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Abstract: Although induction motors (IMs) are robust and reliable electrical machines, they can suffer
different faults due to usual operating conditions such as abrupt changes in the mechanical load,
voltage, and current power quality problems, as well as due to extended operating conditions. In the
literature, different faults have been investigated; however, the broken rotor bar has become one of
the most studied faults since the IM can operate with apparent normality but the consequences can be
catastrophic if the fault is not detected in low-severity stages. In this work, a methodology based on
convolutional neural networks (CNNs) for automatic detection of broken rotor bars by considering
different severity levels is proposed. To exploit the capabilities of CNNs to carry out automatic image
classification, the short-time Fourier transform-based time–frequency plane and the motor current
signature analysis (MCSA) approach for current signals in the transient state are first used. In the
experimentation, four IM conditions were considered: half-broken rotor bar, one broken rotor bar,
two broken rotor bars, and a healthy rotor. The results demonstrate the effectiveness of the proposal,
achieving 100% of accuracy in the diagnosis task for all the study cases.

Keywords: broken rotor bars; convolutional neural network; current signals; induction motor; motor
current signature analysis (MCSA); short-time Fourier transform; transient state

1. Introduction

IM is considered the most used electrical machine in industrial applications due to its features
such as easy maintenance, great performance, low cost, and versatility [1]. Even though IM is a
robust and reliable machine, it is susceptible to suffer diverse types of faults during its service life
because of different thermal, electrical, and mechanical stresses produced during its operation [2,3].
Among the faults that can occur in IMs, e.g., broken rotor bars (a cracked bar), damaged bearings,
unbalances, mixed eccentricities, and winding faults, among others, the broken rotor bar (BRB) (a
fault produced by excessive temperature, dynamic forces, and high currents generated into the rotor
cage) has become one of the most studied faults, since it allows the IM to operate with apparent
normality; however, if the fault is not detected and corrected at stages of low severity, it can lead to
the shutdown of processes and cause time and economical losses, as well as, in certain cases, putting
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at risk the operator and other machines connected to the same production line since it alters the
consumed current and produces new frequency components [3,4]. To schedule maintenance times and
avoid economic and human catastrophes, the development and application of diagnostic methods
that offer more efficient and reliable results in terms of complexity and accuracy are still tasks of
paramount importance, mainly considering BRB conditions at low severity, e.g., partially-broken
rotor bars. In this regard, many diagnosis methods based on diverse physical magnitudes such as
current, vibration, ultrasound, temperature, and magnetic flux, among others, have been employed for
identifying the BRB fault, being MCSA the most preferable magnitude because it allows measuring the
physical characteristics of an IM without interrupting its normal operation [5–8]. MCSA is employed
for identifying the frequency components associated with specific faults; in particular, the MCSA
attempts to identify the frequency components around the fundamental component (e.g., 50 or 60 Hz),
which are related to the BRB fault [9]. In this sense, diverse works have focused on evaluating one
or multiple BRBs, a consolidated fault (one or more bars completely segmented or cracked in two
parts) [10–12]; however, few works have investigated a partially cracked bar, an initial condition of
the BRB fault [9,13], because this condition alters slightly the monitored physical magnitudes, which
increases the detection difficulty [14].

In the last decade, diverse machine learning-based methods have been introduced in the
literature for BRB identification, where two main stages are carried out: (a) feature extraction;
and (b) classification/pattern recognition [15]. In the feature extraction stage, the measured physical
magnitudes of IMs are processed through different signal processing methods to obtain features
or patterns that allow establishing a relationship with the IM condition. On the other hand, in
the classification stage, the obtained features are employed for designing and training different
pattern recognition algorithms, which automatically determine the IM condition [16]. In this regard,
the fast Fourier transform [17,18], statistical methods [19,20], Welch method [21], regressive-based
models [22], fractality-based method [23], entropy-based methods [24,25], multiple signal classification
method [26], wavelet transform [27–29], empirical mode decomposition [30,31], and principal
component analysis [32], among other indices or methods, have been explored to extract patterns
about the IM condition. In a similar venue, different pattern recognition algorithms have already
been presented to diagnose the IM condition automatically, e.g., artificial neural networks [4], fuzzy
logic systems [23], k-means [33], support vector machines [34], and decision trees [35], among
others. Notwithstanding the obtaining of promising results in the above-mentioned works, those
techniques or algorithms present diverse issues that can compromise their performance in real-life
situations, for instance: (1) a fine-tuning (a procedure performed typically by trial-and-error) of diverse
parameters such as decomposition level, wavelet mother, model order, among others, for properly
analyzing the in-test signals is required [36]; (2) noisy signals with nonstationary properties as the
ones measured in the IMs degrades somehow their performance [37]; and (3) the adroit integration
of feature (or set of features) and classifier is achieved by trial and error, where in all the cases the
researcher proposes, tests, and selects the features to be used, which, on the one hand, increases
the complexity and, on the other hand, might not lead to the best results [15]. From these points
of view, the correct evaluation of the IM condition cannot be guaranteed [38]. As an alternative to
lessen the limitations encountered in traditional machine learning-based methods, a new branch
of machine learning named deep learning has been explored, where the CNN has become one of
the most promising and widely used methods in several research fields [39], e.g., identification of
cardiac rhythm problems in humans [40], health condition assessment of civil structures [41], object
recognition [42], and identification of consolidated faults in rotatory machines (damaged bearings,
stator winding faults, BRBs, and unbalanced rotor) [43–47], among other applications, outperforming
the conventional machine learning methods in speed and accuracy [48]. In general, CNNs are presented
as a single learning block that combines and performs both the feature extraction and the learning stage
automatically and hierarchically [41]. The automatic feature extraction is one of the most important
advantages of CNNs since it avoids the need to propose, extract, and test different features in order
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to assess which ones are the best-suited features [44]. This fact simplifies the design complexity and
increases the classification effectiveness since somehow the human interpretation is canceled out.
On the contrary, CNN implements in automatic way a set of filters to extract relevant features from
input images [46]. In this sense, the short-time Fourier transform (STFT) and the wavelet transform
have been used to transform time-series signals in time-frequency planes to be treated as input images
which allow the CNN design [43]. In particular, the STFT is a low complexity time–frequency method
capable of analyzing non-stationary signals; however, it can decrease its performance due to the
leakage problem or the embedded noise in the current signals, which can compromise the design of an
adequate CNN to evaluate the IM condition [49]. However, its low computational burden has attracted
and motivated the development of improved STFT-based methods, i.e., the STFT technique followed
by other methods [50].

The contribution of this work is the proposal of the adroit integration of a STFT-based method
and the CNN to automatically identify and classify partially- and consolidated-BRB faults in IMs
during the transient state. It is worth noting that the transient analysis is necessary for applications
where the operating regimen varies continuously or in scenarios that require diagnosing the equipment
before a prolonged activity time. In general, the proposal consists on the application of a notch filter to
remove the fundamental frequency component of the current signal, the obtaining of its STFT-based
time-frequency plane where the left sideband frequency component (LSFC) associated with the BRB
fault is observed, and the CNN-based pattern recognition for automatic diagnosis. The proposed
method was validated by using the experimental data of different IM conditions: a healthy (HLT)
condition, half-BRB (HBRB) fault, and two consolidated BRB faults, one BRB (1BRB) and two BRBs
(2BRBs). The obtained results show that the adroit integration of STFT and CNN methods is capable of
identifying the healthy condition of IM and the presence of partially- and consolidated-BRBs with
effectiveness of 100%.

2. Theoretical Background

2.1. Motor Current Signature Analysis

MCSA has become one of the most employed approaches for assessing the IM condition. It is
used for identifying the frequency components contained in the measured current signals in order
to associate them with a specific fault [50]. A BRB fault is characterized by producing sideband
frequency components around the supply frequency (e.g., 50 or 60 Hz). In particular, the LSFC can be
mathematically modeled by [51]:

fLSFC = (1− 2s) fsupply (1)

where s and f supply represent the rotor slip and the power supply frequency, respectively. It should
be pointed that, during the startup transient of an IM with a BRB condition, a V-shaped pattern is
exhibited in a time–frequency plane due to the LSFC evolution (see Figure 1). In practice, the amplitude
of this frequency component is affected by the fault severity and noise, being the partially-broken
rotor bar the most difficult to detect since its amplitude varies slightly in comparison with the healthy
condition [52]. Further, the power supply frequency limits the correct identification of the V-shaped
frequency component because of the induced spectral leakage and its strong amplitude when the STFT
technique is employed; hence, its elimination will allow observing with more clarity the V-shaped
pattern [49].



Sensors 2020, 20, 3721 4 of 21

Sensors 2020, 20, x FOR PEER REVIEW 3 of 20 

 

transform (STFT) and the wavelet transform have been used to transform time-series signals in time-
frequency planes to be treated as input images which allow the CNN design [43]. In particular, the 
STFT is a low complexity time–frequency method capable of analyzing non-stationary signals; however, 
it can decrease its performance due to the leakage problem or the embedded noise in the current signals, 
which can compromise the design of an adequate CNN to evaluate the IM condition [49]. However, its 
low computational burden has attracted and motivated the development of improved STFT-based 
methods, i.e., the STFT technique followed by other methods [50]. 

The contribution of this work is the proposal of the adroit integration of a STFT-based method 
and the CNN to automatically identify and classify partially- and consolidated-BRB faults in IMs 
during the transient state. It is worth noting that the transient analysis is necessary for applications 
where the operating regimen varies continuously or in scenarios that require diagnosing the 
equipment before a prolonged activity time. In general, the proposal consists on the application of a 
notch filter to remove the fundamental frequency component of the current signal, the obtaining of 
its STFT-based time-frequency plane where the left sideband frequency component (LSFC) associated 
with the BRB fault is observed, and the CNN-based pattern recognition for automatic diagnosis. The 
proposed method was validated by using the experimental data of different IM conditions: a healthy 
(HLT) condition, half-BRB (HBRB) fault, and two consolidated BRB faults, one BRB (1BRB) and two 
BRBs (2BRBs). The obtained results show that the adroit integration of STFT and CNN methods is 
capable of identifying the healthy condition of IM and the presence of partially- and consolidated-
BRBs with effectiveness of 100%. 

2. Theoretical Background 

2.1. Motor Current Signature Analysis 

MCSA has become one of the most employed approaches for assessing the IM condition. It is 
used for identifying the frequency components contained in the measured current signals in order to 
associate them with a specific fault [50]. A BRB fault is characterized by producing sideband 
frequency components around the supply frequency (e.g., 50 or 60 Hz). In particular, the LSFC can 
be mathematically modeled by [51]: 

LSFC = (1 − 2 )  (1) 

where s and fsupply represent the rotor slip and the power supply frequency, respectively. It should be 
pointed that, during the startup transient of an IM with a BRB condition, a V-shaped pattern is 
exhibited in a time–frequency plane due to the LSFC evolution (see Figure 1). In practice, the 
amplitude of this frequency component is affected by the fault severity and noise, being the partially-
broken rotor bar the most difficult to detect since its amplitude varies slightly in comparison with the 
healthy condition [52]. Further, the power supply frequency limits the correct identification of the V-
shaped frequency component because of the induced spectral leakage and its strong amplitude when 
the STFT technique is employed; hence, its elimination will allow observing with more clarity the V-
shaped pattern [49]. 

 
Figure 1. Time–frequency plane for an IM with a BRB condition by using the STFT and Equation (1)
with a fsupply = 60 Hz and a time window of 3 s.

2.2. Infinite Impulse Response (IIR) Notch Filter

Aiming to identify clearly the V-shaped frequency component associated with the motor condition,
a digital IIR-based second-order notch filter, represented by Equation (2), is used to suppress out the
main power supply frequency [53].

F(z) =
1− 2 cos(ωc)z−1 + z−2

1− 2r cos(ωc)z−1 + r2z−2
; ωc =

2πFc

Fs
(2)

where Fc and Fs are the cutoff frequency (attenuated frequency) and the sampling frequency of the
measured signal, respectively. r represents a factor that can only take values between 0 and 1. Let xk be
the input of the filter in the actual sample k and yk the actual output; then, the digital notch filter can be
implemented through the difference equation:

yk = 2r cos(ωc)yk−1 − r2yk−2 + xk − 2 cos(ωc)xk−1 + xk−2 (3)

where yk−1 and yk−2 are the past output samples of the filter and xk−1 and xk−2 are the past input samples.
The filter bandwidth, BW, is calculated as follows [54]:

BW ≈
Fs(1− r)

π
(4)

BW depends on the r parameter, where a small r value leads to big filter bandwidth, whereas a
value near 1 leads to a small BW. Figure 2 illustrates the frequency response of the IIR-based notch
filter, Fc must take the value of the main power supply frequency in order to enhance the V-shaped
frequency component associated with the motor condition. It can be observed that the selected
cutoff frequency will be eliminated satisfactorily without significantly affecting the amplitude of the
remaining frequency components.

The r factor must be selected carefully. A near-to-one value guarantees small bandwidth, but at
expense of increasing the filter settling time [54]. Figure 3 depicts the filter response in the time domain
for a step input and several r values close to one. Observing this figure, when r is 0.95, the response
becomes slow; on the contrary, a r = 0.9 is more adequate since it converges faster than r = 0.95 and
corresponds with a settling time ts of two cycles of the power supply frequency (ts ≈ 2/60 ≈ 0.033) [54].
Hence, the r value of 0.9 is used in this work.
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2.3. Fourier Transform

Once the supply frequency of time signals using a notch filter has been eliminated, the SFTF-based
method is applied to obtain the time–frequency plane for the filtered signals, allowing the visualization
of V-shaped patterns associated with the fault conditions. Fourier transform (FT) is a suitable method
for identifying the frequency components of stationary signals [55]; however, its performance is
degraded by analyzing noisy and non-stationary signals (signals with frequency components that vary
over time), such as the measured ones in an IM during transient states [49]. To lessen this limitation,
the STFT method, a variation of FT, is recommend for analyzing signals with non-stationary properties.
In general, this method divides the original time-series signal into small time windows (see Figure 4a),
where each segment is analyzed by means of the FT method, allowing observing the behavior of
the frequency components over time [56]. It is important to mention that the selected time window
defines the time and frequency resolution, i.e., longer time windows increase the frequency resolution
but reduce the time resolution, and vice versa [57]. To reduce somehow this negative fact, the time
windows can be overlapped, i.e., the next data segment only slides a percentage of the previous one
(see Figure 4b). In addition, a window function (e.g., a Gaussian window) can be used to lessen the
leakage problem as the product is zero-valued outside the window interval. After multiplication, the
obtained signal is analyzed by the FT method (see Figure 4c) [58]. Therefore, the windowed STFT of a
time-series signal x(n) is calculated by [57]:

X(m,ω) =
N∑

n=1

x[n]w[n−m] e− jωn (5)
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where w is the window function centered at the sample m, n is a scalar index for the samples in the
time signals, and e−jωn represents the transformation kernel.Sensors 2020, 20, x FOR PEER REVIEW 6 of 20 
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2.4. Convolutional Neural Network

Finally, the images obtained by using STFT method are used to design a CNN for the diagnosis of
an IM condition in an automatic way. CNN is a novel deep learning method used for pattern recognition
in signals or images, which uses a single learning block to identify and classify in an automatic way
the features in the input images and the desired outputs [59,60], avoiding hand engineering during
the testing and selection of features. In general, the CNN is constituted by a network of multiple
sub-CNNs which consists of a set of layers with one or more planes (see Figure 5).
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image Xi, with size h × w, and a set of convolutional filters Fj to estimate certain features into the
images. This operation is computed as follows [60]:

y j = σ
(∑

F j*Xi + B j
)

(6)

where B and σ(·) indicate a bias term and the nonlinear activation function, respectively. In particular,
each Fj of size k1 × k2 convolves with a local region of the input signal with stride s1 and shares the
same weights. The resulting output, Yj, for each Fj, known as feature maps, has a size of z1 × z2, which
is determined as follows [61]:

z1 =
h− k1 + 2p

s1
+ 1 (7)

z2 =
w− k2 + 2p

s1
+ 1 (8)

where p is the zero-padding parameter. A value of 1 is recommended because the input and output
spatial resolution must be the same [61]. There are diverse nonlinear activation functions such as
sigmoid, hyperbolic tangent, rectified linear unit (ReLu), among others, being the ReLu, f (Yj) =

max(0,Yj), the fastest and most effective to learn the nonlinear properties of each feature map, Yj, in a
CNN [62].

Then, the obtained feature maps, Yj, in the previous layer are used as input for other subsequent
sub-CNN layers named pooling layers, which are employed for subsampling or contracting the
dimensionality or resolution of feature maps with the aim of reducing the quantity of information to
be processed, but retaining the relevant features determined in the previous sub-CNN [47]. It moves a
filter of size K1 × K2 with a stride s2 across the feature maps by taking the average (average pooling)
or maximum (max pooling) of the neighbor values chosen by the filter. Hence, a sub-sampled
representation of Yj, with a size of Z1 × Z2, is obtained as follows [62]:

Z1 =
z1 −K1

s2
+ 1 (9)

Z2 =
z2 − k2

s2
+ 1 (10)

It is important to mention that max pooling has presented better results than average pooling since
it can capture invariant features correctly and improve the generalization performance [63]. For these
reasons, the max pooling is employed in this work. In the last layer, all the feature map elements are
connected to the fully connected layer, which is a standard neural network, i.e., a multilayer perceptron
network, in order to perform pattern recognition. Finally, the softmax layer applies the softmax transfer
function for generating the desired outputs. In this work, this layer determines the induction motor
condition. A detailed explanation for CNNs can be found in [61].

3. Proposed Methodology

Figure 6 shows the proposed methodology to detect BRBs in IMs. In general, it consists of three
steps: current monitoring, signal processing, and automatic pattern recognition based on CNNs. In the
first step, the current signal is acquired during the IM startup transient, where four rotor conditions,
HLT, HBRB, 1BRB, and 2BRB, are considered. A brake dynamometer is used to provide mechanical load.
In the signal processing step, two processing stages, a notch filter and the STFT method, are applied
consecutively. The notch filter is applied to the signal to delete the strong energy of the fundamental
frequency component and, thus, highlight the frequency components associated with the fault. Then,
the STFT using both overlap and a Gaussian window is used to obtain the time–frequency plane of the
current signal, allowing the visualization of V-shaped patterns associated with the fault conditions.
Finally, in the pattern recognition step, a CNN is proposed to classify the IM condition in an automatic
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way. It is worth noting that the time–frequency plane obtained through the STFT is treated as an image
in order to implement a conventional two-dimensional (2D) CNN. In the 2D CNN design, different
image sizes, learning rates, and batch sizes are analyzed. The experimentation and the results are
presented in the next section.Sensors 2020, 20, x FOR PEER REVIEW 8 of 20 
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4. Experimentation and Results

4.1. Experimental Setup

The experimental setup used to validate the proposed methodology is shown in Figure 7a.
The in-test motor (model WEG-00136APE48T) has two poles, 28 bars, nominal power of 1 hp, and
is fed with 220 Vac at 60 Hz. A four-quadrant dynamometer (model 8540) from Lab-Volt is used to
provide the mechanical load. Figure 7b shows the rotor conditions, i.e., HLT, HBRB, 1BRB, and 2BRB,
where the fault conditions are artificially generated by following the next steps: (1) identify the bars
into the rotor by means of an armature growler tester; and (2) use a computerized numeric control
(CNC) machine to drill and broke the bar. The CNC machine was used to guarantee the accuracy for
generating the partially-BRB and the consolidated BRBs. In particular, to generate a HBRB, a hole of
diameter 2.10 mm with a depth of 5 mm is produced in a bar of the rotor. On the other hand, to generate
a 1BRB and 2BRB, one or two holes with a depth of 10 mm in the squirrel cage was made, respectively.
Figure 8 shows the crack deep for HBRB and BRB conditions, respectively. For the current signal
acquisition, a current clamp model i200s from Fluke was used as a sensor, and then a data acquisition
system (DAS) based on the NI-USB 6211 board from National Instruments, which was configured with
a sampling frequency of 1500 samples/s and a time acquisition of 2.5 s, was used. These values allow
capturing both the startup transient and the V-shaped pattern with enough time–frequency resolution,
as shown in the next subsection [54]. The direct online starter method was used to start the IM. For
each IM condition, 100 current signals were acquired in an automatic way by using solid-state relays.
Figure 9 shows one of the acquired current signals for each IM condition. The overall methodology
was implemented in a portable personal computer (PC) using MATLAB software.

It is important to mention that the experimental setup presented in this work was carried out to
evaluate the IM condition when it is exposed to BRB faults since the benchmark studies or publications
about the fault studied in this work are not found in the literature, unlike other studied faults such
as bearings, where the proposed methodologies use mainly the databases and experimental setups
provided by the Case Western Reserve University and the University of Cincinnati’s Center for
Intelligent Maintenance Systems for comparing their results with other works [64–68].
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4.2. Signal Processing Results

Once the current signals were acquired, the signal processing steps, the notch filter, and the
STFT shown in Figure 6, were applied. To observe the advantages of applying the notch filter,
the time–frequency results for the current signals are shown in Figure 10. Firstly, Figure 10a shows the
results obtained through the STFT with overlap and Gaussian window in the available bandwidth,
sampling frequency/2 = 1500/2 = 750 Hz. The analyzed time windows by the STFT comprehend
500 samples and an overlap of 10 samples. As the region of interest is smaller, only the range where
the V-shaped pattern is located, 0 to 120 Hz, is selected (see Figure 10b). Although the application
of the overlap and the Gaussian window in the STFT allow improving the time resolution for the
evolution of the frequency components and reduce the leakage effect, the V-shaped pattern is not
visible enough due to the strong influence of the fundamental frequency component; in fact, only the
pattern in the 2BRB condition is barely noticeable (see Figure 10b, white dotted ellipse). However,
when the fundamental frequency component is removed by means of the notch filter, the patterns
associated with the BRB condition are more evident, as shown in Figure 10c. As can be observed, the
proposal presents a suitable detectability since the frequency components associated with the BRB
condition are detected even for the partially-broken rotor bar condition. To quantify the detectability
of the V-shaped patterns, the spectral energy density (SED) for the time-frequency planes is presented.
SED is computed as follows:

SED =
∣∣∣X( f )

∣∣∣2 (11)

where X(f ) is the Fourier transform (FT) of an input signal. In the STFT, the SED for each FT is
accumulated. Figure 11 shows as boxplots the obtained results for all the tests in each condition by
considering their mean (µ) and standard deviation (σ). As can be observed, the SED increases according
to the fault severity, indicating that the obtained time–frequency planes provide sensitive information
to the fault severity. If the means are normalized with respect to the healthy condition, the following
values are obtained: µHLT/µHLT = 1, µHBRB/µHLT = 1.4832, µ1BRB/µHLT = 2.3130, and µ2BRB/µHLT = 4.8086.
These values indicate the detection capacity in terms of SED, e.g., the proposal detects an increment
of 48.32% in the SED for the HBRB condition by taking as reference the SED of the HLT condition.
The overlap issues presented in Figure 11 are addressed by the CNN-based pattern recognition stage.
Therefore, these time–frequency planes are treated as images in order to be the inputs for the 2D CNN;
however, they are first converted to grayscale, as shown in Figure 10d, to reduce the complexity of
the input image; a 3D pixel value (Red, Green, and Blue) is converted to a 1D value (Gray), without
affecting the observed pattern. The CNN configuration parameters and its results are presented in the
next subsection.
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4.3. Convolutional Neural Network Results

As the input image size is fundamental in the CNN complexity, a tradeoff between the information
quantity that can be extracted from the analyzed image and the image size has to be established.
Figure 12 shows the obtained results for five different sizes, i.e., 500 × 500 (original size), 100 × 100,
50 × 50, 25 × 25, and 10 × 10 pixels. From a visual inspection, the images with a size of 25 × 25 pixels
were selected as inputs for the 2D-CNN since they keep the information that is observed in larger
images but with a lower computation cost because the matrix size is reduced. It is worth noting that
the image size can be optimized by means of multi-objective optimization algorithms; however, the
used value is somehow suitable by considering that other CNN-based approaches use input images
with sizes of 224 × 224 [43].

Once the input image size is defined, the CNN architecture can be constructed. After testing
different numbers of convolutional layers, convolutional filters, and pooling stages by means of trial
and error, the highest effectiveness with the simplest architecture was obtained for the architecture
shown in Figure 13a. Figure 13b shows the accuracy results for the different trial and error scenarios
carried out in the above-mentioned tests. It is worth noting that the parameters were changed one at a
time. The selected values in Figure 13b are the lowest values with the highest accuracy. Therefore, the
CNN consists of two convolutional layers with eight sliding convolutional filters and rectified linear
unit (ReLU) layers, one max pooling layer, one fully connected layer, and one softmax layer. A second
pooling layer was not required due to the small size of the last feature maps, i.e., 9 × 9. The fully
connected layer size is equal to the number of classes in the target data, four (HLT, HBRB, 1BRB,
and 2BRB). These parameters are summarized in Table 1. Although promising results were obtained,
a strict, systematic, and multi-objective optimization procedure for the entire CNN architecture is
still needed.
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different convolutional layers, pooling layers, and convolutional filters.

Table 1. CNN configuration.

Name Type Activations Learnables

Input Image input 25 × 25 × 1 -

Conv_1 Convolution 23 × 23 × 8 Weights 3 × 3 × 1 × 8 and Bias 1 × 1 × 8

Relu1 Rectified linear unit 23 × 23 × 8 -

2 × 2-MP Max pooling 11 × 11 × 8 -

Conv_2 Convolution 9 × 9 × 8 Weights 3 × 3 × 8 × 8 and Bias 1 × 1 × 8

Relu2 Rectified linear unit 9 × 9 × 8 -

FC Fully connected 1 × 1 × 4 Weights 4 × 648 and Bias 4 × 1

SM Softmax 1 × 1 × 4 -

Class Classification output - -

Once the general CNN architecture has been defined, a finer selection of other parameters such
as learning rate and batch size can be carried out. The learning rate determines the step size to
adjust the weights and reduce the error during the training. Figure 14 shows the obtained results for
different learning rates by considering only one epoch. One epoch is a complete pass through the
entire dataset. As can be observed, the extreme values compromise negatively the accuracy; therefore,
in this work, a learning rate value of 0.02 was used since it presents a high accuracy and can accelerate
the error convergence. On the other hand, Figure 15 shows the obtained results for the accuracy and
computational time using different values of batch size. The batch size determines the size of a subset
of the entire dataset that is used in each training iteration. As can be observed in Figure 15, a small
value of batch size generates a high accuracy but a high computational time; on the contrary, a high
value of batch size reduces the computational time but the accuracy is negatively compromised. In this
regard, a batch size of 30 was selected since it offers high accuracy and a suitable computational time.
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After the selection of the above-mentioned parameters, the CNN can be completely trained and
validated. From the entire dataset (400 current signals, i.e., 100 of each IM condition), 75% (300 current
signals) was used for training and the remaining 25% (100 current signals) for validation. In this work,
the stochastic gradient descent with momentum optimizer was used as the training algorithm [69].
Figure 16a,b shows the extracted patterns by the CNN for each IM condition in the first and second
convolutional layers. As can be observed, these patterns correspond to the V-shaped pattern associated
with the BRB condition. It is worth noting that they are automatically extracted and considered as
features by the CNN. Figure 17 shows the obtained results for accuracy and loss, where it is observed
that an accuracy of 100% is obtained during the first epoch for both training and validation datasets.
Table 2 corroborates the obtained accuracy since a perfect match is observed between the target class
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and the predicted class (confusion matrix), demonstrating the proposal effectiveness with 100% for all
the study cases.
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Table 2. Confusion matrix.

Target Class

Predicted class

HLT HBRB 1BRB 2BRB

HLT 25 0 0 0
HBRB 0 25 0 0
1BRB 0 0 25 0
2BRB 0 0 0 25

Total accuracy (%) 100
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4.4. Comparison with Previous Works

Table 3 summarizes the results obtained by using the proposed methodology and previous works
recently reported in the literature, where the methods employed, the evaluated damage level, and
the obtained effectiveness percentage are presented. According to Table 3, the proposed method
presents effectiveness of 100% for detecting a partially-BRB fault as well as the consolidated state (1BRB
and 2BRB), unlike other methods presented in the literature [10,12,43], which are focused mainly on
evaluating IMs with one or more BRBs. In particular, promising results were also obtained using
pre-trained CNNs such as the VGG-16 architecture [43]; however, although the design is easy, it keeps
the complexity of a CNN for general applications, which in some cases is neither necessary nor justified,
mainly if the task is not a large-scale image recognition problem. On the other hand, it is worth noting
that in many works the in-test fault severity is associated with the detection capacity of the used signal
processing techniques since the higher is the severity, the easier is the detection; for instance, the CWT
is used to detect three BRBs in [43], whereas the STFT is used in this work to detect HBRB, showing the
usefulness of STFT for the analysis of current signals in transient state.

Low fault severities of BRB, e.g., partially-BRB, are characterized by producing imperceptible
alterations or changes into the measured signals in comparison with the signals of a healthy IM, making
its detection a challenging task. However, this condition has been considered by diverse works in the
literature [9,23,26,70,71], reaching an accuracy higher than 95%. Despite obtaining promising results,
the testing and assessment of multiple indices or features to work with the proposed classifier are
hand-engineered, which, on the one hand, increases the complexity and, on the other hand, might not
lead to the best possible results. On the contrary, the proposed CNN-based methodology consists of a
single learning block for automatically determining and classifying the features found into the images,
making it a more attractive tool for the developer since exhaustive testing and selection of features
based on linear and nonlinear indices to properly evaluate the IM condition, even for small frequency
changes associated with partially-broken rotor bars, are not required.

Table 3. Results and characteristics offered by the proposed work and previous methods.

Work Proposed Methods Damage Level Accuracy (%)

[9] 1. Feature extraction is performed by using Homogeneity analysis
2. Gaussian probability density function is employed as classifier. HBRB, 1- and 2BRB 99

[10] 1. Features extraction is performed by using MUSIC technique
2. Bayes method is employed as classifier. 1- and 2BRB 100

[12]
1. Features extraction is performed by using Wavelet and Hilbert
transforms.
2. Linear discriminant technique is employed as classifier.

1- and 2BRB 100

[23] 1. Feature extraction is performed by using Fractal dimension
2. Fuzzy logic is employed as classifier. HBRB, 1- and 2BRB 95

[26] 1. Features extraction is performed by using extended Kalman filter
2. MUSIC technique is employed as classifier. HBRB and 1BRB 100

[43]
1. Wavelet transform is used to transform the measured signals to
images.
2. A CNN is employed as features estimator and classifier.

3BRB 99

[70] 1. Features extraction is performed by using Wavelet transform.
2. Correlation Pearson is employed as classifier. HBRB, 1- and 2BRB 95

[71] 1. Feature extraction is performed by using Hilbert transform.
2. Gaussian probability density function is employed as classifier.

HBRB, 1- and
1 1

2 BRB 99

Proposed
work

1. Short time Fourier transform is used to transform the measured
signals to images.
2. A CNN is employed as features estimator and classifier.

HBRB, 1- and 2BRB 100
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5. Conclusions

Fault detection in IMs is of paramount importance for the industry. In this work, a methodology
based on the notch filter, STFT, and CNN is proposed to detect broken rotor bars in IMs from
partially-BRBs (i.e., HBRB) to consolidated-BRBs (i.e., 1BRB or 2BRB). Firstly, the notch filter application
allows removing the fundamental frequency component of the current signal during the startup
transient, thus highlighting or making more evident the information associated with the fault condition.
Then, the STFT featuring overlap and Gaussian window are applied to obtain the V-shaped pattern
in the time-frequency plane, improving the time resolution and reducing the leakage effect. Finally,
the obtained time-frequency planes are treated as images and inputs to the 2D CNN in order to carry
out the automatic fault detection. In the CNN design, several configuration parameters were tested,
i.e., different values for the input image size, learning rate, and batch size. After the tests, an input
size of 25 × 25, a learning rate of 0.02, and a batch size of 30 were selected according to a tradeoff

between accuracy and computational time; although exhaustive experimentation was carried out,
the application of optimization algorithms is open for the CNN architecture improvement, including
the image/input size.

As study cases, four IM conditions were considered, HBRB, 1BRB, 2BRB, and HLT, where
classification effectiveness of 100% was achieved in all study cases, demonstrating the potential of the
proposal for fault diagnosis. It is important to mention that the proposed method can be a suitable tool
to identify the IM condition into industrial processes since it only requires monitoring the IM current
to diagnose in an automatic way the BRB fault without interrupting its normal operation. In a future
work, other faults and their individual MCSA-based diagnosis schemes will be investigated to integrate
and develop a more general CNN-based diagnosis system through incremental training. In addition,
the study of incipient faults by using accelerated degradation test platforms will be conducted.
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