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Abstract: Up-conversion sensing based on optical heterodyning of an IR (infrared) image with a
local oscillator laser wave in a nonlinear optical sum-frequency mixing (SFM) process is a practical
solution to circumvent some limitations of IR image sensors in terms of signal-to-noise ratio, speed,
resolution, or cooling needs in some demanding applications. In this way, the spectral content
of an IR image can become spectrally shifted to the visible/near infrared (VIS/NWIR) and then
detected with silicon focal plane arrayed sensors (Si-FPA), such as CCD/CMOS (charge-coupled and
complementary metal-oxide-semiconductor devices). This work is an extension of a previous study
where we recently introduced this technique in the context of optical communications, in particular
in FSOC (free-space optical communications). Herein, we present an image up-conversion system
based on a 1064 nm Nd**: YVOj solid-state laser with a KTP (potassium titanyl phosphate) nonlinear
crystal located intra-cavity where a laser beam at 1550 nm 2D spatially-modulated with a binary
Quick Response (QR) code is mixed, giving an up-converted code image at 631 nm that is detected
with an Si-based camera. The underlying technology allows for the extension of other IR spectral
allocations, construction of compact receivers at low cost, and provides a natural way for increased
protection against eavesdropping.

Keywords: image up-conversion; infrared imaging; free-space laser communications; intra-cavity
wavelength conversion; infrared sensing

1. Introduction

Recently, a pioneering application was presented where a 2D Quick Response (QR) code was
embedded in an eye-safe IR (infrared) laser beam at 1550 nm, transmitted in space, successfully read
by the silicon focal plane arrayed (Si-FPA) image sensor of a receiving smartphone, and correctly
interpreted by the smartphone software [1]. To excite the Si sensor, the IR laser beam went previously
through a real-time image frequency up-conversion process, based on nonlinear optics heterodyning in
a sum-frequency mixing process, where a 1064 nm local oscillator laser shifted the IR image spectrum
to around 631 nm (contained within the efficient spectral detection region of Si), while preserving its
2D spatial information with great fidelity.

The availability of IR imaging systems providing information for interpretation and analysis in
spectral regions where the human eye or cameras in the visible are not sensitive, has allowed great
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progress in basic research and technologic development. In this context, active imaging systems are used
for collecting information resulting from illumination of targets at specific wavelengths. Such systems
are widely used for detection and ranging. They have been also proposed for determination of object
characteristics such as temperature, shape (2D and 3D), texture, composition, and other features by
non-invasive or non-damaging inspection (i.e., in vivo cells or tissues or pigments) [2-5]. They are
also used for visualization through scattering media like mist, fog, or smoke [6,7]. At present, these
techniques are commonly applied in diverse fields such as in biomedicine [8], surveillance, defense [9],
food control [10], pests/crops monitoring [11], cultural heritage [12], machine vision systems [13],
and more. Furthermore, active imaging in short-wave IR (SWIR) and mid-wave IR (MWIR) wavelengths
would benefit from eye-safe (1.55-pum band) and low attenuation windows (1.55-um, 2-pum, and 3-5-pm
bands), being particularly suited for remote sensing applications [14]. The advantages of systems
operating directly in these bands have not been fully exploited yet, due to the limitations posed
by the available IR sensor technology. Either thermal-based or with quantum semiconductor-based
devices (such as PbS, PbSe, HgCdTe, InSb, or InGaAs), cannot compete with Si sensors in terms of
resolution, sensitivity, signal to noise ratio, dynamic range, speed, cost, or size due to the need of
cooling sub-systems to reduce noise at room temperature [15]. Thus, despite the availability of image
sensors for direct detection across the whole infrared spectrum, optical frequency up-conversion
detection based on nonlinear sum-frequency mixing (SFM) of an IR signal with a local oscillator laser
wave in a nonlinear crystal and subsequent detection with Si VIS/NIR sensors, can provide advantages
in some specific cases. In particular, in applications that may require uncooled detector operation,
lower price, better signal-to-noise (5/N) ratio, higher speed, or better resolution than that provided by
IR sensors.

A few years after the discovery of nonlinear optical parametric interactions with laser beams [16,17],
Midwinter and Warner realized that the up-conversion process based on SFM could help in overcoming
some IR detector limitations [18]. The SFM process itself was shown to be theoretically noiseless with
the overall S/N characteristics of the full detection system essentially inheriting those of the detector
alone. These S/N characteristics are superior in case of Si-based sensors as compared with other
uncooled IR semiconductor detectors. Thus, shifting the signal spectral region to that detectable by
VIS/NIR detectors could have some benefits in particular situations. Cooling IR sensors to improve the
S/N always represents an increase in cost and a complexity in high performance IR semiconductor
detectors. It becomes apparently clear that in up-conversion detection the S/N ratio improves with
up-conversion efficiency due to the larger signal power available. This was verified soon for point
detectors, i.e., detectors that integrate the full energy or power received within their surface. Presently,
enhancement factors of 64 in sensitivity have been reported in up-conversion detection with uncooled
Si with respect to direct InSb detection around 3.2 pm in the MIR [19].

Soon after, ].E. Midwinter realized the possibility of full image up-conversions [20]. Due to poor
up-conversion efficiency achieved at that early stage, the topic received little research interest until a
decade ago, when the combination of an intra-cavity image up-conversion process and the use of poled
nonlinear ferroelectric crystals of high nonlinear effective coefficient boosted image up-conversion
efficiency, particularly in case of continuous-wave (CW) systems [21]. A review of present state of the
art and recent progress can be found in [22].

This work is an extension of a previous study [1], where we introduced image up-conversion
systems in the context of optical communications, particularly in free-space optical communications
links. As a first step, we chose work in the eye-safe region around 1550 nm. However, the working
spectral region can be allocated anywhere in the IR [22] and even the THz region [23] by a suitable
choice of the local laser oscillation wavelength and the nonlinear crystal. We successfully transmitted a
2D QR code embedded in an IR laser beam and read it with a smartphone. Most image up-conversion
research was made with targets illuminated in transmission mode and with objects or targets located in
the objet focal plane of the up-converting system. Here, we conducted experiments in reflection mode
with an object located farther than a focal length to the system. The procedure is shown in Figure 1.
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Figure 1. Remote sensing by up-conversion of encoded 2D data from IR (infrared) illumination.
CCD/CMOS: charge-coupled and complementary metal-oxide-semiconductor devices.

Presently, free-space optical links were identified as the most attractive solution for last-mile
wireless communications and in particular field-deployable transient links for military applications
in the battlefield [24,25]. Robustness, low weight, low power consumption, low price, simplicity,
and data security against eavesdropping are of course highly desirable characteristics for the battlefield.
Based on a time-modulated eye-safe laser beam FSOC (free-space optical communications) links can be
easily realized by combining an amplified telecom diode laser source, an electro-optic modulator, and a
receiver based on an InGaAs p-i-n photodiode. On a point detector basis, the information can be sent
via bit streams using OOK (on-off keying) as in standard fiber-optic communication systems. If no data
encryption is used, even the weak scattering resulting in clean air (although there are always aerosols
present that increase the scattered power significantly) can provide an eavesdropper placed out of the
laser beam path with a sample of the bit stream. Even if the sample is very weak, an eavesdropping
receiver based on a widespread InGaAs APD (avalanche photodiode) can do the job of recovering
the bit stream as it is contained in the temporal structure of the transmitting laser and thus that of
the scattered light. An example that illustrates the possibility of retrieving information from the
weak scattering of an IR laser beam in air used for wind speed sensing and the benefits of using
up-conversion can be found in another study [26]. However, when the information is contained in the
spatial structure of the light, the scattering process destroys it and the eavesdropper cannot retrieve
the transmitted data, even when using a camera rather than a photodiode. Although encryption
enhances the security in the serial data transmission, one cannot discard a-priori knowledge by the
eavesdropper of the encryption algorithm or the encryption key. Quantum encryption can always be
used, but at the expense of increasing the link complexity. Thus, simple field deployable optical links
can be made more secure though transmission of images than in binary sequential transmission of bit
streams. Further, this is compatible with using an additional mathematical encryption algorithm in the
2D image of a QR code if desired.

Regarding data transmission speed, it is relatively easy at present to achieve around 40 Gb/s
(limited by the speed of electronics) with standard off-the-shelf telecom components for fiber optics
communications at 1550 nm in a free-space optical link based on beam on/off sequential data transmission
(on-off keying). Contrary to the case of the eavesdropping system, rather than an APD, a p-i-n
photodiode that requires no quenching can be used in the receiver due to the higher light level received,
although APD bandwidths of 16 GHz have been recently reported [27].

A typical low cost B/W (black and white) Si camera with 10 x 10 um pixels and 640 x 512 pixels
operating at a frame rate around 50 fps (frames per second), can at most receive 16.38 Mb/s of binary
data. Thus, the information capacity of a relatively low cost sequential system is presently superior
to that of QR transmission with also low cost common equipment. Many field-deployable links can
require not more than the 16.38 Mb/s. In this case, the main benefit of using up-conversion would
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be data protection. This could be increased inexpensively by using a grey scale rather than binary
transmission. For instance, adding an 8-bit grey scale, the capacity would increase up to 4.19 Gb/s.

Rather than using a silicon camera combined with an up-conversion system, an InGaAs camera
could be used in the eye-safe region. The main drawbacks are its much higher price, a typical one order
of magnitude more in read noise (electrons/pixel) for TEC (thermoelectric cooler) cooled cameras and
the typical 99% operative pixels due to the less mature fabrication technology of InGaAs FPA sensors as
compared with the mature Si fabrication technology. Non-operative pixels are an important drawback
for this application problem, as they would generate errors that could be accounted for by demanding
more time dedicated to error-correction techniques, or by pixel grouping that would reduce the bit
rate. Until recently InGaAs cameras have been of limited access due to ITAR regulations [28] and there
is less availability than in Si cameras. However, despite these issues an enlightening comparative
analysis can be made for transmission limits with 2D single-beam, single-wavelength modulation.
This technique requires beam modulation in the transmitter.

Presently, the two main commercially available resources for 2D spatial modulation of the IR
beam at the transmitter are transmission (amplitude) spatial light modulators (SLM) based on liquid
crystals or ferroelectric pixels. Liquid crystal SLMs are inherently slower, but ferroelectric (expensive
and of little availability) can operate typically with several megapixel frames at frame rates close to
~1 kfps [29], and DMDs (digital mirror devices), a kind of MEMS (micro electric mechanical systems)
with ~4 megapixel frames at ~15 kfps for binary modulation of the pixels (~ 60 Gb/s) [30]. According
to the kind of modulator used in the transmitter, the physical situation is closer to using a target
in transmission mode (SLM) or in reflection mode (DMD). Most of the previous work in image
up-conversion has used targets in transmission mode. Here, we experiment in reflection mode, where
faster DMD beam modulation speed can be presently achieved with commercial devices, although no
significant changes in overall performance of the up-conversion system are expected in principle.

The limitations of direct image detection speed in the SWIR (1550 nm) using commercial InGaAs
cameras are infrared are presently [31] 1700 fps at full frame resolution of 640 X 512, giving a maximum
rate of 0.55 Gb/s (with a 99% pixel operability). Thus, present DMDs overflow their capacity. In case of
InSb cameras for the SWIR/MWIR, the situation is quite similar, with 1000 fps at a full fame resolution
of 640 x 512 [32]. However, a fast commercial Si camera (only black and white is needed), can
reach 13 kfps (color camera) at a full resolution frame of 2048 x 1536 pixels [33]. Si image sensors’
speed limits are more diffuse and although not commercially available yet, 16 Mfps at a reasonable
256 x 256 resolution have been obtained in the lab, and there is present work towards the 1 Gb/s [34].
A parallel speed performance is not envisaged yet for IR image sensors.

Thus, for raising speed in IR imaging with an FPA final sensor, up-conversion combined with Si
FPA image sensors seems to have no competitor. We recall that the CW SFM process is essentially
instantaneous even at the Gb/s frame rate. Although not a theoretical limitation, the resolution
achievable with a point-spread-function (PSF) of around 10 pm in a quite simple miniaturized
up-conversion system and in a typical 1/2” format Si CCD sensor of 8 mm diagonal (6.4 x 4.8 mm) used
in standard B/W cameras [35] is comparable to 640 x 512 pixels, although in view of the comments
following Equation (3), little effort is required to bring it comparable to the 1280 x 1024 pixels resolution
level. Thus, in terms of information capacity, SWIR, MWIR, and LWIR cameras overflow actual DMDs,
while Si cameras overflow DMS capacity in binary transmission.

The CW intra-cavity image up-conversion technique is essentially instantaneous and it is therefore
open to using high-speed Si cameras operating at 1000 fps or more at full resolution if required. In
this sense, InGaAs or InSb IR cameras can reach high speed (frame rate) through pixel grouping
(binning) to maintain a reasonable S/N, or by reading only regions of interest (Rol) within the full frame.
Both speed-increasing techniques take place at the expense of resolution. Thus, the ultimate performance
for data capacity is theoretically limited by the combination of frame rate and sensor resolution.

Due to the relatively recent renaissance of the field, there is much room for performance
improvement. Specific effort to achieve QE ~1 using known resources has not been the aim of the
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work in the field. However, 40% conversion efficiency in power has been reported under non-optimal
conditions [21]. Rather, the effort has focused on solving FOV (field of view) and resolution issues.
The room for high improvement in these characteristics is well supported by theory.

Another appealing advantage of image up-conversion to the VIS/NIR in many applications is the
possibility of imaging at the single photon level in conjunction with an ICCD (intensified CCD camera)
or Si-EMCCDs (electron multiplying CCDs). Such performance has already been demonstrated in the
MWIR, with imaging at 0.2 photons/s per pixel [36]. This performance cannot be obtained with present
IR image detectors, due to the lack of suitable photocathodes or EMCCDs not based on Si. There is one
exception of little interest at 1550 nm with an image intensifier tube that uses an electron bombarded
CCD instead of a phosphor screen. It is of very restricted access [28,37], with gating capability of only
down to 50 ns, a 640 X 512 pixels frame, and 30 fps with a 98% pixel operability (blemish) characteristic
of image intensifiers that use MCP (micro channel plates). ICCDs suffer from blemish giving less
than 100% pixel operability and EMCCDs have hot and black pixels leading also to less than 100%
pixel operability.

2. SFM Image Up-Conversion Background

S
A plane-wave spatial Fourier component of spectral angle frequency wr and wave-vector ki

in a 2D IR image—or, equivalently, an image ray in geometrical optics—is up-converted by SFM in

a nonlinear crystal with a collimated laser beam of angle frequency w; and fixed wave-vector kj,
to provide a Fourier component in a 2D up-converted image at a new angle frequency wy, = wig + wy,

and wave-vector kyp, where the relation kyp — (k1 + kIR) = G needs to be fulfilled for efficient SEM

through birefringent phase matching G ~ 0 or for a reciprocal vector G of relevant weight (amplitude)

contained within the Fourier expansion of the nonlinear spatial distribution of the nonlinear coefficient
along the nonlinear crystal, a situation known as quasi-phase matching (QPM) [17]. Alternatively,
the process can be viewed as an up-conversion of image rays in geometrical optics, depicted in Figure 2.

Figure 2. Sum-frequency mixing (SFM) image up-conversion process.

Although not restricted to, QPM is frequently achieved by creating a periodic spatial reversal
in the spontaneous polarization orientation of ferroelectric domains in crystals like LiNbO3 (LN) or
KTiOPOy (KTP), known as PPLN or PPKTP. In each term, PP stands for periodically-poled.

Typically, up-conversion takes place in the paraxial regime due to PM or QPM angle acceptance
limitations and since in practice 1, ~ njg and G << k;, where n stands for the refractive index, it can be
derived from Figure 1 that the SFM process introduces an angle de-magnification factor given by:

O Au

My =—=
B Gup AIR

)
This factor is to be combined with other magnification factors due to the lenses in the optical
system. It may be of interest to note that in spite of the change in wavelength and angle, an up-converted
Fourier image component preserves the spatial frequency of the original IR Fourier component [38].
We point out that another parameter of interest is the FOV, which is ultimately limited by PM or
QPM angle acceptance that is in general narrow. However, there are techniques to enlarge it, such as
using a wider illumination spectrum, tangential phase matching, or broadening the QPM response
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with chirped structures or thermal gradients. In our application, a not too wide FOV is required.
An estimation for the telescope configuration, without additional zoom or similar, is around 0.4 mrad
(full cone angle), although it may be increased. However special effort must be done. Usual simple
systems are around 50 mrad.

Frequently, an image up-conversion system is built in a telescope configuration as shown in
Figure 3, where the image focal plane of lens L1 coincides with the object focal plane of L2, thus
creating a Fourier plane, where the center of the nonlinear crystal is placed. In case of intra-cavity

-

up-conversion, the crystal is placed inside the cavity of a laser that provides the pump wave k; for the
SFM process, while the lenses are kept external to the laser cavity, and the SFM process takes place in
an undepleted-pump regime. Most (if not all) reported image up-conversions locate the object and the
FPA camera sensor in the object focal plane of L1 and image focal plane of L2, turning the telescope
configuration into a 4-f Fourier processor setup.

FOURIER
PLANE

I (aser mope
(SOFTAPERTURE)

TO CAMERA

NONLINEAL
LENS1 CRYSTAL LENS 2

Figure 3. Telescope configuration for SFM image up-conversion.

Regarding conversion efficiency, in intra-cavity SFM up-conversion the nonlinear process takes
place in the so-called undepleted pump regime that will be commented in more detail later. In that
regime and for a collimated Gaussian pump beam, the relation between the intensity of an image point
in the IR image and its up-converted point image intensity in a 4f Fourier processor setup can be well
approximated using F = 1 in the following equation [21]:

lor® d>, AT, P g2
1

IR P o
Iup(x,y):FXLX—XH—C;XIIR(JC/]/) )

nIRnlnupch/\ﬁp f22

Here, I, (x,y) is the intensity of the up-converted image at the point (x,y) in a plane perpendicular
to the propagation direction and in the image focal plane of lens L2 in Figure 3. ;g (x’,y’) is the IR
image intensity of a point located in the object focal plane of lens L1 in Figure 3 with coordinates
x" = x/Myp and y’ = y/Myyp, accounting for the magnification factor M, defined in equation (2), deg the
effective second order nonlinear coefficient of the crystal, I the length of the nonlinear crystal, c and ¢
the speed of light and dielectric constant in the vacuum, respectively, Pj the power of the Gaussian
pump beam, w its radius at 1/e? intensity, f; the focal length of lens Li, and ny and A the refractive
index inside the nonlinear crystal and the vacuum wavelength of wave x (x = IR, pump, up-converted).
Because the object in a FSOC system is located at the transmitter (far away from the focal plane of L1),
the telescope system can no longer be considered as a 4f setup, and the factor F is introduced to account
for additional focusing or collecting optics present in a particular design. F is a constant within a
design and will in general be F # 1 for spatially modulated IR beams.

As seen, other parameters set, conversion efficiency increases quadratically with the value of
the effective second-order nonlinear coefficient and linearly with the pump power density % in the
nonlinear crystal. Because the circulating power inside a CW laser may typically be two orders of
magnitude that at its output and nonlinear effective coefficients using QPM in poled ferroelectric crystals
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can reach typically around five times that achievable in frequently used crystals using birefringent
phase-matching, placing a poled crystal inside the cavity of the laser that generates the pump wave,
i.e., intra-cavity SFM, can notoriously enhance conversion efficiency, making image up-conversion
presently more practical than in its early days. It is presently accepted that image up-conversion can
essentially reach a theoretical QE ~ 1 even at low IR incident photon fluxes. Strictly achieving QE = 1in
the sense that all incoming IR photons become up-converted requires some physical parameter to reach
an infinite value. However, as an illustrative practical example for the case of beam (or wave-guided
mode) up-conversion at room temperature, see for example [39], where 99% of the IR incoming
photons become up-converted to their second harmonic. The theoretical principles underlying this
performance rely on nonlinear optics theory and are valid for a beam, a wave-guided mode, or an image
up-conversion, and extensible to SFM.

Regarding intra-cavity SFM, the work by Smith et al. [40,41] set the basis for achieving CW SFM
with QE = 1 with the intra-cavity pump wave remaining undepleted. In essence, an IR photon needs
only adding up to a pump photon to create an up-converted photon. Due to the large number of
intra-cavity pump photons available with respect to the incoming IR photons, only a small depletion
factor in the pump is required for QE = 1. However, the large number of pump photons traversing the
intra-cavity nonlinear crystal that boosts conversion efficiency is indicated by Equation (2). In particular,
when the intra-cavity pump intensity is very high, the favorable condition of a high d.s value condition
can be somewhat relaxed and still achieve QE = 1 with non-poled birefringent crystals like KTP. The
fact that no up-converted photons are created in the absence of IR photons sets the noiseless nature
of the SFM process. However, a concern may remain regarding the spontaneous parametric down
conversion of the pump beam creating photons at the IR wavelength not related to the IR signal,
followed by a cascaded phase-matched SFM of the down-converted IR photons with the pump wave.
This has also been demonstrated to generate a negligible amount of noise [42].

Equation (2) also reveals that in the undepleted regime the up-converted intensity of an image
point is proportional to the corresponding object point in the original IR image, thus preserving a
possible grey-scale in the process. Although much of the image up-conversion research has been
made using binary amplitude targets in the lab, some examples of image up-conversion containing a
grey-scale can be found in [22].

Concerning resolution, the highest resolution so far reported in SFM up-conversion imaging
is around 100 lp/mm (line pairs per mm) for a target located in the object focal plane of L1 [43],
corresponding to a PSF (FWHM) = 10 pm using an input lens of focal length f; = 25 mm and an
up-converted wavelength of 488 nm. This is not a fundamental limitation. The resolution limit is set by
the diameter of the pump wave that acts as soft amplitude aperture in the Fourier plane of the system.
Using laser illuminated targets and a Gaussian laser beam as the pump wave, the intensity PSF for
SFM is also Gaussian and approximately set by:

2
Twr
PSE(r) o< exp {)\u 3 } 3)
where r denotes the departure from the peak of the Gaussian and w is the radius of the collimated
pump laser Gaussian beam at 1/e? intensity in the nonlinear crystal, f; the focal length of the input lens
to the system (L1 in Figure 3), and A, the wavelength of the up-converted image. For instance, a 1 mm
radius pump beam and a value f; = 10 mm (possible with a miniaturized system architecture such as
that described in [44]), leads to a 3% MTF cut-off spatial frequency of =360 lp/mm, and a Gaussian
FWHM PSF radius ~78 um (~10 pum at 1/e? radius) for an up-converted wavelength of 631 nm.

Recently, it has been shown that the image up-conversion process provides a natural mechanism
for fast electro-optic image gating based on transient enable/frustration of the up-conversion process,
which allows for range-gated systems in the IR in combination with an EMCCD camera [38]. It should
be clear that extension spectral allocations different from 1550 nm are straightforward by selecting a
different local oscillator laser wavelength combined with a suitable nonlinear crystal.
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3. Experimental Setup

The setup of the image up-conversion system proposed in this work is shown in Figure 4.
The system consists of an 808 nm-diode-pumped Nd3*:YVO, solid-state laser, inside of which a
nonlinear crystal mixes the CW laser oscillation at 1064 nm, acting as the auxiliary pump laser, with
the IR beam carrying 2D spatially-modulated information. The IR beam results from illumination of a
patterned surface (2D data codes) by using a collimated laser at 1550 nm to collect such information
remotely according to the arrangement shown in Figure 1. Thus, the original IR information is shifted
to the visible spectrum centered at 631 nm by SFM in a single-pass nonlinear interaction inside the
laser cavity (intra-cavity conversion).

Laser beam @ 1550 nhm E]""[E' IR laser beam
Laser beam @ 1064 nm 7_'{".;"1 :E_" with 2D-spatially

modulated
Upconverted beam kir<- : :
@~ 631 nm intensity
Fiber-coupled
laser diode M1: RoC = Lens L1

@808 nm HR@ ~1064 nm

: M2: Polarizing
Beam splitter

Focusing and Laser crystal Lens L0

collimation  Nd**:YVO,
lenses Nonlinear
' crystal (KTP)
Polarization:
Pol. s e
Pol. F M3:RoC =3 m
I - (HR@ ~1064 nm)

(Nonlinear ~ Bandpass filter
interaction: @630nm, [ 1

Type II BPM) 4

—_— Llensl2

Upconverted image
(CMOS camera)

Figure 4. Experimental setup of the image up-conversion system proposed for sensing.

The solid-state laser consists of a linear cavity folded at a right angle to facilitate the coupling of
the original 2D information beam inside for up-conversion. The cavity is delimited by a flat input
mirror (M1) deposited on the Nd**:YVOj laser crystal presenting high reflectivity (HR, typically with
R > 99.5% for commercial standard composites) and high transmission (HT) at 808 nm on the outer
cavity side, and by a nearly flat mirror (M3) of 3 m radius of curvature acting as the output coupler.
The mirror M3 is HR at 1064 nm and HT in the visible and around 1550 nm, and has spherical geometry
to keep the cavity stable and to provide precise control of the laser mode size. In addition, the radius of
M3 is long enough to be considered a flat surface and thus avoids distortion of the up-converted image
at the cavity output. A polarizing beam splitter (PBS) is used as the folding mirror M2. The PBS is HR
at 1064 nm on the cavity side for the linearly polarized laser oscillation, according to the vertical axis
(perpendicular to the figure plane). The outer face is HT at 1550 nm for horizontal polarized beams
(contained in the figure plane) so that eye-safe beams carrying 2D information are coupled inside the
cavity to be mixed with the laser oscillation. As a laser crystal, a4 mm long and 3 x 3 mm? cross-section
Nd3*:YVOy crystal with 3% at. Nd3* doping is used, presenting flat-parallel facets with AR coating at
1064 nm on the cavity side. The laser crystal is end-pumped by a fiber-pigtailed diode laser at 808 nm.
Despite that the Nd**:YVOy crystal is a-cut to provide linearly polarized laser oscillation, the crystal
must be oriented so that the laser polarization is parallel to both the PBS constraint and the slow axis of
the nonlinear crystal, as described next. As a mixer, a bulk crystal of potassium titanyl phosphate (KTP)
is used intra-cavity for single-pass SFM through birefringence phase matching (BPM). The KTP is an
8 mm long 6 x 6 mm? in cross-section biaxial crystal cut at @ = 55° and ¢ = 0° for critical type-Il BPM
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of the targeted SFM process: 1550 nm + 1064 nm — 631 nm. In this way, the nonlinear interaction is
depicted in Figure 4 following the nomenclature associated to biaxial crystals. Then, the KTP crystal is
oriented so that the 1550 nm beam is linearly polarized according to the fast axis f (also called ordinary
component) of the KTP crystal while the 1064 nm beam is linearly polarized according to the slow axis
s (extraordinary component), so that the up-converted beam at 631 nm is linearly polarized with the
fast component. For the targeted process, the KTP crystal exhibits an effective nonlinear coefficient
around 3 pm/V and its facets are both coated for AR at 1064 nm.

A plano-convex lens L0 with fi = 50 mm focal length is placed between the Nd>*:YVOy crystal
and the PBS in order to control the size of the fundamental laser mode in the laser crystal. In this
way, optimal overlapping with the pumping mode at 808 nm is achieved and, as a consequence,
the lasing threshold can decrease. The lens L0 is AR coated at 1064 nm to avoid losses leading
to a penalty of the intra-cavity power density. This lens allows fine adjustment of the laser beam
size to the KTP cross-section while providing a nearly collimated beam to prevent distortion from
up-converted patterns. The spectra and spatial profiles of the interacting beams at 1064 nm and at
1550 nm (before spatial modulation) are shown in Figure 5. The laser mode presents a Gaussian profile
helping to avoid distortion and loss of resolution of the up-converted pattern. The proposed image
up-conversion system is arranged following a telescope configuration through the lenses L1 and L2.
L1 is a plano-convex lens with a focal length of f1 = 125 mm used for collecting the collimated beam
resulting from IR illumination of targeted surfaces and the subsequent focusing onto the KTP crystal
(Fourier plane). L2 is also a plano-convex lens with a focal length of f, = 125 mm used for the collimation
of the up-converted beam prior focusing on the CMOS (complementary metal-oxide-semiconductor)
sensor and thus for the pattern formation and subsequent decoding. Finally, a bandpass filter at 630 nm
(10 nm FWHM) is placed between the output coupler M3 and the lens L2 to block the propagation of
the remaining laser output and the unabsorbed 808 nm pump to the CMOS camera.

o o O
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Figure 5. Spectra and spatial profiles of the interacting waves: (A) 1064 nm beam at the cavity output
and (B) 1550 nm beam before 2D spatial modulation.

4. Results and Discussion

The experimental setup described in Figure 4 is used to show the potential of up-conversion
sensing for retrieving 2D information remotely through standard CMOS cameras in active image
systems operating in the eye-safe wavelength region. For this aim, a DFB (distributed feedback)
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laser at 1550 nm is used for illumination of targeted surfaces with printed information based on 2D
matrix codes. The laser beam is collimated and presents a Gaussian spatial profile with a spot size
of 5-mm in diameter before spatial modulation, as shown in Figure 5B. The reflecting patterns are
located at a distance of about 1 meter from the input of the image up-conversion system. The patterns
are arranged in a 21 X 21-bit matrix resulting from the coding of a website address, according to
the QR standardized format, as shown in Figure 6A. The spatial modulation results when the laser
beam illuminates the reflecting patterns that consist of masks with the 2D data matrix deposited on a
reflecting surface (gold mirror with 98.5% reflectance at 1550 nm for p-polarization at approximately
0° angle of incidence). The masks are made of a 0.18-mm-thick acetate film (Kodak film ARD?7) with
data printed by a photo-plotter (1625 dpi resolution), as shown in Figure 6B. The masks employed are
identical to those used in transmission in a previous setup focused on the demonstration up-conversion
of spatially modulated beams in FSOC applications [1]. Then, the beam carrying 2D information at
1550 nm is polarization coupled to the laser cavity for mixing with the laser oscillation at 1064 nm in
the KTP crystal. The spatial profile of the up-converted beam at 631 nm also attains a Gaussian profile
in absence of modulation, as shown in Figure 6C. The up-converted 2D pattern is formed onto the
sensor surface of the CMOS camera, as shown in Figure 6D, and has a resolution that is high enough to
be successfully decoded.

(A) (B) © (D)

Figure 6. (A) OR data pattern used for spatial modulation. (B) Reflecting surface with printed 2D data.
Up-converted beam images: (C) unmodulated and (D) modulated and read out.

The resolution of the up-conversion system, which is described by the point spread function (PSF)
of the system in terms of Fourier Optics, is limited by the size of the laser mode [45,46]. Then, the laser
mode acts as a soft amplitude aperture in the Fourier plane by filtering out the higher frequency
spatial components from the original pattern. The Gaussian profile of the laser mode makes the S/N
achieved at the receiver side lower as the bit position is farther away from the image center. The use of
a shorter focal length for L1 would allow the increase of the resolution of the up-conversion system,
as described in (3). In the same sense, there also lies the importance of the enlargement of the laser
mode size to the cross-section of the non-linear crystal. According to the proposed configuration,
the location and the focal length of the lens LO determine the size and the collimation degree of the
laser mode. Thus, shorter focal lengths of LO would allow the increase of the laser mode size in the
Fourier plane. As a result, increasing the pumping power at 808 nm would compensate the reduction
of the laser power density. However, this option would make accessibility inside the cavity difficult for
fine adjustment and alignment of optical elements and for the experimental characterization. In our
setup, the use of a lens L1 with a short focal length may restrict the placement of the PBS and, as a
consequence, cavity size.

The spatial resolution of the up-conversion system is evaluated by illumination of reflecting
targets built with the patterns shown in Figure 7. All of the 2D patterns contain the same data but have
different sizes of code and bit. The bit size is associated to the corresponding element of the USAF-1951
standard for resolution testing. In this way, the 2D pattern size ranges from 8.0 mm X 8.0 mm for the mask
A, to 1.25 mm X 1.25 mm for the mask F; and the corresponding bit size varies between 800 pm x 800 pm
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for the mask A (equivalent to the group 1, element 3 of the USAF-1951 standard), and 60 um x 60 pm for
the mask F (with equivalence to the group 3, element 1 of the mentioned standard).

(A) (B) © (D) (E) (F)

Figure 7. Masks used for 2D data spatial modulation of the eye-safe beams: (A)8 mm X 8 mm,
(B) 7 mm X 7 mm, (C) 5.5 mm X 5.5 mm, (D)4 mm X4 mm, (E) 2.5 mm X 2.5 mmand (F) 1.25 mm X 1.25 mm.

The up-converted QR-code patterns at 631 nm are shown in Figure 8 when the reflecting targets
(A-F) are illuminated with the 5-mm-diameter beam at 1550 nm. Despite there being no resolution
limitation or contrast loss in patterns shown in Figure 8A and 8B, these up-converted QR-codes cannot
be decoded since relevant information associated to the positioning and synchronization is missed.
In contrast, the up-converted pattern represented in Figure 8C preserves all the bits associated to the
encoded information and synchronization but the loss of positioning references prevents from being

decoded too.
- -

Figure 8. Up-converted QR codes at 631 nm corresponding to the 2D data masks shown in Figure 7:
(A) 8 mm X 8 mm, (B) 7 mm X 7 mm, (C) 5.5 mm X 5.5 mm, (D) 4 mm X 4 mm, (E) 2.5 mm X 2.5 mm
and (F) 1.25 mm X 1.25 mm.

The up-converted QR-codes corresponding to the patterns D and E are entirely found in the FOV
of the system. Both codes show resolution levels of ~190 um x 190 pm (group 1, element 3) and
~120 pm X 120 um (group 2, element 1), respectively, and allow decoding and information access
correctly. On the contrary, the up-converted QR-code associated to the reflecting pattern F exhibits a
significant degradation in terms of resolution. This is because the mask F has a bit size of 60 pm X 60 pm,
which is much smaller than the theoretical resolution limit set at 100 um X 100 um by the PSF for a
focal length of f1 = 125 mm and a laser beam diameter of ~ 700 pm in the middle of the KTP crystal.



Sensors 2020, 20, 3610 12 of 15

The formation of the up-converted 2D pattern undergoes the resizing of the original IR pattern in
the image plane of the telescopic system due to two sources of magnification. The first contribution
is associated to the type-II SMF nonlinear interaction as a result of the fulfillment of the momentum
conservation principle. In particular, this effect leads to the angular de-magnification, which is
proportional to the factor ~ (Ag31/A1550) = 0.41 given by the up-converted wavelength to the eye-safe
wavelength ratio [47]. The second contribution is determined by the ratio of focal lengths of lenses
L1 and L2 of the telescopic configuration (f1/f,) and the factor F (Equation (2)), which accounts for
additional focusing optics elements used in the system. Apart from that, the amount of information
up-converted per frame is also limited by the FOV, which is therefore determined by the illumination
beam size, the angular acceptance, and optics of the telescopic configuration. In this context, several
techniques have been proposed to date [48-51] in order to enhance the FOV, but the implementation of
such improvements goes beyond the scope of this work.

For the laser cavity conditions described in Section 3, the laser oscillates along the KTP crystal
with a nearly collimated mode of ~700 pum in diameter. When the Nd3*:YVOj crystal is pumped
with 1 W at 808 nm, the up-converted image begins to be dimly displayed on the CMOS camera for a
power level of about 200 uW at 1550 nm. Although the up-conversion efficiency achieved is far from
predicted in theory [21,40], it is not a concern in this work since up-converted power levels obtained
are high enough to meet the saturation threshold of the CMOS camera. If higher efficiency were
required, the use of PPLN or PPLT crystals would offer a higher effective coefficient (~ 15 pm/V) than
that exhibited by the bulk nonlinear crystal. Nevertheless, current manufacturing techniques cannot
achieve crystal cross-sections wider and thicker than 1 mm, simultaneously, when poling periods
required for QPM are under approximately 20 um. Hence, the choice of the phase matching technique,
or rather the kind of nonlinear crystal (bulk versus periodically poled technology), involves a trade-off
between efficiency and resolution. In the case of bulk crystals, increasing the intra-cavity power of the
pump laser can easily compensate the up-conversion efficiency.

5. Conclusions

Together with some preliminary results recently presented [1], this work introduces up-conversion
imaging in the context of optical communications, particularly in FSOC systems. As a first demonstration,
a 21 x 21-bit matrix 2D QR binary code embedded in an 1550 nm IR laser beam is transmitted in
the laboratory and successfully received and recognized by a smartphone’s Si camera and standard
QR recognition software. Compared to an actual FSOC based on sequential (1D) transmission of bit
streams by on/off beam modulation, coding the information in the 2D structure of the beam provides
increased security against eavesdropping by beam scattering in air. Working in the IR eye-safe region
allows for increased eye-safety in laser beams and avoids rapid visual detection of the transmitter
location and the line to the receiver. An FPA-based camera is the most convenient way of sensing the
2D structure within a laser beam. However, due to IR FPA-sensors limitations up-conversion imaging
to the VIS/NIR is in general lower cost and outperforms IR cameras in transmission speed. We have
shown that it is presently the only technology than can compete and even surpass the ~40 Gb/s easily
achievable with a sequential FSOC on a single-wavelength laser basis, i.e., without using wavelength
multiplexing in any of the 1D or 2D systems.

Here, we used a KTP nonlinear crystal placed inside the cavity of a Nd3":YVOy laser oscillating at
1064 nm, to mix a spatially modulated (QR code) 1550 laser beam with the 1064 nm to obtain a 631 nm
up-convert SFM image of the QR code. In our experimental conditions, we differentiate size of up
to 100 um x 100 um. However, this is not a limitation and future attempts will reasonably achieve
the 10 um X 10 um and even smaller sizes. By changing the laser crystal and the nonlinear crystal,
a similar system may operate in the MWIR or LWIR, if desired.

The system can be miniaturized down to a quasi-monolithic robust architecture around 4 cm?
and built at a low cost with standard commercial components, resulting lightweight, and favoring
field-deployable IR eye-safe links, although it is easily extensible to the MWIR and LWIR spectral regions.
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Presently, the fastest commercial beam modulators are DMDs, capable of generating four megapixel
binary images at frame rates of ~10 kfps binary images upon reflection of a beam. Despite their high
price and cooling, InGaAs and InSb cameras can provide no more than 1 kfps at full resolutions of
~1 megapixel at present. Faster speeds are possible via pixel grouping or Rol reading, at the expense of
a severe loss of bits in the frame (resolution). Thus, present DMS overflows the capabilities of InGaAs,
InSb, or HgCdTe cameras. On the contrary, fast Si cameras overflow DMD. In addition, since the SFM
process is noiseless and can achieve QE ~1, the S/N ratio in the system is set by the readout noise.
Since Si cameras have typical read out noise values around 0.5-5 electrons/pixel and cooled InGaAs
and InSb around 50 electrons/pixel up-conversion, detection with a Si camera can outperform direct IR
detection in S/N ratio. Because intra-cavity up-conversion essentially preserves the grey scale in an
image, up-conversion systems can support multilevel bits. At larger distances, using structured laser
beams may help to keep good data rates with moderate apertures in the system due to resolution issues.
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