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Abstract: This paper proposes a beamforming method in the presence of coherent multipath arrivals
at the array. The proposed method avoids the prior knowledge or estimation of the directions of
arrival (DOAs) of the direct path signal and the multipath signals. The interferences are divided
into two groups based on their powers and the interference-plus-noise covariance matrix (INCM) is
reconstructed through the doubly covariance matrix reconstruction concept. The composite steering
vector (CSV) that accounts for the direct path signal and multipath signals is estimated as the principal
eigenvector of the sample covariance matrix with interferences and noise removed. The optimal
weight vector is finally computed using the INCM and the CSV. The proposed method involves no
spatial smoothing and avoids reduction in the degree of freedom. Simulation results demonstrate the
improved performance of the proposed method.

Keywords: multipath arrivals; blind beamforming; interference-plus-noise covariance matrix; composite
steering vector

1. Introduction

Adaptive beamforming is a well concerned research topic of array signal processing, with wide
spread applications in radar, sonar signal processing and other fields [1–6]. Traditional beamforming
mainly depends on the prior information about the array manifold and desired signals to form a
sharper beam for the suppression of interferences and noise [7,8].

Conventional adaptive beamforming techniques are effective under the assumption of the
independence among the received signals. However, in real scenarios, the desired signal may be
received as a group of coherent signals from multiple directions. For instance, in communication
systems, due to the multipath effect, the desired signal may be overlapped by the reflected/scattered
interferences from, say, ground or sea surface, which leads to the coherence of the received signals.
In this case, the conventional adaptive beamformer may suppress the desired signal and degrade
the performance of the beamformer. A class of pre-processing methods for reducing the influence of
signal correlation are proposed. The well-known spatial smoothing method divides array sensors into
subarrays and averages data covariance matrices of subarrays to decrease the coherence of signals [9].
There are also techniques like temporal smoothing [10] and subcarrier smoothing [11], etc. The main
concept of these methods is to decorrelate the coherence and make processed data available for
conventional beamforming.

In practical applications, the prior information about the desired signal is usually unavailable and
the performance of the traditional approach may be significantly deteriorated. The blind beamforming
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technique can maintain satisfactory performance when the parameters are not precisely known, which
dramatically improves the robustness and output performance of the beamforming algorithm.

Blind identification was first applied on beamforming by using blind identification to estimate the
steering vector without the prior knowledge of the array manifold [12]. Based on the array structure,
a blind beamforming method was proposed using estimating signal parameters via rotational invariance
techniques (ESPRIT) to calculate the weighting matrix for each signal [13]. This method is based on an
algebraic structure and has an analytical solution formula, which leads to small calculation complexity.
In the absence of array errors, the performance of this method is close to that of ideal minimum variance
distortionless response (MVDR) beamformer. However, once array distortions such as channel amplitude
and phase errors are taken into account, the output performance is severely deteriorated. In addition,
because the rotation-invariant technique is used, this method is only suitable for uniform linear arrays.
Constant modulus algorithm (CMA) was first proposed for blind equalization and extended to blind
beamforming. The constant modulus algorithm uses the constant modulus of the desired signal without
training data to construct a constant modulus cost function for the received signal. The stochastic
gradient descent CMA (SGD-CMA) [14] and recursive least squares CMA (RLS-CMA) [15] are two
typical representatives of the constant modulus algorithms, but they can only be used for a single
CM signal. Another type of constant modulus algorithm is the analytic constant modulus algorithm
(ACMA) [16–18]. The basic idea is to use the constant modulus of the signal to directly perform
algebraic operation on the data matrix of the received signal to obtain a spatial filter. This algorithm
can obtain the weighting vectors of multiple spatial filters simultaneously, while the number of
array elements should be no less than the square of the number of sources, and it is not effective for
non-circular signals. There are also some novel machine learning approaches for blind beamforming,
which can be effective in specific scenarios [19–21].

Wang et al. [22] proposed a decorrelation-based blind (DBB) beamformer to achieve blind beamforming
when the desired signal is received by the array as coherent signals. The desired signal is assumed to arrive
the array at multiple directions and the signals in these directions are coherent with each other. The DBB
algorithm in fact performs blind beamforming based on the data after spatial smoothing process,
whose performance is closely related to the spatial smoothing algorithm. Zhang et al. [23] estimated
the composite steering vector (CSV) of multipath coherence signals via the eigendecomposition of
the echo data covariance matrix, which is called eigendecomposition-based blind (EBB) beamformer.
However, the EBB beamformer requires that each interference should be stronger enough than the
desired signal, otherwise the performance deteriorates.

In this paper, we propose the doubly covariance matrix reconstruction concept to achieve blind
beamforming for coherent signals. The main problem is to reconstruct the interference-noise covariance
matrix (INCM), and obtain the CSV of desired coherent signals, and then the weighting vector of
MVDR beamformer can be calculated to eliminate interferences and noise which retains the desired
signal sequence. Specifically, our approach consist of the following steps: First, the covariance
matrix of comparable-to-desired-signals-in-power (CDSP) interferences is calculated after estimating
their power and directions of arrivals (DOAs) through the spatial spectrum, then the covariance
matrix of normal interferences is reconstructed using eigenvectors of a transformed form of sample
covariance matrix (SCM). Second, with the INCM obtained by summing the covariance matrices of
interference and noise, the CSV is estimated as a unblinding process, that is, through the eigenvalue
decompostition of SCM with interference and noise components removed. Finally the weighting vector
is determined by the INCM and CSV. Importantly, for the array, the degree of freedom is preserved since
no smooth process is involved in the proposed approach. Simulation results demonstrate that output
signal-to-interference-plus-noise ratio (SINR) of proposed approach attains satisfied performance in
terms of blind beamforming for coherent signals and outperforms the compared approaches.

The rest of this paper is organized as follows: In Section 2, some indispensable formulas about the
model of receiver sensors array are given and necessary background about beamformer for coherent
signals is presented. In Section 3, a new blind beamforming approach for coherent signals is put
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forward in detail. In Section 4, the output SINR performance of the proposed approach is evaluated
through simulations and compared with those of some existing approaches. Section 5 gives the
conclusion of this paper and expectation of future work. Throughout this paper, E[·] is the statistical
expectation operator and (·)H stands for the conjugate transpose operator. (·)T denotes the transpose
operator and I is identity matrix.

2. Problem Formulation

Consider a uniform linear array (ULA) consists of M radar receiving elements. Assume there are
Q + 1 narrowband signal sources in the far-field uncorrelated with each other, including one desired
source and Q interference sources. In practice, due to multipath propagation, the desired signal arrives
at the array from P different directions, and the DOAs of the direct path signal and multipath signals
are θ1, θ2, ..., θP. The DOAs of the Q interference signals are φ1, φ2, ..., φQ. Then at the kth snapshot,
the data vector received by the array can be expressed as

x(k) = AS(k) + n(k) (1)

where S(k) = [β · s(k), I(k)]T denotes the echo signal matrix at instant k, and s(k) represents the
original signal sequence radiated by the desired source with power σ2

s . β = [β1, β2, . . . , βP] is the
phase and amplitude gain vector with element βp being the phase and amplitude gain during the
propagation in the pth way. I(k) = [I1(k), I2(k), . . . , IQ(k)] is the interference vector at instant k and
the power of qth interference signal is σ2

Iq. A = [As, AI ] stands for the steering matrix which contains
the steering vector for each DOA. As = [a(θ1), a(θ2), . . . , a(θP)] is the steering matrix of desired signal
corresponding to P propagation paths and AI = [a(φ1), a(φ2), . . . , a(φQ)] is the steering matrix of
Q interferences, respectively. n(k) is a zero mean, uncorrelated additive white Gaussian noise with
variance σ2

n . In this paper, the noise in each channel is considered to be uncorrelated with the desired
signal and interferences.

With an infinite number of snapshots, the theoretical covariance matrix of data received by the
array can be expressed as

Rx =E[x(k)xH(k)]

=AE[S(k)SH(k)]AH +E[n(k)nH(k)]

=σ2
s AsβH βAH

s + AIE[IH(k)I(k)]AH
I + σ2

n I

=σ2
s VV H + AIΣI AH

I + σ2
n I

=Rs + RI + Rn

(2)

where V = AsβH is CSV of the coherent signals. ΣI = diag[σ2
I1, . . . , σ2

IQ] is a diagonal matrix with
diagonal elements σ2

Iq = E[IH
q (k)Iq(k)].

The beamforming technique can be applied to eliminate the interference and noise components in
the received data while keep the desired signal unaffected through the weighted summation of data of
different channels. The output of beamformer with interference and noise suppressed at instant k can
be written as

y(k) = wHx(k) (3)

where w is the M× 1 weighting vector.
The constraints of the well-known MVDR beamformer are given as

min wH RI+nw s.t.wHV = 1 (4)
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where RI+n = RI + Rn is the INCM. The solution weighting vector of MVDR beamformer is

w =
R−1

I+nV

V H R−1
I+nV

(5)

In practice, the INC matrix RI+n is usually unavailable, and it is replaced with the SCM

R̂x =
1
K

K

∑
k=1

x(k)xH(k) (6)

where K is the number of snapshots and x(k) is the data vector of kth snapshot. The beamformer above
now turns into minimum power distortionless response (MPDR) beamformer, which is also called
sample matrix inversion (SMI) beamformer. It is known that when desired signal is present in the
covariance matrix, the performance of beamformer deteriorates.

3. Proposed Approach

In this part, the proposed blind beamforming approach is introduced. From Section 2, we can
conclude that the estimation of CSV V and INCM RI+n are the main problems of blind beamforming
in presence of coherent signals. In the following content, detailed illustration about the corresponding
estimation process in the proposed approach is given.

In real application, the interferences we usually consider as “normal interferences” are those who
obscure the desired signal due to their much larger power. On the other hand, there are also another
kind of interferences (we named them as “CDSP interferences” in the later) with power comparable to
that of the desired signal, that may also be regarded as false signals and influence the performance of
beamforming. Therefore, we further extend the signal model in (1) to a more generalized situation,
and give the following array signal model for better illustration. Assuming that Q interferences are
composed of Q1 CDSP interferences (i.e., for q = 1, . . . , Q1, σ2

Iq is comparable to the desired signal
power σ2

s ) and Q− Q1 normal interferences (i.e., for q = Q1 + 1, . . . , Q, σ2
Iq � σ2

s ), then (2) can be
rewritten as

Rx =Rs + AI1ΣI1 AH
I1 + AI2ΣI2 AH

I2 + Rn

=Rs + RI1 + RI2 + Rn
(7)

where ΣI1 = diag[σ2
I1, . . . , σ2

IQ1
], ΣI2 = diag[σ2

IQ1+1, . . . , σ2
IQ], AI1 and AI2 are steering matrices of Q1

CDSP interferences and Q−Q1 normal interferences, respectively.

3.1. Doubly Covariance Matrix Reconstruction

3.1.1. Covariance Matrix Reconstruction of CDSP Interferences

We estimate the noise power σ2
n as the minimum eigenvalue of R̂x [24]. Since the noise in the

paper is assumed to be white Gaussian, the noise covariance matrix can be reconstructed as

R̂n = σ̂2
n I (8)

Capon spatial spectrum can be utilized to give the spatial spectrum distribution over the whole
space, where the interference DOAs can be estimated from the location of the peaks [25,26]. Moreover,
the power estimation of the interferences can be operated from the value of the peaks. The Capon
spectrum is applied to reconstruct the covariance matrix for the CDSP interferences, the basic
expression of Capon spectrum is given as

P(φ) =
1

aH(φ)R̂−1
x a(φ)

(9)
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The basis of the spatial spectrum is the ordinary steering vector a(φ), so the peak of desired signal
is not in the spread spectrum. By using Capon spectrum to search in the whole spectrum, we obtain a
series of peaks. Usually, the number of these peaks is larger than the truth number of interferences Q
because there are some peaks formed by noise. Since the peaks formed by noise are far lower than
the peaks corresponding to real interferences in the spectrum [27], it is applicable to set a threshold to
choose the peaks of real interferences and determine the number of interferences Q. Considering the
fact that there are M channels in the receiver array, the value of threshold can be set as σ̂2

n/M. If the
value of the peak is lower than σ̂2

n/M, it is considered as a non-interfering peak and removed.
After the selection, the remaining peaks contain both normal and CDSP interferences. The small

value peaks are chosen out as peaks of CDSP interferences, i.e., the peaks of which the values are
relatively larger are considered belonging to the normal interferences. Actually there is no precise limit
to differ the relatively larger and relatively small peaks. Usually, we can give an experiential value of
this limit through experimental measurements, which has been further explored in the Example 1 of
simulation part. The number of CDSP interferences Q1 is obtained as the number of relatively small
values peaks. The values of the Q1 selected peaks are considered as the power estimates of the CDSP
interferences, and the corresponding angles φ̂1, . . . , φ̂Q1 can be regarded as their DOAs. The covariance
matrix of Q1 CDSP interferences can be reconstructed as

R̂I1 =
Q1

∑
q=1

a(φ̂q)aH(φ̂q)

aH(φ̂q)R̂−1
x a(φ̂q)

(10)

3.1.2. Covariance Matrix Reconstruction of Normal Interferences

Before we proceed to the following content about the reconstruction of RI2, some necessary
basis of our approach should be illustrated. The matrix theorem about rank-one modification of the
symmetric eigenproblem is used in [23], we now extend it to a more generalized situation. First,
the content of original theorem should be introduced.

Theorem 1. Suppose B is a known Hermitian M×M matrix, b is a M× 1 complex vector. B̂ = B + pbbH ,
where p ∈ R. Then the kth eigenvalue of B̂ can be given as

λ̂k = λk + pµk (11)

where λk is the kth eigenvalue of B, ∑M
k=1 µk = 1 and 0 ≤ µk ≤ 1. Denote the eigenvalue decomposition of B

as B = QDQH , then the corresponding kth eigenvector of B̂ is

q̂k = Q
D−1

k z

‖D−1
k z‖2

(12)

where Dk = D− λ̂k I, z = QHb. Proof of Theorem 1 can be referred to [28].

According to the above theorem, if λk � p, the change of the eigenvalue of B can be ignored after
adding such a rank-one matrix pbbH . On the other hand, it is obvious that q̂k is a linear combination
of all eigenvectors of B, (i.e.,q1, q2, . . . , qM). The mth diagonal entry of D−1

k is (λk − λ̂k)
−1, when λk

is sufficiently large [D−1
k ]k,k would be the largest entry, thus q̂k ≈ qk can be derived since qk is the

dominant contributor to q̂k.
This theorem can be extended to a generalized situation. For a Hermitian matrix B, its dominant

eigenvalues and corresponding eigenvectors would not be significantly changed by adding n rank-one
matrices p1b1bH

1 , p2b2bH
2 , . . . , pnbnbH

n , where p1, p2, . . . , pn ∈ R are small enough, b1, b2, . . . , bn ∈ RM.
The above conclusion is obvious and can be proved as follows.

Since rank-one matrices p1b1bH
1 , p2b2bH

2 , . . . , pnbnbH
n are all Hermitian matrices, B+∑i=n−1

i=1 pibib
H
i is

a Hermitian matrix and its dominant eigenvalues and corresponding eigenvectors would not be significantly
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affected by adding rank-one matrix pnbnbH
n . Similarly, for B + ∑i=n−2

i=1 pibib
H
i , the dominant eigenvalues

and corresponding eigenvectors approximate that of B + ∑i=n−1
i=1 pibib

H
i . As a corollary, these large

eigenvalues and corresponding eigenvectors of B stay approximately unchanged after adding these
rank-one matrices p1b1bH

1 , p2b2bH
2 , . . . , pnbnbH

n .
Suppose the eigenvalue decomposition of RI2 is given as

RI2 = U I2ΛI2UH
I2 (13)

where U I2 = [uI1, uI2, . . . , uIM] is the eigenvector matrix, ΛI2 = diag[λI1, λI2, . . . , λIM] is the eigenvalue
matrix. These eigenvalues are arranged in descending order, (i.e., λI1 ≥ λI2 ≥ . . . λIQ−Q1 � λIQ−Q1+1 =

λIQ−Q1+2 = · · · = λIM = 0).
Assume the eigenvalue decomposition of R̃x = Rs + RI1 + RI2 is given as

R̃x = Rx − σ2
n I = UΛUH (14)

where U = [u1, u2, . . . , uM], Λ = diag[λ1, λ2, . . . , λM].
According to the above theorem, if σ2

Iq � σ2
s , for q = Q1 + 1, . . . , Q, then the Q−Q1 dominant

eigenvalues and the corresponding eigenvectors of RI2 would not be significantly affected by adding
Rs + RI1. Therefore, RI2 can be approximated by the dominating Q−Q1 large eigenvalues and the
corresponding eigenvectors of R̃x. Defining ˆ̃Rx = R̂x − σ̂2

n I as the estimate of R̃x, where σ̂2
n is the

estimate of noise variance, we derive the following approximate equation

R̂I2 = Û I2Λ̂I2ÛH
I2 (15)

where Λ̂I2 is the eigenvalue matrix containing the Q−Q1 largest eigenvalues of ˆ̃Rx and Û I2 includes
Q−Q1 corresponding dominant eigenvectors.

It should be noted that during the reconstruction of the Q− Q1 normal interferences, there is
an prerequisite that the Q− Q1 normal interferences are strong enough in power. However, in the
Example 1 of the simulation part, the performance of proposed approach is proved to attain optimal
when the normal interferences are 10 dB stronger than the desired signals. Situations with this power
difference are common in real scene. The more complex scenarios are out of the scope of this paper
and are listed as a further extension work.

3.2. Unblinding Desired Coherent Signals

Based on the reconstructed interference covariance matrices R̂I1 and R̂I2, the INCM can be
estimated as

R̂I+n = R̂I1 + R̂I2 + σ̂2
n I (16)

Therefore, the estimation of desired signal covariance matrix Rs can be obtained as

R̂s = R̂x − R̂I+n (17)

It is known that multiplying V by a nonzero scalar would not affect the performance of
beamformer. Therefore, the CSV of desired coherent signals V can be estimated as the eigenvector of
R̂s corresponding to the largest eigenvalue as

V̂ = P[R̂s] (18)

where the operator P[·] denotes the eigenvector of the matrix corresponding to the principal eigenvalue.
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The weighting vector of the proposed blind beamforming approach can thereby be obtained and
given as

w =
R̂−1

I+nV̂

V̂ H R̂−1
I+nV̂

(19)

The detailed procedures of the proposed blind beamforming approach are summarized in
Algorithm 1 shown as follows.

Algorithm 1 Steps of doubly covariance matrix based blind beamforming approach.

Part 1: doubly covariance matrix reconstruction
1. eigendecomposing the SCM R̂x.
2. σ̂2

n = minimum eigenvalue of R̂x.
3. Q = number of spectrum peaks sufficiently larger than σ̂2

n/M.
4. Q−Q1 = spectrum peaks of dominant value among Q peaks.
5. reconstructing covariance matrix for the Q1 CDSP interferences as

R̂I1 = ∑Q1
q=1

a(φ̂q)aH(φ̂q)

aH(φ̂q)R̂−1
x a(φ̂q)

6. decomposing SCM with noise components removed as
ˆ̃Rx = ÛΛ̂ÛH

7. reconstructing covariance matrix for the Q−Q1 normal interferences as
R̂I2 = Û I2Λ̂I2ÛH

I2.
Part 2: unblinding desired coherent signals.

8. reconstructing the INC matrix R̂I+n according to (16) and obtaining R̂s based on (17).
9. estimating the CSV of desired coherent signals
V̂ = P[R̂s].
Final calculating the weighting vector

w =
R̂−1

I+nV̂

V̂ H R̂−1
I+nV̂

4. Simulation

In this section, simulations are provided to examine the performance of proposed approach via
several examples. A ULA of 35 sensors is considered in the simulation for all examples, the covariance
of the white Gaussian noise is assumed to be σ2

n = I. The distance between the adjacent elements
is set as half of the wavelength. Suppose that the desired signal reaches the array in form of a
group of coherent signals from multiple directions. Here, we consider the situation that the desired
signals propagate through three different paths with phase and amplitude gain β1 = 0.8j, β2 = 0.4j,
β3 = −0.2j. Their DOAs are θ1 = −30◦, θ2 = −40◦, θ3 = −50◦ respectively.

To better demonstrate the performance of the proposed approach, three representative blind
beamformers—the EBB approach in [23], the MVDR-Smooth approach in [27], and the optimal
beamformer are compared with the proposed approach in the following simulations. For the MVDR-
Smooth approach, 10 subarrays are applied for smoothing. Moreover, it should be noted that the optimal
beamformer is the MVDR beamformer with known CSV. In all simulation results, 300 Monte-Carlo
trials are run for every single point.

4.1. Simulation Example 1

As stated before, the normal interferences should be sufficiently stronger than the desired signal
so that the proposed covariance matrix reconstruction method for the normal interferences can be
applied. In the first example, simulation is performed to examine how large the interference-to-noise
ratio (INR) should be to meet the restriction.
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Q = 6 interferences are considered in this example and are divided into two groups for illustration
convenience, i.e., Group 1: I1, I2, I3 with DOAs {20◦, 30◦, 40◦} and Group 2: I4, I5, I6 with DOAs
{50◦, 60◦, 70◦}. In this example, the INR of Group 1 is fixed at 5 dB. With signal-to-noise ratio (SNR)
fixed at 0 dB, the output SINR curves versus INR of Group 2 varying from 5 dB to 25 dB are plotted
in Figure 1. As is shown in the figure, when the INR is low, the performance of proposed approach
deteriorates, the output SINR is far away from optimal as expected. This is because at low INRs,
the approximation R̂I2 = Û I2Λ̂I2ÛH

I2 no longer holds and the estimation of INC matrix will be
inaccurate. However, proposed approach outperforms the compared approaches when INR > 7 dB
and attains the optimal when INR > 10 dB. This proves the restriction for real application of the
proposed approach is not hard to meet since the interferences are stronger than 10 dB in many
scenarios. On the other hand, the EBB beamformer cannot perform well when there are interferences
comparable to desired signals in power, even the INR is high, the output SINR of MVDR-smooth
approach maintains stable at approximately 13 dB at all INRs.

5 10 15 20 25
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25

O
ut

pu
t S
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R

 (
dB
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EBB approach
Proposed approach
MVDR-Smooth
Optimal

Figure 1. Output SINR versus INR (Group 2), INR (Group 1) = 5 dB, SNR = 0 dB.

4.2. Simulation Example 2

To further investigate the performance of proposed approach, fixing the INR of Group 2 as 25
dB while keeping other conditions unchanged, in Figure 2, we plot the output SINR curves versus
INR of Group 1 varying from −5 dB to 5 dB. As can be seen from the figure, the proposed approach
stays close to the optimal SINR over a large range from −5 dB to 5 dB. For EBB approach, it performs
well and is close to the optimal when INR is low. However, it can be observed that the existing of
CDSP interferences degrades its performance, and is more significant as the INR gets larger. When
INR > 3 dB, it is inferior to the MVDR-Smooth approach. When INR= 5 dB, the output SINR of EBB
approach is −15 dB, which is far away from the optimal 20.5 dB. On the other hand, the performance
of MVDR-Smooth approach is more stable, it is insensitive to the variation of INR and maintains an
output SINR of 12.5 dB. It can be seen from Figure 2 that proposed approach performs well in this
example and displays the best performance among all the approaches, it stays close to the optimal at
all INRs.
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Figure 2. Output SINR versus INR (Group 1), INR (Group 2) = 25 dB, SNR = 0 dB.

4.3. Simulation Example 3

In the third example, with the interference-to-signal ratio (ISR) of two interference groups fixed
and other conditions unchanged, we explore the performance of proposed approach at various SNRs.
ISRs are set as 5 dB and 25 dB for Group 1 and Group 2, respectively. The SNR is varied from −10 dB
to 10 dB. It is obvious from Figure 3 that proposed approach is superior to other approaches and
attains optimal at all SNRs. At SNR as low as −10 dB, the output SINR of proposed approach is
approximately 10.5 dB, which is 6.5 dB higher than the MVDR-Smooth approach 4 dB, and 24.5 dB
higher than the EBB approach −14 dB. As the power level of desired signals increases, the output
SINR of proposed approach and MVDR-Smooth approach all increases linearly. The MVDR-Smooth
approach is approximately 6.5 dB lower than the proposed approach at all considered SNRs. Moreover,
It shows that EBB approach is insensitive to the SNR level. The EBB approach stays around −14 dB at
all SNRs.

4.4. Simulation Example 4

In the fourth example, to further validate the performance of the proposed method, the convergence
ability of the proposed approach is tested. As illustrated in the figure, Figure 4 demonstrates the output
SINR of different beamformers versus the number of snapshots for the fixed SNR and INR. The INR
are set as 5 dB and 25 dB for interference Group 1 and Group 2, respectively. The SNR is fixed at 0 dB.
With other conditions unchanged, the SINR curves are drawn against the number of snapshots varying
from 100 to 1000. It can be clearly observed that the proposed approach enjoys the best performance
among the compared beamformers and is able to reach nearly the optimal performance. In general,
the proposed approach is not sensitive to the number of snapshots.
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Figure 3. Output SINR versus SNR, ISR (Group 1) = 5 dB, ISR (Group 2) = 25 dB.
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Figure 4. Output SINR versus the number of snapshots, INR (Group 1) = 5 dB, INR (Group 2) = 25 dB,
SNR = 0 dB.

4.5. Simulation Example 5

In the four examples concerned above, there exists an assumption that only two groups of
interferences are employed, one for the normal interferences and one for the CDSP interferences.
In this example, we further extend the scenario by adding one additional group of interferences
I7, I8, I9 with DOAs {−10◦, 0◦, 10◦} named by Group 3. The DOAs of Group 1 and 2 are set the same
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as before, the ISR of Group 1 and Group 2 are fixed at 5 dB and 25 dB. The output SINR curves of
different approaches are displayed versus the ISR of Group 3 varying from 5 dB to 25 dB. We plot the
output SINR curves at SNR of−5 dB in Figure 5a, 0 dB in Figure 5b and 5 dB in Figure 5c. Since the ISR
of Group 3 varies and it is essential to determine its division according to the power extent. Therefore,
in Figure 5a–c, except the curves of compared approaches, two curves of proposed approach denote to
for different division plans are drawn respectively, i.e., the blue curve marked with squares stands for
the output SINR when Group 3 is processed as normal interferences, and the blue curve marked with
diamonds is for Group 3 be divided into CDSP interferences. In all three figures,proposed approach
achieves the optimal at approximately 10 dB higher than the desired signals, which means that it is
suitable to consider the interferences as normal interferences when ISR > 10 dB. It is worth noting
that this result is consistent with Example 1. On the other hand, it is shown that at ISRs from 5 dB
to 10 dB, dividing the Group 3 into the CDSP interferences obtains better performance. In terms of
other approaches, the performance of MVDR-Smooth is steady as expected, but its output SINR gets
higher as SNR gets larger, it is around 8 dB in Figure 5a, 12dB in Figure 5b and 17dB in Figure 5c at all
ISR levels.
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Figure 5. Output SINR versus ISR (Group 3), INR (Group 1) = 5 dB, INR (Group 2) = 25 dB, (a) SNR =
−5 dB, (b) SNR = 0 dB, (c) SNR = 5 dB.

5. Conclusions

A new blind beamforming approach for coherent signals is proposed in this paper. When the
prior information about desired signals is unavailable, the proposed approach can effectively suppress the
interferences and noise, and extract original signal sequence from the received data. The proposed approach
is mainly based on the proposed doubly covariance matrix reconstruction concept. The covariance matrices
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are reconstructed respectively with two methods. Based on the reconstructed INCM, the unblinding
procedure is implemented to obtain the CSV of desired coherent signals. Simulation examined the output
SINR improvement of proposed approach compared to other approaches. The proposed approach
avoids the freedom degree loss since no smooth procedure is involved. It has been verified through
simulations that our proposed approach attains optimal when the ISR of normal interferences are
around 10 dB, and this ISR can be easily met in many scenarios. In Example 5, we further explored
a more complicated scenario, by adding an additional interference group. The simulation results
illustrate that when ISR is stronger than 10 dB, the interferences can be considered and processed as
normal interferences, and at ISR < 10 dB, dividing the interferences into CDSP is more appropriate,
which is consistent with the result in Example 1. It should be noted that the proposed approach is
applicable for the linear array despite of the way the elements are spacing, i.e., the proposed approach
can be used in both the equispaced and non-equispaced array since the only difference is the steering
vector. In our future work, the experiments based on real antenna array will be taken into consideration
to further validate our approach in practice.
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