣∣∣∣
∣∣∣∣∣x̃j −

K

∑
k=1

āj
kφ̃k

∣∣∣∣∣
∣∣∣∣∣
2

2

. (18)

where m is multiplied point-wise with each column of Φ to yield φ̃k. The above formulation is valid
for a case in which the measurement locations are static. In the case of the dynamically evolving sensor
placement, the mask vector mj changes with every snapshot x̃j for j = 1..M. The error Ej represents
the individual snapshot reconstruction error that is be minimized to estimate the features āj. It is easily
seen that one has to minimize the different Ejs separately to estimate the entire coefficient matrix,
ā ∈ RK×M for the entire batch of snapshots. In the above formulation, Φ̃ is analogous to CΦ = Θ in
Equation (3).

To minimize Ej, its derivative is computed with respect to āj resulting in the normal equation given

by Māj = f j where Mk1,k2 = 〈φ̃k1, φ̃k2〉 or M = Φ̃TΦ̃ and f j
k = 〈x̃j, φ̃k〉 or f j = Φ̃T x̃j. The recovered

solution is given by xSR
j =

K
∑

k=1
φk āj

k.

4.1. Sequential Thresholding for l1 Regularized Least Squares

Two situations commonly need to be handled: (i) a case with very few sensors—i.e.,
P� Nb—requiring the effective recovery dimension K to be smaller than the candidate basis
dimension Nb; or (ii) a case in which the candidate basis has no inherent ordering—a key enabler for
incrementally better reconstruction. In both situations mentioned above, the algorithm needs to be
able to identify the K-best coefficients a for sparse recovery, which in turn requires sparsity-promoting
l1 norm minimization reconstruction as given by Equation (6) . In this work, we adopt an iterative
sequential least-squares thresholding framework to extend the least-squares algorithm used above,
and this is presented in Algorithm 2. The idea here is to repeatedly “shrink” the least-squares
coefficients using a threshold hyperparameter.
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Algorithm 2: l1-based algorithm: Sparse reconstruction with known basis, Φ.

input :Full data ensemble X ∈ RN×M

Incomplete data X̃ ∈ RN×M

The mask vector m ∈ RN .
The chosen sparsity Ksparse

output :Approximated full data X̄ ∈ RN×M

1 Compute masked basis function: Φ̃ = mΦ, where Φ̃ ∈ RN×K f ull

2 Initial guess for Coefficients ā = pinv(Φ̃) ∗ X̃, where ā ∈ RK f ull×M

3 Set a tolerance ε
4 while ‖ānew − āold‖2 > ε do
5 for each snapshot index j ≤ M do
6 Create a row vector λ where λj = kth

sparse highest value from
absolute(āj);

7 end
8 for j ≤ M do
9 for each element in āj index i ≤ K f ull do

10 if āj
i < λj then

11 Put āj
i = 0 ;

12 Remove ith column from Φ̃;
13 end
14 end
15 āj(places of non zero elements) = pinv(Φ̃) ∗ x̃j ;
16 end
17 ānew = ā ;
18 end
19 Approximated full data x̄ = Φ ∗ ānew

5. Algorithmic Complexity

In this brief section, we present the algorithmic complexity of the above methods. Computing the
POD basis requires O(N × M2) operations, where N, M are the full state and snapshot dimensions,
respectively. The subsequent cost of sparse recovery is O(N× K×M) for both methods, where K ≤ M is
the desired recovery dimension. In practical flows with a low-dimensional structure, POD is expected
to result in a smaller K than other classes of a data-driven basis. This helps limit the sensor budget and
reconstruction cost. Further, since the snapshot dimension (M) is tied to the basis dimension (K), the larger
the K, the more snapshots (of dimension M) are needed, resulting in a higher computational cost.

The complexity of sensor placement depends on the method chosen. For example,
QR factorization with column pivoting requires O(N3) operations for an N × N matrix and O(NM2)

for an N ×M matrix. The DEIM method involves a complexity of O(NM3) when retaining M POD
modes and identifying M sensors with a full state dimension of N. These estimates are consistent with
our experience of deploying DEIM and QR-pivoting approaches on the datasets reported in this work.

6. Sparse Recovery Use Cases

To demonstrate the performance of sparse recovery using the ELM-GS basis for different sensor
placements, we consider two representative flow fields, namely a low-dimensional cylinder wake
flow and a more complex geophysical field of sea surface temperature data from NOAA. The SR
performance using ELM-GS basis is compared with that of POD-based SR.

6.1. Low-Dimensional Cylinder Wake Flow

As the first use case, we consider the data-driven sparse reconstruction of the cylinder wake
flow fields at a Reynolds number of Re = 100 involving unsteady wake dynamics (see Figure 3).
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The two-dimensional flow data is modeled using a higher-order spectral Galerkin framework [73]
Nektar++ to capture the vortex roll-up process and eddying structure. Specifically, we adopt a fourth
order spectral expansion within each element to solve the incompressible Naiver–Stokes equations,

∇ · u = 0, (19a)

∂u
∂t

+ u · ∇u = −∇P/ρ + ν∇2u, (19b)

where u and v are horizontal and vertical velocity components, P is the pressure field and ν is the fluid
viscosity. The simulation domain used extends over−25D ≤ x ≤ 45D and−20D ≤ y ≤ 20D, where D
is the diameter of the cylinder. To reduce the state dimension, we consider a reduced domain of extent
−2D ≤ x ≤ 10D and −3D ≤ y ≤ 3D that encompasses the key flow dynamics. The resulting state
dimension is ∼24,000 for each variable, and data snapshots are recorded every ∆t = 0.2. The mesh
distribution ensures that the thin shear layers near the surface are resolved, as is the transient wake physics.

The time-evolution of the cylinder wake flow (Figure 3) shows the wake instability and limit-cycle
dynamics (Figure 4). The rapid decay of the singular value spectrum (Figure 5) clearly shows that the
system evolves in a low-dimensional space. In this study, we use 300 snapshots collected (every 0.2
non-dimensional time units) over 60 non-dimensional times, T = Ut

D which represents ∼10 cycles of
the dynamics.

(a) T = 25 (b) T = 68 (c) T = 200

Figure 3. Isocontour plots of the stream-wise velocity component for the cylinder flow at
Re = 100 at T = 25, 68, 200, showing the evolution of the flow field. Here, T represents the time
non-dimensionalized by the advection time-scale.

(a) 2D view (b) 3D view

Figure 4. The temporal evolution of the first three normalized proper orthogonal decomposition (POD)
coefficients for the limit cycle cylinder flow at Re = 100.
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Figure 5. Singular value spectrum of the data matrix for both the cylinder wake flow at Re = 100 and
the sea surface temperature(SST) data.

6.2. Global Sea Surface Temperature (SST) Data

Representing a more complicated use case for the methods presented in this article, the sea surface
temperature (SST) dataset represents synoptic-scale ocean turbulence and is made available by the
National Oceanic & Atmospheric Administration (NOAA) (https://www.esrl.noaa.gov/psd/).

The data represent a filtered turbulent field as they represent the daily mean temperature from
high-resolution blended analysis for the year 2018. The dataset includes daily snapshots (for 365 days)
of a temperature field with a spatial resolution of 0.25◦ longitude × 0.25◦ latitude, resulting in a total
state dimension of 720× 1440. Of this full state dimension of 1,036,800 observations, only 691,150
(≈69%) measurements correspond to non-landed regions and are used here. The singular value spectra
(Figure 5) for this dataset shows a slow decay of eigenvalues as compared to the low-dimensional wake
flow and is therefore higher dimensional. In spite of the turbulent nature of this data, the dynamics of
the POD features in Figure 6 show nearly periodic evolution at the large scales.

(a) Temporal evolution of POD features (b) Phase plot

Figure 6. The temporal evolution of the first three normalized POD coefficients for the sea surface
temperature (SST) data.

7. Assessment of Dimensionality, Basis Structure and Hierarchy for Sparse Recovery

7.1. Dimensionality

Data-driven bases vary in their capacity to represent full state information as quantified through
the number of basis vectors of a given basis set to represent the full state up to a desired accuracy; i.e.,
the system dimensionality in a given basis space. For a POD basis that is energy-optimal, the knowledge
of the singular value spectrum (Equation (8)) precisely informs us of the energy content in each

mode and also allows for characterization of the cumulative energy, EK =
K
∑

k=1

λk
(λ1+λ2+···+λM)

× 100

as retained in the reconstruction up to a desired mode K. For the low-dimensional limit cycle

https://www.esrl.noaa.gov/psd/
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wake dynamics at Re = 100, two and five POD modes (of the 300 basis vectors computed) are
required to capture 95% and 99% of the energy content (variance), respectively. We also compute
errPOD

K =
∣∣∣∣X−ΦPOD

K×N aPOD
K×M

∣∣∣∣
2, where ΦPOD

K×N , aPOD
K×M represents the matrix comprising K POD vectors

and the corresponding coefficients for the different snapshots, respectively. Relating the system
dimension with energy from the singular value spectrum and reconstruction error offers a way to
compare different bases that may be “ordered” and “unordered” in some way.

In such situations, characterizing the system dimension K through the reconstruction error
(with respect to the true data) offers a way forward. For example, in the case of ELM, the training
error from the ELM network (Equation (14)) may be used. The error is quantified according to the
Frobenius norms denoted by errELM

K =
∣∣∣∣X− XELM

K

∣∣∣∣
2 and errELM−GS

K =
∣∣∣∣∣∣X− XELM−GS

K

∣∣∣∣∣∣
2

using

the K-modal reconstruction of the flow fields, XELM
K = ΦELM

train,K×N aELM
train,K×M = ΦELM

K×N aELM
K×M and

XELM−GS
K = ΦELM−GS

train,K×N aELM−GS
train,K×M = ΦELM−GS

K×N aELM−GS
K×M , respectively. A simple method of estimating

the system dimension in any basis is to compare the reconstruction error with the corresponding
POD-based reconstruction which optimally captures the variance in the data. Figure 7 shows the
comparison of the decay of representation errors with dimension for the different bases, and Table 1
quantifies the dimension corresponding to 95% and 99% energy in terms of POD singular value spectra.
We clearly see from Figure 7a that the POD basis offers the most parsimonious representation of the
data (K95 = 2, K99 = 5), followed by ELM-GS (K95 = 6, K99 = 7) and ELM (K95 = 16, K99 = 19).
The corresponding values for the high-dimensional SST data are also tabulated. The ELM-GS is only
slightly more expensive than POD (Figure 7b), although it spans nearly the same subspace as the
ELM basis.

(a) ELM; ELM-GS; POD (Cylinder) (b) ELM-GS; POD (Cylinder)

(c) ELM; ELM-GS; POD (SST) (d) ELM-GS; POD (SST)

Figure 7. Reconstruction error (errPOD
K , errELM

K , errELM−GS
K ) decay using different numbers of bases

(K) for POD, ELM and Gram–Schmidt extreme learning machine (ELM-GS) bases, considering both
cylinder wake data (top row) and sea surface temperature (SST) data (bottom row).
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Table 1. Dimension estimation (K95 and K99) for POD, ELM and ELM-GS corresponding to 95% and
99% energy using a POD reconstruction for both cylinder wake and sea surface temperature (SST) data.

Case Basis

POD ELM ELM-GS

Cylinder K95 2 16 5
K99 5 19 7

SST K95 9 92 16
K99 66 195 83

7.2. Basis Structure

Having compared the dimension of the data in different basis subspaces, we also look at the
topology of the basis vectors. In Figure 8, we compare the first six modes for the POD, ELM and
ELM-GS for the cylinder wake flow. The well-known orthogonal structure of the POD basis for the
cylinder wake contrasts with the qualitative similar structure of the ELM modes (modes 1–3 and
5–6 are similar to each other), while that of the ELM-GS displays a tendency to transition from the
ELM modal structure to the orthogonal POD modal structure with increasingly smaller eddies at the
higher modes. This semblance of scale hierarchy of the ELM-GS modes contributes to their ability to
accurately represent data using fewer modes. We quantify the basis orthogonality using the product
ΦTΦ for both ELM and ELM-GS in Figure 9. These plots show clear diagonal dominance for the
ELM-GS basis.

7.3. Basis Hierarchy

For a given dataset , the generated POD modes offer built-in ordering; i.e., one can sequentially
include more modes to generate increasingly accurate representations of the true data. This is not
likely the case for non-optimal basis choices such as Fourier or ELM bases. Here, we explore this
aspect of the basis hierarchy for ELM and ELM-GS bases in comparison to that of POD modes by
incrementally adding basis vectors to recover the flow field while tracking the error decrease in the
reconstructed field. Outcomes from this analysis are presented in Figure 10 for both the chosen datasets.
We clearly observe that both ELM-GS and POD show a systematic decrease of the reconstruction error
with an increase in the number of basis vectors, K, and the error decay is rapid for low-dimensional
reconstruction; in contrast, for the ELM basis, we clearly see a non-monotonic error decay, although the
overall trend shows an error decrease as expected. These trends are verified for the multiple choice
random initialization of the weights in the ELM training, as denoted by the seed β. The outcomes
clearly show that ELM-GS introduces a consistent basis hierarchy independent of the ELM training
and is therefore a robust choice for sparse recovery applications.
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(a) POD Mode-1 (b) ELM Mode-1 (c) ELM-GS Mode-1

(d) POD Mode-2 (e) ELM Mode-2 (f) ELM-GS Mode-2

(g) POD Mode-3 (h) ELM Mode-3 (i) ELM-GS Mode-3

(j) POD Mode-4 (k) ELM Mode-4 (l) ELM-GS Mode-4

(m) POD Mode-5 (n) ELM Mode-5 (o) ELM-GS Mode-5

(p) POD Mode-6 (q) ELM Mode-6 (r) ELM-GS Mode-6

Figure 8. Comparison of the first six modes of POD, ELM and ELM-GS. The POD and ELM-GS share
similar structures, possibly due to their underlying orthogonality, while ELM represents repeating
structures not unlike POD modes 1 and 2.

(a) ELM (SST) (b) ELM-GS (SST) (c) ELM (Cylinder)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) ELM-GS (Cylinder)

Figure 9. ΦTΦ contour plot of ELM and ELM-GS basis for both cylinder wake and sea surface
temperature (SST) data. Red indicates a value of one, and blue indicates a value of zero.
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(a) POD (Cylinder) (b) POD (SST)

(c) ELM (Cylinder) (d) ELM (SST)

(e) ELM-GS (Cylinder) (f) ELM-GS (SST)

Figure 10. Plots showing how the error decays with the increase of basis number for all three cases
POD, ELM and ELM-GS for both cylinder wake data (left column) and sea surface temperature (SST)
data (right column). For ELM and ELM-GS, the different realizations corresponding to the different
random seeds used for the network weights in the ELM (SLFN) training are shown, as well as the
average error over 20 different training samples.

8. Assessment of Sparse Reconstruction Performance

8.1. Sparse Reconstruction Experiments, Analysis Methods and Error Quantifications

Having explored the ability of the different basis spaces to approximate the data, we now assess
their linear sparse estimation performance using multiple sensor placement strategies. To accomplish
this, we reconstruct the full field from sparse data using numerically simulated flow fields and
observation datasets (NOAA-SST). In the offline stage, the full field representation is used to learn
the data-driven basis and sensor locations. In practice, the sensor locations are identified using prior
knowledge of the system. The concept of data-driven sensor placement is adopted here with the aim
of identifying choices that provide robust outcomes with accuracy. In this study, we design sensors
as fixed (in time) single-point measurements using random or smart sampling algorithms such as
DEIM or QR-factorization with column pivoting. This offline step yields at most M bases (M is the
number of snapshots) for use in the reconstruction process in Equation (2) (candidate basis dimension
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of Nb = M) and P (desired) sensor locations. The desired recovery dimension K can be chosen as Nb
or smaller (K < Nb). The earlier discussion from Section 2 and prior studies [48] shows us that, for a
chosen K, P ≥ K is likely to generate reasonable results using l2 reconstruction with K = Nb. If Nb is
large, the best subset of K bases is generally chosen to generate an accurate reconstruction by looking
for a K-sparse solution using l1 methods. If the basis vectors are ordered in terms of their “relevance”
to this dataset, then the best subset of K-bases will also be the first K-bases of the sequence. We use this
as a way to verify the basis hierarchy in POD and ELM-GS by comparing the outcomes from l1 (with
M = Nb > K) and l2 (with Nb = K) methods. Once the basis hierarchy is established, we evaluate
the reconstruction performance by comparing the true flow field with those from SR using POD and
ELM-GS bases for an ensemble of numerical experiments spread over different sensor budgets, P,
and reconstructed system dimensions, K, using l2 methods.

Assessing the accuracy of the sparse recovery outcomes across a wide range of design parameters
is challenging. For example, two POD modes may generate the same reconstruction accuracy as
five ELM-GS modes, as shown in Table 1. Further, two different flows may have different scale
separations and therefore dimensionality in a basis space. To address this, we first define the
various normalized metrics for the comparison and generalization of outcomes as used in our earlier
work [47,48]. We recount these briefly for completeness.

To illustrate these ideas, we note that two POD modes capture 95% of the energy for the cylinder
wake flow (KPOD

95 = 2) while the SST data require nine modes (KPOD
95 = 9). Therefore, analysis across

different flow regimes and algorithms requires thenormalization of the system dimension as
K∗ = K/K95 and a normalized sensor budget, P∗ = P/K95, to be handled. Using this, we design an
ensemble of sparse recovery experiments in the normalized P∗ − K∗ space over the range 1 < K∗ < 6
and 1 < P∗ < 12 for the different choices of bases and sensor placements. The lower bound of one
aspect is chosen so that the minimally accurate reconstruction captures 95% of the energy—this choice
is left to the user. To quantify the flow field recovery performance for the different problem designs,
we define the mean squared reconstruction error as

εSR
K∗ ,P∗ =

1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄SR
i,j )

2, (20)

where X is the true data and X̄SR is the recovered field using sparse measurements; N and M represent
the state and snapshot dimensions affiliated with indices i and j, respectively. We also define the mean
squared errors εFR

K∗95
and εFR

K∗ for the full reconstruction (FR) using the different bases; namely, POD and
ELM-based SR are

εFR
K∗95

=
1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄FR,K∗95
i,j )2; εFR

K∗ =
1
M

1
N

M

∑
j=1

N

∑
i=1

(Xi,j − X̄FR,K∗
i,j )2, (21)

where X̄FR is the reconstruction using exact coefficients for the different bases, K∗95 = K95/K95 = 1 is
the normalized system dimension corresponding to 95% energy capture and K∗ = K/K95 represents
the desired reconstructed system dimension. Therefore, the FR errors represent the best case values;
i.e., lower bounds for the sparse recovery errors. This enables us to define normalized error metrics
representing the absolute (ε1) and relative (ε2) measures as

ε1 =
εSR

K∗ ,P∗

εFR
K∗95

, ε2 =
εSR

K∗ ,P∗

εFR
K∗

. (22)

These normalized metrics allow us to compare both the “absolute” and relative reconstruction
quality for a given problem design (i.e., P, K). While ε1 represents the SR error normalized by
the corresponding full reconstruction error for 95% energy capture, ε2 represents the relative SR
performance obtained by normalizing the SR error with the FR error for the desired reconstruction
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accuracy (for dimension K). These normalized metrics enable us to compare the different SR
algorithms/design choices across different flow regimes.

8.2. Basis Hierarchy in ELM-GS and POD Bases

We have shown through the decay of reconstruction errors in Section 7.3 that POD and ELM-GS
bases have inherent hierarchical structures for flow recovery. Here, we establish the same by comparing
a K-sparse recovery of high-resolution data from heavily downsampled data using both l2 and l1
minimization approaches. For these experiments using the cylinder wake flow data, we build a candidate
basis library of dimension 200 from which the desired sparse solution is estimated using DEIM-based
sparse measurements. DEIM-based sensing is attractive due to its computational efficiency and the
ability to identify physically relevant sensor locations. In Figure 11, we compare the reconstructed
instantaneous flow field and estimated sparse coefficients with the corresponding ground truth for a
case with P∗ = 18, K∗ = 9. For both the POD and ELM-GS basis, we see that l1 minimization using
the sequential thresholded least squares (Section 4.1) excite only the first few coefficients (Figure 11a,c),
similar to l2 minimization, thereby verifying that the bases are ordered in terms of their relevance to
the data. Leveraging this outcome, we pursue the rest of this analysis using least-squares minimization
methods.

(a) POD (l1) (b) POD (l1)

(c) ELM-GS (l1) (d) ELM-GS (l1)

Figure 11. Normalized projected and reconstructed coefficient a (a,c) and The line contour comparison
of the streamwise velocity between the actual CFD solution field (blue) and the energy-based SR
reconstruction (red) using the l1 SR algorithm for both POD and ELM-GS-based reconstruction (b,d) at
K∗ = 9, P∗ = 18.

8.3. Comparison of Sensor Placement Using ELM-GS and POD Bases

Using knowledge of the underlying data-driven bases, data/physics-informed sensor placement
can be determined, as discussed in Section 3; this can in turn be used for sparse recovery. In this study,
we use both ELM-GS and POD bases to identify smart sensors, as shown in Figure 12 for the cylinder
wake flow and SST data. The red dots in the plots are generated using the POD-basis, while the blue
dots are estimated using ELM-GS. We also include the random sensor placement for comparison
purposes. The different columns in each of these figures correspond to different normalized sensor
budgets, P∗. As ELM-GS is slightly higher dimensional than POD, we see more blue squares in
the figures than red dots. Unlike random sensor placement, the physics-informed sensor placement
methods—namely DEIM and QR pivoting—generate sensors in the dynamically relevant regions of the
flow; specifically, the wake region of the cylinder and the coastal regions for the SST data in Figure 12.



Sensors 2020, 20, 3752 20 of 31

That said, both ELM-GS and POD-based sensors identify hardly any of the same locations for both of
these different flow patterns. The overlap in sensor locations observed for random placement is due to
the algorithm sampling the raw full state data.

(a) Cylinder Random (P∗ = 3) (b) SST Random (P∗ = 2)

(c) Cylinder DEIM (P∗ = 3) (d) SST DEIM (P∗ = 2)

(e) Cylinder QR (P∗ = 3) (f) SST QR (P∗ = 2)

Figure 12. Sensor locations chosen using random (top row), discrete empirical interpolation method
(DEIM) (middle row) and QR-pivoting (bottom row) sensor placement methods for budgets of P∗ = 3
for cylinder flow (left) and P∗ = 2 for SST data (right). Red dots: POD-basis-based sensor location;
blue square: ELM-GS-basis-based sensor locations.

8.4. Sparse Recovery Error Dependence on Sensor Budget and System Dimension using ELM-GS and
POD Bases

In this section, we analyze the sparse recovery performance using the different sensor placements
and basis choices over the parameter space of the normalized sensor budget P∗ and system dimension
K∗ for both classes of fluid flows. We refer the reader to Section 8.1 for the experimental details and
definition of the error metrics. Given that the parameter space for our analysis is four-dimensional,
we focus only on the major conclusions instead and limit in-depth analysis using instantaneous flow
fields to a few instances. In Figure 13, we present 12 different isocontour plots of the normalized
error metrics ε1 and ε2 (see Equations (21) and (22)) corresponding to three different sensor placement
strategies and two different bases for the sparse recovery of the cylinder wake flow. The corresponding
figure for the SST data is presented in Figure 14. In general, the smaller the sensor budget, the more
sensitive the SR is to bad sensor placement. This observation tends to be applied to highly parsimonious
low-dimensional bases such as POD as compared to less parsimonious bases such as ELM [47,48].
In this study, we assess how orthogonalized ELM-GS bases fare with respect to the different sensor
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placement methods. As mentioned above, ε1 represents an absolute normalized error; i.e., an SR
error in the estimated flow field normalized by an error quantity that is specific to the given flow,
whereas ε2 represents a relative normalized error using normalization by an error metric not only
specific to the flow, but also to that particular dimension, K, up to which the system recovery is
sought. Therefore, one can see that as the sensor budget P and the targeted recovery dimension K
increase, ε1 should decrease, but only up to the corresponding full data reconstruction error, εFR

K∗ .
Consequently, ε2 should asymptote to a value of unity at a large enough P∗.

(a) ε1 (Random) ELM-GS (b) ε2 (Random) ELM-GS (c) ε1 (Random) POD (d) ε2 (Random) POD

(e) ε1 (DEIM) ELM-GS (f) ε2 (DEIM) ELM-GS (g) ε1 (DEIM) POD (h) ε2 (DEIM) POD

(i) ε1 (QR-pivot) ELM-GS (j) ε2 (QR-pivot) ELM-GS (k) ε1 (QR-pivot) POD (l) ε2 (QR-pivot) POD

Figure 13. Isocontours of the normalized mean squared ELM-GS (a,b,e,f,i,j) and POD-based (c,d,g,h,k,l)
sparse reconstruction errors (l2 norms) using DEIM (top row), QR-pivoting (middle row) and random
(bottom row) sensor placements for cylinder wake data. Left: normalized absolute error metric, ε1.
Right: normalized relative error metric, ε2. The black line corresponds to P∗ = K∗ and separates the
over-sampled form under-sampled regions.

Against this background, we now evaluate the SR performance over the entire parametric design
space. We see that for the all the different sensor placements and basis choices, the ε1 contours in
Figures 13 and 14 mostly display characteristic L-shaped contour variations in line with the expected
decay of error metrics at higher P and K values. Similarly, the ε2 contours in general tend to approach
values of unity for P∗ > K∗. The impact of the sensor placements and basis choices is particularly clear
in the finer details. In particular, we focus on the marginally over-sampled region; that is, the region
where P∗ & K∗. This is motivated by the fact that all the different sampling strategies work favorably
in the highly over-sampled regime with P∗ � K∗. Similarly, in the highly under-sampled limit with
P∗ < K∗, the linear estimation problem is ill-posed, which produces sparse recovery errors irrespective
of the choice of sensor placement. Therefore, a sensitivity to choices of basis and sensor placement is
naturally observed in the marginally over-sampled region. In this part of the design space, we observe
that both ELM-GS and POD bases show higher errors for QR-pivoting and random sensor placement,
while DEIM generates smaller errors. Additionally, DEIM shows fast error decay with an increase
in P∗ as compared to QR-pivoting and random sensor placement. Comparing ELM-GS and POD,
we see that ELM-GS shows higher errors and slower decay rates with an increase in P∗ compared to
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the POD-basis for both random sensors and QR-pivoting. Overall, both sets of bases show higher
errors when using these sensor placement strategies for the low-dimensional cylinder wake while their
performance is relatively accurate when using DEIM.

(a) ε1 (Random) ELM-GS (b) ε2 (Random) ELM-GS (c) ε1 (Random) POD (d) ε2 (Random) POD

(e) ε1 (DEIM) ELM-GS (f) ε2 (DEIM) ELM-GS (g) ε1 (DEIM) POD (h) ε2 (DEIM) POD

(i) ε1 (QR) ELM-GS (j) ε2 (QR) ELM-GS (k) ε1 (QR) POD (l) ε2 (QR) POD

Figure 14. Isocontours of the normalized mean squared ELM-GS (a,b,e,f,i,j) and POD-based (c,d,g,h,k,l)
sparse reconstruction errors (l2 norms) using random (top row), DEIM (middle row) and QR-pivoting
(bottom row) sensor placements for sea surface temperature (SST) data. Left: normalized absolute
error metric, ε1. Right: normalized relative error metric, ε2. The black line corresponds to P∗ = K∗ and
separates the over-sampled form under-sampled regions.

For the higher-dimensional NOAA-SST dataset, both ELM-GS and POD show reasonable SR
accuracy when using both QR-pivoting and random sensing. However, ELM-GS shows slightly faster
error (ε2) decay with P∗ compared to POD-based SR when using QR-based sensors. With DEIM sensor
placement, ELM-GS shows reasonable SR accuracy, but error ε2 decays slowly with P∗ as compared to
POD-based SR, which shows very high levels of accuracy. Overall, for these high-dimensional data,
ELM-GS offers consistent performance across the different sensor arrangements including QR-pivoting,
while POD-based SR shows clear benefits from DEIM.

We further examine the above results to interpret the observed trends through instantaneous
isocontours and basis coefficients/features estimated from sparse recovery. Since we have performed
more than a thousand sparse recovery computations for this analysis, we selectively analyze the cases
chosen for this dissection step. As marginal oversampling with P∗ ' K∗ displays the most variability
in the averaged error metrics across the different design choices (in Figures 13 and 14), especially in
the vicinity of the P∗ = K∗ line (in black in the figures), we focus on cases where P∗ ≈ K∗. In the
left column of Figure 15, we exaime the reconstructed flow field by comparing the sparse recovered
field with the exact full-resolution structure of dimension K∗ for the two basis choices and sensor
placements at P∗ = K∗ = 3; i.e., for a marginally sampled flow. In addition, we also compare the
POD/ELM-GS basis features recovered by the SR algorithm with the exact values as shown in the right
column of Figure 15. We clearly observe that, for the POD-based SR, the snapshot reconstruction with
random sensors shows the most error for this low-dimensional wake flow (Figure 15a) while DEIM and
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QR-pivoting (Figure 15b,c) show accurate reconstruction. In comparison, the ELM-GS basis requires
a slightly higher number of sensors (denoted by black dots in the isocontour plots) and performs
accurately using DEIM sensors (Figure 15e) followed by random sensor placement (Figure 15d) and
QR-pivoting-based sensor placement in Figure 13f with the most error. Although the dissection of
single snapshot reconstructions such as this may not capture all the trends in the averaged error metrics
shown in Figure 13, we observe the following dominant trends from visual inspection: (i) DEIM sensor
placement offers better performance and (ii) the ELM-GS basis paired with random/QR-pivoting
sensors generates higher errors compared to the corresponding POD-based SR.

For the high-dimensional SST, we examine the instantaneous flow field and basis features
estimated for the marginally oversampled case P∗ = 3 and K∗ = 2 in Figure 16. In particular,
we note that POD-based SR (Figure 16a–c) shows lower errors in the estimation of the basis features
for DEIM with a relative degradation in performance for both random and QR-pivoting-based sensors,
increasing in that order. The ELM-GS counterpart in Figure 16d–f shows larger deviations from the
ground truth for random sensing while showing improved accuracy for DEIM and QR pivoting.
Once again, the trends from single snapshot reconstruction dissection of the NOAA-SST data are
consistent with those gleaned from the averaged error metrics in Figure 14; in particular, it is shown that
ELM-GS performs better with QR-pivoting for this dataset as compared to POD-based SR. The superior
performance of DEIM for both these use cases is not surprising as the sensor placement algorithm
directly leverages knowledge of the basis vectors used in the SR step. However, the performance for
both POD and ELM-GS-based SR with QR-pivoting generates results that are problem-dependent.
To investigate this, we inspect the matrix condition numbers below.
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Figure 15. Left column: Comparison of line contours of streamwise velocity between the true flow
field (blue) and SR reconstruction (red) for Re = 100 using random and DEIM sensor placement at
P∗ = 3, K∗ = 3 (marginally sampled) using both ELM-GS and POD SR. Right column: comparison of
the estimated coefficients a using the entire data (blue circle) and the downsampled data (red star).
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Figure 16. Left column: SR plot for sea surface temperature (SST) data with POD and ELM-GS basis
using random, DEIM and QR sensor placement sampled marginally (P∗ = 3, K∗ = 2). Right column:
comparison of the estimated coefficients a using the entire data (blue circle) and the downsampled
data (red star). Contour color: dark blue represents a temperature equal to or below 15◦celsius and red
represents a temperature equal or above 35◦celsius.

A key metric that impacts SR performance in linear estimation methods is the condition number of
the matrix, θ. Consistent with the least-squares minimization algorithm used in this work, we explore
the condition number for ΘTΘ in Table 2 for different bases, P∗ − K∗ combinations and sensor
placement methods for the reconstruction of the NOAA-SST dataset.

Table 2. Condition number estimation of ΘTΘ for both POD and ELM-GS basis-based SR using
different sensor placement methods on sea surface temperature (SST) data. We have bolded the metrics
smaller than a cutoff of 200 to highlight the low condition number cases.

Data: SST Random QR DEIM

POD

Marginally sampled
(K* = 2, P* = 2) 2.95 × 105 1.21× 104 35.30

Marginally sampled
(K* = 2, P* = 2 (+2)) 2.24× 103 1.28× 103 35.96

Marginally oversampled
(K* = 2, P* = 3) 2.19× 102 1.22× 102 30.52

Oversampled
(K* = 2, P* = 4) 66.98 36.84 23.64

ELM-GS

Marginally sampled
(K* = 2, P* = 2) 5.87× 105 8.99× 103 1.72× 104

Marginally sampled
(K* = 2, P* = 2 (+3)) 9.28× 103 1.22× 103 1.35× 103

Marginally oversampled
(K* = 2, P* = 3) 197.18 74.78 74.42

Oversampled
(K* = 2, P* = 4) 45.60 33.33 29.96
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We clearly see that POD-based SR shows smaller (O(100)) condition numbers for DEIM sensor
placement, even for the marginally sampled cases. For QR-pivoting and random sensing, we see that
significant oversampling with P∗ = 2K∗ is needed to ensure the condition number drops to reasonable
values. In comparison, ELM-GS shows larger condition numbers than POD-based SR on average,
but it is more sensitive to sensor budgets than sensor placement; that is, higher sensor budgets in the
marginally oversampled and oversampled limits result in smaller condition numbers, even for random
and QR-pivoting-based sensing. This is in contrast to POD-based SR, which shows large condition
numbers for similar SR designs. In summary, this analysis confirms that SR performance improves
with oversampling and sensor placement, which is tied to the data. While POD-based SR responds
better to high-quality data-informed sensor placement methods such as DEIM, ELM-GS responds
better to oversampling even with random and less-than-ideal sensing strategies. This explains the
better SR accuracy generated for the NOAA-SST dataset using ELM-GS with QR-pivoting in the
marginally sampled limit as compared to POD-based SR.

9. Discussion and Conclusions

In this work, we have presented a framework for data-driven sensor placement and sparse
reconstruction using arbitrary non-orthogonal bases that may be encountered in a machine learning
workflow to handle complex dynamical systems. Although this work has adopted projections using
ELM autoencoder maps for the low-dimensional representation of the data, the methods presented
here can, in principle, be applied to any arbitrary class of basis vectors. Naturally, the success of the
procedure depends on the effectiveness of the basis vectors in approximating the space described by the
data. In addition to the lack of parsimony, arbitrary non-orthogonal basis tend to suffer from ineffective
sensor placement and high algorithmic complexity. In this study, we pair the ELM-basis, which suffers
from these deficiencies, with a Gram–Schmidt orthogonalization step to build an ELM-GS basis
space as a mitigation step. We compare the basis structure, data-driven sensing and sparse recovery
performance of ELM-GS with that using the POD basis.

We observe a reduction of nearly an order of magnitude in the basis dimension for ELM-GS
to achieve desired data reconstruction accuracy, which in turn allows for a substantial reduction in
sensor requirements for sparse recovery. In fact, most linear estimation algorithms require a sensor
budget P & cK, where K is the desired recovery dimension and c is a pre-constant; that is, O(1− 10).
The larger the K, the larger the sensor budget P. This relationship between P and K has been verified
in our earlier work [48] and also confirmed in this study for the ELM-GS basis in Section 8.4. In fact,
our analysis shows that the pre-constant c for the ELM-GS basis is≈ 1.5. In addition, the topology of the
orthogonal ELM-GS modes mimics that of the POD modes for the same data. Therefore, the resulting
data-driven sensor placements for both POD and ELM-GS bases show a significant overlap of locations,
as reported in Section 8.3. Further, the ELM-GS basis also possesses a built-in hierarchy similar to the
POD basis—a trait useful in sparse recovery applications. This allows us to adopt computationally
efficient least-squares minimization algorithms to solve the linear estimation problem instead of a
more expensive convex optimization problem in a l1 formulation.

Reconstructing low-dimensional flows from sparse data, we observe that both POD and
ELM-GS-based methods generate similar trends, with DEIM-based sensors showing the highest
accuracy followed by QR-pivoting and random sensing. On average, ELM-GS-based SR generates
slightly higher errors and slower error decay within the sensor budget P in a marginally oversampled
regime for both classes of flows considered in the work. However, exceptions do exist, especially when
recovering high-dimensional systems such as the SST fields where the different linear estimation
methods show reduced accuracy. This is an expected consequence of dealing with multiscale systems,
as most sparse estimation methods tend to do well in capturing the larger-scale dynamics but do
not work as well at smaller scales. We note that POD-based SR responds better to improved sensor
placement from DEIM, while ELM-GS-based SR responds more to slight oversampling, even with
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less-than-ideal sensor placement, such as by using random sensors. This robustness of ELM-GS to
sensor placement is valuable in practical settings where sensors are often distributed randomly.
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