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Abstract: Bridges are designed to withstand different types of loads, including dead, live,
environmental, and occasional loads during their service period. Moving vehicles are the main source
of the applied live load on bridges. The applied load to highway bridges depends on several traffic
parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the
bridge, number of vehicles, direction, and vehicle’s speed. The estimation of traffic loadings on
bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate
prediction of the in-service performance of a bridge structure is very desirable and great savings can
be achieved through the accurate assessment of the applied traffic load in existing bridges. In this
paper, a review is conducted on conventional vehicle-based health monitoring methods used for
bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle
bridge interaction (VBI)-based models are the methods that are generally used in the structural
health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and
suggestions for future work in this area are addressed, including alleviating the downsides of each
approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted
methods for health monitoring of bridges.

Keywords: structural health monitoring (SHM); drive-by damage detection; indirect structural health
monitoring; weigh in motion (WIM); bridge weigh in motion (BWIM); vehicle bridge interaction (VBI)

1. Introduction

Bridges are subjected to deterioration caused by detrimental factors, such as aging, fatigue,
and corrosion that degrade structural capacity. Failure of civil structures may lead to catastrophic
consequences in terms of human life and economic assets. Then it is of utmost importance to ensure the
structural integrity of bridges to meet safety, durability, and serviceability requirements [1]. Structural
health monitoring (SHM) is a highly active research area with promising technological implications
to evaluate structural performance and to identify damage during the service life of a structure [2].
Health monitoring of structures is aimed to improve safety and reliability through (1) assessing the
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operational condition of a structure in a near real-time manner and providing an alarm for abnormal
conditions, (2) evaluating the serviceability of structures immediately after occurrence of extreme
loading conditions such as an earthquake or major vehicular collisions and (3) providing the owners
with accurate information on a structure to decide about the most cost-effective repair and rehabilitation
strategies in a certain civil engineering structure [3–5].

SHM is an interdisciplinary subject that incorporates knowledge and experiences from synergetic
technologies to deal with the health assessment of structures. SHM approaches assume that damages
affect the dynamic or static properties of a system [6,7]. SHM collects structural responses from
several points through mounted sensors, analyzes data, and evaluates the health state of the structure.
Strain and displacement of a structure are affected by damage under specific static loading. On the
other hand, damage reduces stiffness and Young’s Modulus and consequently results in a change in
modal parameters. Detectability of a damage detection system is highly influenced by the type and
size of imperfection.

Bridges are designed to resist load components such as dead, live, environmental, and occasional
loads. Temperature, wind, and traffic are the most important operational load during the service
period and they greatly affect the structural behavior of a bridge structure. The applied vehicular traffic
load is a parameter that can be easily monitored and their effect is distinguishable from the induced
environmental-based structural responses. There is a close correlation between the property of a
bridge structure and the corresponding structural response. Hence, the establishment of a relationship
between the applied traffic load and the extracted response signal is a valuable indicator to evaluate
the structural health condition of a bridge structure [1]. The applied traffic load to a highway bridge
structure depends on several parameters such as weight of vehicles, axle load, configuration of axles,
position of vehicles on the bridge, number of vehicles, direction, and vehicle’s speed [8]. Though it is
very desirable to evaluate the in-service performance of a bridge structure, it is difficult to measure the
incorporated time-varying vehicular parameters [9].

Over the past decades many methods for identification of moving vehicles on bridges have been
reported. O’Connor et al. [10] proposed a method to estimate the variation of dynamic load based
on the static mass of a moving load on a bridge. Their method is named the interpretative method
I (IMI); vehicles on a bridge are modeled analytically as a set of lumped mass linked with massless
beam elements. Chan et al. [11] introduced another method to identify the moving dynamic load using
a numerical model of bridges and the bridge-vehicle interaction. The proposed model was named
interpretative method II (IMII) and was similar to the IMI technique. Most of the proposed inverse
methods for identification of the applied force from the response exhibit significant fluctuation in the
start and end of time history due to an ill-conditioned inverse problem. Law et al. [12] proposed using
the regularization method to solve an ill-conditioned problem.

A variety of techniques have been proposed for measuring moving vehicle loads on bridges [13].
Using instrumented vehicles is a traditional approach to measure live load on bridges [14].
Implementing this test is difficult, expensive and the extracted data are prone to bias since the
experiment is limited to the instrumented vehicle. Henchi et al. [15] used analytical modeling of
moving vehicles and bridge deck to calculate vehicular live load. However, using a dynamic model
for extracting traffic load is subjected to error and imprecision. Weigh in motion (WIM) system
developed for measuring vehicle weight data [16]. WIM is a system equipped with various sensors,
digital cameras, and computers that is installed on a bridge structure. WIM measures the dynamic
axle load of moving vehicles to obtain vehicle weight data. However, WIM is a fixed-location weight
measurement device and measures the axle weight just when its wheels pass over the sensors. On the
other hand, WIM system is expensive and not feasible for local roads.

Deng et al. [17] proposed a direct method for the identification of axle load from bridge response.
In their method modal parameters of bridges and the mechanical properties of vehicles are used
to develop a vehicle–bridge couple system. The dynamic axle load can be determined from the
influence surface and superposition concepts. In a companion paper, Deng and Cai [18] evaluated the
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numerical model of an existing bridge by passing two trucks across in parallel. The result obtained
from the experimental test shows a good capability of the method for identifying vehicle loads from
bridge response. Kim et al. [19] proposed a method to calculate vehicle bridge interaction (VBI) using
extracted data from analytical and WIM systems. A two-stage identification algorithm is used for
the identification of the axle force from bridge response. Table 1 presents a summary of the literature
reviews on vehicle-assisted bridge SHM.

Table 1. Summary of the literature reviews on vehicle-assisted bridge structural health monitoring (SHM).

Title of the Paper References VBI-Based
Methods

Drive-by
Damage

Detection

Vehicle-
Classification-
Based SHM

Modern
Vehicle-
Assisted
Methods

A review of indirect bridge monitoring
using passing vehicles

Malekjafarian
et al. [20] X X × ×

A literature review of next-generation
smart sensing technology in structural

health monitoring

Sony et al.
[21] × × X ×

Structural health monitoring based on
vehicle-bridge interaction:

Accomplishments and challenges

Zhu and Law
[22] X × × ×

Extraction of Bridge Modal Parameters
Using Passing Vehicle Response Tan et al. [23] X X × ×

Utilizing moving vehicles as sensors for
bridge condition screening-A

laboratory verification

Kim et al.
[24] × X × ×

The presented review of the available literature on vehicle-assisted bridge SHM shows that most
of the research to date mainly focuses on vehicle bridge interaction (VBI) -based methods and drive-by
damage detection. Nonetheless, there is only one review paper for the vehicle-classification-based
SHM and its focus is mainly on smart vehicle-classification methods in SHM. To the best of the authors’
knowledge, no review has been conducted to cover all vehicle-assisted techniques separately within
one review paper. Some review papers have discussed vehicle-assisted bridge SHM, but these have
focused only on VBI-based methods and drive-by damage detection. Plus, these reviews discussed
limited aspects of each technique. In a paper by Malekjafarian et al. [20] a survey is carried out on
next-generation smart sensing technology in bridge SHM. The findings of the research mainly focused
on the application of the state-of-the-art methods in VBI and drive-by bridge SHM. In another research
by Sony et al. [21] in 2019, application of smart sensing technology in SHM is reviewed. The study
mainly focused on smart methods by utilizing efficient smartphones, cameras, drones, and robotic
sensors. In other studies such as those by Zhu and Law [22], Tan et al. [23], and Kim et al. [24],
VBI-based techniques as well as drive-by methods have been the focus of the study. Even though some
reviews have been carried out, a comprehensive review of the vehicle assisted techniques in bridge
SHM is still missing. The present study intends to fill this gap in the literature. Its primary aim is to
offer a discussion on the vehicle assisted methods from the application point of view and to discuss the
challenges hindering the real-life applicability of these methods.

In the following sections, vehicle-assisted bridge SHM methods are discussed. Afterward,
VBI-based and drive-by methods as well as vehicle classification-based approaches are comprehensively
addressed with the challenges ahead in market access. Finally, the prospect and the summary are given.

2. Vehicle-Bridge Interaction (VBI)-Based Methods

Vehicle-assisted SHM methods can be divided into direct and indirect methods. In direct SHM
systems, a network of sensors is deployed together to monitor a bridge structure. While in indirect
monitoring systems the passing by vehicles is instrumented and the dynamic parameters of the
bridge structure are obtained from the measured vehicular vibration response. These methods are
also known as “drive-by” SHM methods [23]. The dynamic of moving load on bridges has been
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the target of many theoretical and numerical studies since the first report by Frýba [25] in the 1960s.
Damage detection using conventional motion sensors such as accelerometers requires expensive sensor
networks, power resources, and maintenance whereas indirect methods require one or few vibration
sensors installed on the test vehicle. Hence, vehicle-assisted methods have significant advantages
in the case of mobility, economy, and efficiency. Several researches are conducted to study using
instrumented vehicles for damage detection [26]. Numerical simulation of a passing vehicle has been
an effective tool for the analysis of VBI. Figure 1 shows the schematic of the indirect health monitoring
of bridge structures.
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Figure 1. Schematic of an indirect health monitoring system for bridge structures.

The vehicles in drive-by bridge health monitoring are generally equipped with accelerometers to
record the acceleration time-history generated during the experiment and laser distance measuring
devices to measure the vertical clearances while in motion. The quarter-car model is a simplified
two-degrees-of-freedom model of the suspension system to reproduce vehicle dynamics while passing
over the bridge. The quarter car model is used to demonstrate the theoretical basis of the VBI model.
The vehicle is modeled as vehicle’s body mb, tire mass mw tire stiffness kt, suspension stiffness kb and,
suspension damping bb. zw and zb are vertical displacements of the sprung and un-sprung masses of
vehicle body and tire assemblies, respectively. r and zr are the road roughness and bridge deflection,
respectively. When a vehicle passes over a bridge dynamic load is induced to the structure [27].
The VBI is composed of a bridge subsystem and the vehicle subsystems [28]. Though the bridge and
vehicle are considered as two separate subsystems, the interaction forces at the contact points of the
two subsystems make the two sets of equations coupled [29,30]. The equation of motion for sprung
and unsprung masses are as Equations (1) and (2) [20].

mb
..
zb + bb

( .
zb −

.
zw
)
+ kt(zb − zw) = 0 (1)

mw
..
zw −Cs

( .
zb −

.
zw
)
− kb(zb − zw) + kt(zw − zr − r) = 0 (2)
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The ultimate goal of characterizing the dynamic model is to identify the modal parameters of
natural frequencies, modal shapes, and damping factors in a structure. When damage occurs in a
bridge structure, modal parameters change accordingly. The premise of drive-by health monitoring is
that dynamic parameters of a bridge are a function of its physical properties and damage to a structure
will lead to changes in dynamic parameters [31]. Existing severe damage in structure triggers an alarm
to notify authorities.

2.1. Stages of Damage Detection

The identification of modal parameters plays an important role in bridge SHM. Yang et al. [32]
first established the feasibility of extracting dynamic parameters of bridge structure from the response
signal of a passing vehicle. A simple closed-form model of the VBI is conducted by considering a
sprung mass and a simply supported beam. Since then, several researches have been published to
improve the topic into its current state [20]. Tan et al. [23] proposed an algorithm to extract mode
shapes and damping ratio using information from the VBI model. A numerical model of a sprung
mass of a quarter-car model is adopted at a constant low speed to verify the proposed algorithm.
It was demonstrated that the proposed algorithm had considerably superior performance in extracting
mode shapes when compared to the algorithm presented by Yang et al. [33]. McGetrick and Kim [34]
used modal parameters of the indirect approach for damage detection of an artificially damaged
steel truss bridge. The result showed that the presence of damage in the structure is detectable using
the proposed algorithm however it was difficult to distinguish between different damage scenarios.
Tan et al. [35] and McGetrick and Kim [36] used the change in natural frequencies of a bridge using
instrumented vehicles. The methods could successfully detect the presence of damage in the VBI
simulation model. Chang and Kim [37] investigated the variability of bridge frequency due to parked
vehicles. The frequency variability induced by parked vehicles on a VBI system was estimated by
calculation. Oshima et al. [38] suggested using a heavy vehicle for excitation in addition to the scanning
vehicle to yield a constant vibration on bridges. SHM methods can be broadly classified into four
categories of:

1. Detection of existence;
2. Damage localization;
3. Severity assessment;
4. Prediction of the remaining life of a damaged structure.

whereas the last one is less explicitly reported in the literature [39,40]. Vibration-based damage
detection (VDD) is one of the most active research areas in the field of SHM that use structural vibration
to evaluate the health state of structures [20]. The underlying principle behind these techniques is
that structural damage changes physical properties of a structure which in turn affects its dynamic
properties [41]. VDD can be classified using the extracted features that can be any of natural frequency,
damping, curvature, mode shape, and strain [20,42]. Yang and Yang [43] conducted a comprehensive
review of modal identification and damage detection of bridges by indirect methods.

2.1.1. Damage Existence

The first target in an SHM is to detect the existence of damage in a target structure. The majority of
the early studies have focused specifically on using natural frequencies to distinguish damage presence
in structures [44]. Lin and Yang [45] scanned the natural frequency of a sustaining bridge by an
accelerometer installed in the cart towed by a truck. The natural frequencies of the cart were extracted
from the recorded response using a fast Fourier transform (FFT). The field test results confirmed the
applicability of indirect methods to extract the fundamental frequency of bridges. Sitton et al. [46]
compared the obtained results in the literature for indirect identification manifest of natural frequencies.
It was indicated that the peaks of the bridge’s natural frequency from measured vehicle response were
shifted below and above the natural frequency of the bridge representing a 7% error. Cumulatively,
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the available literature shows that a change in natural frequency is the most effective dynamic indicator
of damage in structures.

The features to identify damage presence in a structure was extended to mode shapes and damping.
Obrien and Keenahan [47,48] investigated using damping of the bridge as an indicator of damage
existence using drive-by bridge inspection. A two-dimensional numerical model of a three-axle truck
towing a half-car trailer is used to test the effectiveness of the approach in identifying the damping of
the bridge. The obtained results showed that damping can successfully detect damage in bridges with
high robustness insensitive to the transverse position of the vehicle on the bridge. Keenahan et al. [49]
detected the existence of damage from changes in the damping of a bridge. Theoretical model of
vehicle–bridge interaction is simulated by a truck–trailer over a simply supported bridge. Subtraction
of the spectra in the accelerations between the two axles is used to eliminate the effect of road profile
roughness on the vehicle vibration. Though the available indirect damage identification methods using
bridge damping present good potential, they face major limitations in quantification.

Yang et al. [33] presented a theoretical algorithm to construct mode shapes of a bridge from the
vibration response of test vehicles moving over the bridge. It was determined that the proposed method
can offer more spatial information, with higher resolution. Important factors in constructing accurate
bridge mode shapes such as road surface roughness, random traffic, and vehicle speed were studied.
Oshima et al. [50] developed a method to assess the presence of different damages based on mode
shapes changes. Mode shape for the bridge structure is extracted from responses of passing vehicles.
Two damage scenarios were to be investigated under varying measurement noise and different road
roughness. It was indicated that the damage present in structures can be recognized in severe states
that incurs significant changes in modal parameters. It was stated that the developed approach has low
robustness against noise. Table 2 shows some important studies on bridge SHM for damage detection
in structures.

Table 2. Summary of some literature on indirect methods used to detect damage existence in bridge
structural health monitoring (SHM).

Reference Feature Extraction Damage Index Model Result

Liu et al. [51] Stacked
autoencoders

Spectrogram of
acceleration

Lab-scale experimental
dataset and simulation

The method is applicable in
real-world structures

Cantero et al.
[52]

Continuous
wavelet transform Map of coefficients Numerical model and

experimental set-up

Different vehicle suspension
properties have different

frequency shifts

Wang et al.
[53] Particle filter Shifting and

subtracting
Numerical and field

experiment

Fundamental frequency was
extracted for several
driving-speed cases

Elhattab et al.
[54] Feeble feature

Frequency
independent

underdamped
pinning stochastic

resonance

Simulation model and
a full-scale field test.

The algorithm could only
identify the first bridge

frequency

Sitton et al.
[46] - Natural frequencies Finite-element

simulations

Observed indirect bridge
frequencies had two peaks

below and above the
fundamental bridge

frequency

Lin and Yang
[45]

Fast Fourier
transform Natural frequencies Experimental

Feasibility of scanning the
fundamental frequency of
the bridge using the towed

cart is confirmed

Oshima et al.
[50]

Singular value
decomposition Mode shape

Numerical simulations
of vehicles as sprung

mass

Damage can be recognized
in a severe state
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2.1.2. Damage Localization

In recent years several studies have been conducted to investigate damage localization using
indirect methods. In these methods, the response signal from a drive-by vehicle is extracted and
features which are sensitive to damage location are extracted. Several studies have proposed wavelet
theory for damage detection and localization in indirect bridge monitoring. McGetrick et al. [34]
incorporated wavelet analysis and statistical pattern recognition to both detect and locate damage
in bridges. A damage feature based on wavelet coefficients is extracted and deployed on theoretical
simulations, and a real bridge field experiment. The resulting damage indicators from the test vehicle
and bridge showed similar patterns. Zhu and Law [55] presented a new method for damage localization
using wavelet analysis. The locations of the cracks are determined from the sudden changes in the
continuous wavelet transform responses. It was indicated that, using this method, locations of multiple
damages can be located accurately independent of measurement noise and vehicle speed.

Signal processing and system identification methods from time and frequency domains are also
used for damage localization in bridges. Lederman et al. [56] conducted a study to diagnose the
location of damage by a feature extracted using principal component analysis (PCA), and kernel
regression method. The response signals collected from the bridge model and vehicle passing over
the model was used for analysis in a laboratory bridge model. The damage location was identified
successfully using the extracted feature. Mode shapes and their derivatives appeared to have potential
in damage localization in bridge structures. OBrien and Malekjafarian [57] used a damage indicator
based on mode shape squares to detect the location of damage in different scenarios. Mode shapes were
extracted using a short-time frequency domain decomposition method. It was stated that the method
could successfully extract damage for speeds up to 8 m/s. Zhang et al. [58] proposed a new damage
index based on the mode shape square. The validity of the algorithm was demonstrated by numerical
simulations and simple experiments. It was indicated that more accurate results were obtained in
noisy environments compared to traditional SHM algorithms. Table 3 shows some important studies
conducted on localization of damages using drive-by SHM methods.

Table 3. Summary of some literature on indirect methods used to localize damage in bridge SHM.

Reference Feature Extraction Damage Index Model Result

Lederman et al.
[56]

PCA and kernel
regression

Frequency features
used in support
vector machine

A laboratory-scale
experiment of a vehicle

pulled by a cable

Lower error was gained for
the chassis sensors

compared to bridge sensor

McGetrick et al.
[34]

Continuous
wavelet Wavelet coefficients A numerical model

and a steel truss bridge

Damage was located
accurately in a smooth road

profile and low speeds

OBrien and
Malekjafarian

[57]

Short
time-frequency

domain
decomposition

Mode shape squares Numerical case study
of a half-car model

Presence and location of the
damage can be detected
with acceptable accuracy

Zhang et al.
[58]

Short time Fourier
transformation Mode shape squares Numerical and

experimental models

Acceptable damage
detection when the speed is

slower than 2 m/s

Zhu and Law
[55] Wavelet analysis Coefficients of the

wavelet transform
Simulation and

experiment

Locations of multiple
damages can be located

accurately

McGetrick and
Kim [36] Morlet wavelet Energy of the

wavelet coefficients
Theoretical and

experimental models

It was found that the
approach can locate

damages
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2.1.3. Severity Assessment

The derived damage feature in an indirect bridge monitoring system should be sensitive to
damage existence and location but also be able to provide useful information about damage severity.
Non-modal parameter-based methods such as signal processing and machine learning methods are
widely used in severity assessment of damages in bridges. Wavelet transform is used by several
researchers for damage severity assessment. Khorram et al. [59] attached a sensor moving load on a
bridge and analyzed coefficients of continuous wavelet transform. A crack was modeled as a rotational
spring from fracture mechanics. It was demonstrated that the highest magnitude of the wavelet
coefficient occurs at the location of the crack. The value of the wavelet transform coefficient was
correlated with the damage size. Cracks with a depth of more than 10% of the cross-section of a beam
could be detected by moving sensors. Nguyen and Tran [60] presented a damage detection algorithm
using wavelet transform for multi-damaged cases subjected to a moving vehicle. The dynamic response
of the system was measured from a moving vehicle. Small distortions are likely to arise in the dynamic
response of the system at the crack locations when the moving vehicle passes through. These small
distortions can be detected by wavelet transform. The cracks’ locations are pinpointed by the peaks in
wavelet transform. The obtained result for a numerical model verifies the capability of the algorithm for
damages larger than 10% of the beam cross section. Table 4 shows some important studies conducted
on severity assessment of damages using drive-by SHM methods.

Table 4. Summary of some literature on indirect methods used for severity assessment of damages in
bridge SHM.

Reference Feature Extraction Damage Index Model Result

Mei et al. [61] Cepstrum analysis
Mel-frequency

cepstral coefficients
(MFCCs)

Numerical analysis
and lab experiments

Useful information about
existence and severity is

provided

Eshkevari and
Pakzad [62]

Expectation
maximization

(STRIDEX) and
second-order blind

identification

Natural frequencies
and mode shapes

Numerical bridge
model

Successfully identification of
natural frequencies and

mode shapes

Liu et al. [63]
Mapping signals to
a low-dimensional

latent space

Variational
autoencoder (VAE)

Dataset from an
in-service train

This approach outperforms
a baseline model

Chen et al. [64] Multiresolution
decomposition Subband features A lab-scale bridge

Significant improvement in
results is achieved by this

method

Cerda et al. [65] Discrete Fourier
transform Natural frequencies Laboratory setting Promising results were

achieved

Khorram et al.
[59]

Continuous
wavelet transform CWT coefficient Cracked beam Small cracks with 10% of the

beam depth was detected

Nguyen and
Tran [60] Wavelet transform Peaks of the wavelet

transform Numerical simulation Small cracks with 10% of the
beam depth was detected

Lederman et al.
[56]

Principal
component

analysis and kernel
regression

Frequency features
used in support
vector machine

A laboratory-scale
experiment of a vehicle

pulled by a cable

Lower error was gained for
the chassis sensors

compared to bridge sensor

Bridge monitoring systems that work by leveraging sensors on a passing vehicle and extracting
damage features from the dynamic response of the instrumented vehicles have gained great popularity
due to their lower cost. Changes in natural frequencies can be used as an indicator of damage severity
of bridges. Mode shapes and their derivatives are another modal parameter used to detect and localize
damage by finding discontinuities in the mode shape curvatures. However, these methods have severe
limitations in severity assessment lacking experimental confirmation. Some studies that have focused
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on using the output-only system identification method using a combination of modal parameters
including natural frequencies, mode shapes, and damping ratios have not been presented. Non-modal
parameter-based methods have shown great potential in quantification of indirect SHM. However,
these methods have room for performance improvement.

2.2. Verification Models and Setups

A wide range of numerical simulation models, lab tests, and experimental set ups has been used
for verification of the studies on the three main levels of damage detection. Various designs and
settings of vehicles and bridges are presented for these indirect monitoring studies.

2.2.1. Experimental Models

It is quite interesting to see how different indirect bridge monitoring techniques work for the
different bridge types and this information should be of value to researchers and engineers working
with such bridges. Simply supported bridges are widely built around the world due to their advantages
in terms of design and construction simplicity. In general, capabilities of indirect bridge monitoring
systems for damage detection, localization, and severity assessment are studied in simply supported
bridges due to its basic setting. Nakajima et al. [66] tested a trailer towed by a commercial car on a
40-m long simply-supported bridge for indirect bridge inspection. Four artificial damage scenarios
were introduced into the bridge, including an intact state, an artificial crack in the girder, recovery of
the crack and an artificial freezing of a hinge support. From the field moving vehicle tests, the bridge’s
fundamental frequency could be successfully identified and the change in the frequency caused by the
freezing of the support could be detected, verifying the feasibility and the reliability of the drive-by
method using the homemade trailer. McGetrick et al. [34] incorporated wavelet analysis and statistical
pattern recognition for indirect monitoring of a simply supported bridge. Discontinuity in the wavelet
coefficients when the axle passes over a damaged section is considered as a damage indicator. The same
pattern was obtained from recorded responses of bridge and vehicle in a steel truss bridge case-study.

Cable-stayed bridges are an important type of bridges that are increasing in number throughout the
world. However, these bridges suffer from a variety of deteriorations and loss of efficiency during their
service life. Yin and Tang [67] presented a new method to detect multiple damages in a cable-stayed
bridge using the dynamic response of a vehicle passing over it. Time-step integration scheme is used to
solve the VBI. Simultaneous damages including deck damage and cable tension loss were introduced
to a cable-stayed bridge structure and the displacement response of passing a vehicle over the intact
and damaged bridge was sampled. The relative displacement response vector was decomposed using
proper orthogonal decomposition. The algorithm was capable to detect multiple damage cases. Li and
Zhu [68] presented field application of a drive-by parameter identification in a cable-stayed bridge.
Influences of several factors faced in practical applications such as vehicle moving speed, road surface
roughness, modeling uncertainties, and measurement noise are investigated. A summary of some
literature on indirect monitoring of some real-world bridge structures is presented in Table 5.
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Table 5. Summary of some literature for indirect monitoring of some real-world bridge structures.

Reference Bridge Type Purpose Location Result

Yin and Tang
[67]

Cable-stayed
bridge

Identification of
cable tension loss
and deck damage

Computational model
of Kao Ping River

Bridge in
Taiwan

Differences in the relative
response of the vehicle due
to different damage cases
can be identified by the

proposed method

Li and Zhu [68] Cable-stayed
bridge Modal identification

A bridge on Great
Western Highway in

New South Wales,
Australia

Frequencies and mode
shapes can be identified

Nakajima et al.
[66]

Simply-supported
composite girder

bridge

Indirect bridge
inspection Uji-City, Kyoto. Bridge’s natural frequency

was successfully identified

McGetrick et al.
[34]

Simply supported
steel truss bridge

Indirect bridge
inspection -

Similar results were
obtained for both mobile

and fixed sensors

Wang et al. [53] Simply supported
box girder bridge

Extraction of bridge
fundamental

frequency
Tsukiji bridge, Japan

Bridge’s fundamental
frequency was successfully

extracted

Lin and Yang
[45] Simply supported

Scanning the
fundamental bridge

frequencies

Da-Wu-Lun Bridge,
Taiwan

The feasibility of scanning
the fundamental frequency

was confirmed

Yang et al. [69] Cable-stayed
bridge

Measuring the bridge
frequencies

Ping-Pu Bridge, Taipei
City

Application of hand-drawn
cart for field measuring of

the bridge frequencies

2.2.2. Numerical Models

In numerical simulation, wheels of a vehicle are modeled as a point in the form of massless
points [27,70], moving loads [30,71], moving masses [72,73], moving sprung masses, or other
sophisticated models [74–76]. Figure 2 shows the configuration for moving mass and moving
sprung mass models. The quarter car model is used to demonstrate the theoretical basis of the VBI
model. The vehicle is modeled as vehicle’s body mb, tire mass mw tire stiffness kt, suspension stiffness
bb and, suspension damping bb. zb and zB are vertical displacements of the sprung mass and bridge,
respectively. The VBI in indirect bridge monitoring is shown in the form of quarter, half, or complete
vehicle models. Li et al. [77] proposed using a stochastic subspace method for modal parameter
identification in indirect bridge monitoring. The VBI system was simulated by a quarter-car passing
over a simply-supported bridge model. Numerical results show that the proposed method was
capable to estimate the bridge modal parameters. Fitzgerald et al. [78] shows the feasibility of indirect
damage detection using a numerical model of a quarter-car model passing over a railway bridge.
Average wavelet coefficients were proposed as a damage indicator for drive-by scour monitoring of
railway bridges. It was demonstrated that the presented indicator performed quite well in normal
operating conditions.

As it was shown in Equations (1) and (2), the equation of motion formulates the behavior of
structure to the applied external forces in time instances. Modal parameters are a function of structural
model and variation in physical and spatial properties of a structure due to deterioration or structural
damage could be identified using modal analysis. Modal parameters of the bridge can be obtained by
solving the equation of motions at the contact point. Acceleration response of a structure is generally
used for the identification of modal properties due to its high sensitivity to change of vibration
properties and richer dynamic contents [79,80]. The acceleration responses for sprung and unsprung
masses are governed by the equation of motion and they can be shown in Equations (3) and (4).

..
zb = −

bb
( .
zb −

.
zw
)
+ kt(zb − zw)

mb
(3)
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..
zw− =

Cs
( .
zb −

.
zw
)
+ kb(zb − zw) − kt(zw − zr − r)

mw
(4)
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Green and Cebon [81] used a more comprehensive vehicle model capable of simulating body 
pitching motions using a four-degrees-of-freedom half-car model. The idea was extended by some 
authors through modeling full truck simulation [82–84]. Numerical simulation model of a real-world 
vehicle such as dump trucks [85] and the AASHTO HS20-44 truck [49] were used by some others. 
Table 6 shows the common systems used to model vehicle bridge interaction. 

Figure 2. Schematic of numerical vehicles model including (a) moving mass and (b) moving sprung.

Green and Cebon [81] used a more comprehensive vehicle model capable of simulating body
pitching motions using a four-degrees-of-freedom half-car model. The idea was extended by some
authors through modeling full truck simulation [82–84]. Numerical simulation model of a real-world
vehicle such as dump trucks [85] and the AASHTO HS20-44 truck [49] were used by some others.
Table 6 shows the common systems used to model vehicle bridge interaction.

Table 6. The common systems used to model vehicle bridge interaction.

Reference Feature Numerical Model Extracted Parameters

Liu et al. [86] Acceleration signals collected
from a passing vehicle Quarter-car model Locations of the damage

Tan et al. [23] Modal parameters of mode
shapes and damping ratio Quarter-car model

Natural frequencies,
mode shapes and

damping ratio
Wang et al. [87] Structural vibration responses Quarter vehicle model Dynamic responses

Tan et al. [35] Dynamic characteristics of the
bridge

A quarter-car model and
Half-car model Natural frequency

McGetrick and Kim [36] Vehicle accelerations Half-car model Natural frequencies

Keenahan et al. [49] Accelerations Two identical
quarter-cars Damping

McGetrick and Kim [34] Accelerations Half-car model
Natural frequencies,

mode shapes and
damping ratio

Pakrashi et al. [88] Maxima values of the
measured responses strain A two-axle vehicle model Damage

Obrien and Keenahan [47] Changes in the power spectral
density of the accelerations Two quarter cars Damping ratio

Obrien and Keenahan [48] Accelerations 3-axle truck Damping

2.3. Road Surface

Several parameters could influence the accuracy of the identified modal parameters of a bridge
structure that can include bridge span length, vehicle speed, vehicle mass, damage level, and road
surface roughness [36,89]. Road surface roughness is one of the most important parameters in indirect
monitoring of bridges [20]. Bu et al. [90] stated that the interaction surface between vehicle and bridge
has a greater influence on the variation of the modal parameters than the bridge itself. The dynamic
responses of both the moving vehicle and bridge is sensitive to existing dynamic interaction forces
between the moving vehicle and the structure [71]. Aside from the idealization model considered for
vehicle and bridge models, the VBI is affected by the wheel–surface contact, and the adopted wheels
and the track surface model [71].
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Information on roughness or irregularity of surface profile in numerical simulation of bridges
can be collected by field measurement. Using power spectral density (PSD) for generating surface
roughness or track irregularity is the most common practice in numerical simulation [91]. The obtained
profile by PSD tends to contain a series of hills and valleys that, in the case of the modeling wheel as
a point, is unlikely to be true in reality [92]. Keenahan et al. [49] used accelerations from both axles
to overcome the influence of road profile roughness on vehicle vibration. The differential spectra of
the two accelerations were analyzed at the end. Chang et al. [71] proposed using a rigid disk of finite
size to remedy the drawbacks of the point model. The effect of the deformation of a pneumatic tire is
neglected in the mathematical model for the purpose of simplification. Tan et al. [23] investigated the
effect of road surface roughness in the identification of the natural frequencies of the bridge. It was
stated that the roughness has a negative impact on the identification of higher modes because of their
relatively lower amplitudes. Yang and Chang [93] studied the effect of movement parameters of
speed and acceleration on the quality of the extracted dynamic characteristic of a vehicle passing over
a bridge.

VBI-based methods are still in the research stage and have not yet been introduced as a practical
solution for real-life challenges. These methods have an analytical framework and they have been
introduced for some simplified scenarios which are not expandable for analyzing large and complex
models of bridge structures.

3. Drive-by Damage Detection Using Mobile Sensory System

Using mobile sensors for bridge assessment through an instrumented vehicle is a promising
indirect bridge inspection technique, namely “drive-by”. Drive-by technique is a promising indirect
vibration-based method for bridge assessment that has emerged over the past decade. In the proposed
method, instrumented vehicles were used to gather the dynamic properties of the bridge. In drive-by
techniques, vehicle can be considered as both exciter and receiver [20].

Yang et al. [27,32] first introduced using a dynamic response of a passing vehicle to extract the
dynamic properties of bridge structures. Variation in natural frequencies of a passing vehicle was
used as a damage feature for the proposed drive-by technique. Since then drive-by methods have
been investigated by many researchers [94–96]. Lin and Yang [45] used an experimental case study
of passing instrumented vehicles over a highway bridge to confirm the feasibility of this method in
practice. The authors employed a tractor–trailer system passing over a pre-stressed concrete bridge.
It was stated that lower vehicle speeds result in a lesser influence of road surface profile and lower
variation in the extracted damage feature. Using a heavy truck is found to improve frequency peak
visibility. Yang et al. [97] and Chang and Kim [37] showed that the bridge frequency of a VBI system is
different from the one obtained for the direct methods. In another study, Yang et al. [69] investigated
the reliability of using a test cart to extract bridge frequency under various operating conditions.

Damping is another damage sensitive dynamic property of a bridge structure that is widely used
in SHM [80,98]. However, the number of studies on using damping in drive-by damage detection
is limited compared to frequency-based methods [20]. McGetrick et al. [99] monitored the variation
of the structural damping for drive-by damage detection using various road profiles. It was shown
that damage detection for smoother road profile is easier owing to the higher magnitude of peaks in
the power spectral density. González et al. [100] tested the accuracy of the damping ratio in drive-by
damage detection under various vehicular and structural conditions. Williams and Salawu [101] stated
that the practical quantification of damping ratio is not exact and it is subject to error. Hence, several
studies focused on expanding damping identification into identification of the bridge stiffness [20,100].

Mode shape of a bridge structure obtained from drive-by damage detection is another feature
that can be used as a damage indicator [20,55,102]. Zhang et al. [58] proposed a method to extract
an approximate estimate of structural mode shape squares from the power spectrum of a drive-by
vehicle. It was mentioned that the proposed method outperforms traditional methods for damage
detection in a noisy environment. Yang et al. [33] introduced a theoretical study to construct the
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mode shapes of a bridge from stimulus recordings of acceleration response obtained from a drive-by
vehicle and natural frequency of the bridge structure. The result shows that the present approach is
verified to be feasible under constant and low vehicle speeds. Oshima et al. [50] developed an indirect
method to estimate mode shape from moving coordinates of the bridge structure using the singular
value decomposition method. It was stated that the method needs a large number of measurement
data for reliable identification of mode shapes from noisy data. Malekjafarian and OBrien [103] used
short-time frequency-domain decomposition to extract the bridge mode shapes from the responses
measured in a passing vehicle. Two concepts are proposed to deal with the input uncertainty caused
by the road profile. Other methods are also proposed for drive-by damage detection that includes
using stiffness [90,104], moving force identification [105], point impedance measured from a tapping
vehicle [58], operating deflection shape curvature [106]. Table 7 shows some vehicle-assisted methods
for the SHM method using vehicles as mobile sensory devices.

Table 7. Vehicle-assisted methods for SHM method using vehicles as mobile sensory device.

Reference Method Feature Extracted Parameters

Matarazzo et al. [107] Moving smartphones Vehicle acceleration First three modal
frequencies

Mei and Gül, [108]
Smartphones in a large

number of moving
vehicles

Mel-frequency cepstral coefficients
and Kullback–Leibler divergence Damage

McGetrick et al. [109] Vehicle with fitted
sensors on its axles

Global navigation satellite systems
(GNSS) in the smartphone Bridge frequency

Kim et al. [24] Moving vehicles as
moving sensors

Vehicle acceleration, vehicle’s
spectral distribution pattern

Bridge-frequency,
vehicle’s spectral

distribution pattern,
roadway surface profile

Deng and Phares, B M
[110] Load rating of bridges Strain response of ambient traffic

trucks Load rating

Martínez et al. [111] Drive-by monitoring Vertical displacements of a bridge Deflection

Yang et al. [112] Moving loads
identification

The bridge deflection and strain to
moving loads Axle loads identification

Bowe et al. [113] Train-mounted
accelerometers

Accelerations resulting from the
train/track/bridge dynamic

interaction
Natural frequencies

Niu [114] Moving instrumented
vehicle Vehicle dynamic behavior The damping ratio of the

bridge
Obrien and Keenahan

[48]
Instrumented
tractor-trailer Acceleration Damping

Cerda et al. [115] Instrumented vehicle Signals from sensors on the vehicle
(indirect monitoring)

Shifts in the fundamental
frequency

Kim et al. [116] Drive-by bridge
inspection

Acceleration signals from sensors on
the vehicle

Changes of dominant
frequencies and damping

Kim et al. [117] Acceleration

Vertical acceleration and gyroscopic
pitching measurements of the

vehicle are combined with bridge
accelerations to

Vehicle positioning

Overall, the indirect bridge monitoring methods using mobile sensory devices have a great
potential for drive-by damage detection. Drive-by methods are still in the research and technological
development phase but they are possibly viable candidates for specific applications of health monitoring
of bridges. These methods suffer from the uncertainty caused by mobility parameters of vehicles and
lots of influential parameters among which are the physical parameters of the vehicles and the contact
surface, that significantly degrade the performances of these methods for real-life applications. The low
accuracy of these methods makes them unreliable solutions as a standalone tool for the health monitoring
of bridges. Moreover, due to the lack of an effective platform for the implementation of these techniques,
these methods have a low capacity for commercialization and attracting business-driven investment.
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4. Vehicle-Classification-Based Methods

The methods used in traffic engineering to derive the vehicle parameters in their moving status
are defined under the term vehicle classification. Vehicle classification is a module used to categorize
vehicles into several distinct classes. In these methods the vehicle could be detected by passing
through a fixed sensor, passing through the monitoring area, global coverage, or a hybrid of these
methods [118–120]. Variety of information can be extracted using the sensors and detectors which
may include vehicle count, shape—height, width and length—[121], speed [122], axle weight and
spacing [123], acceleration/deceleration [124], make and model [125] and number plate [126].

WIM is a widely used vehicle classification method for SHM of structures specifically for bridges.
Deng et al. [127] used WIM for reconstructing vehicular loading in finite element (FE) model updating.
The correlation between vehicular loads and damages was studied. Several sensors were installed
on the bridge structure including the WIM system, global positioning systems (GPSs), strain gauges,
and closed-circuit television (CCTV) cameras. Bridge WIM is an SHM method to reconstruct the
loading information of a bridge structure by determining the weight of the passing over vehicles [77].
Lydon et al. [128,129] used fiber optic sensors for axle detection on an reinforced concrete bridge in
Northern Ireland. The results confirmed the performance of the fiber optic sensors for gathering traffic
loading information. Deng et al. [127] proposed a method to identify vehicle speed from the bridge
WIM sensors. The method does not need an additional sensor for axle detection. The method was
validated using numerical and experimental examples. Hou et al. [130] proposed a vision-based WIM
technique to detect trucks on highway bridges and identify the loading. A clear input–output model
was established for bridges to explore the correlation between the responses of different bridges to the
same loading.

Suzuki et al. [131] developed a bridge WIM system to extract the acceleration response of the
concrete deck slab from the velocity and weight of the passing vehicles over bridge structures.
The maximum error for predicting vehicle weight was about 20% for the proposed method.
Wang et al. [132] investigated vehicle classification by measuring train response of bridges obtained
from WIM. The vehicle parameters such as weight, damping coefficients, and suspension stiffness can
be identified using the proposed method. It is stated that the method showed acceptable robustness
against noise. Dieng et al. [133] proposed a technique to determine the location of active damage zones.
A combined bridge WIM technique and acoustic emission was used to monitor the health state of
bridge structures under operating traffic load.

Cantero et al. [134] introduced a virtual axle concept to detect small local damages in bridge
structures. The bridge deformation is measured by bridge WIM to extract the distances between
axles and axle weights. The proposed method can operate as a model-free output-only SHM system.
Zhang et al. [135] presented an automated data-driven method for identification of bridge load
characteristics such as the weight and speed using machine learning techniques. An experimental
example by collecting WIM data from a short bridge structure was used to validate the results.
Lydon et al. [136] conducted a comparative study to evaluate the performance of fiber optic and
electric resistance strain sensor systems for WIM. It was observed that optical fiber networks have
better performance compared to conventional methods. Ellis et al. [137] introduced a unified bridge
management system to link SHM and WIM. The challenges and progresses are presented to researchers
and industry.

Bridge weigh in motion (BWIM) is a type of WIM technology that is widely used for SHM
of bridges. BWIM is an approach through which traffic data including speed, number of axles,
axles’ spacing, and gross and axle weight of the passing vehicles are identified using a series of
conventional strain gauges. BWIM is particularly suitable for short-term measurements of traffic data
as it can be easily installed and detached from the bridge. The use of BWIM is preferred over the
commercially available pavement WIM systems, mainly because the former offers economic benefit,
requires infrequent calibration, and causes no interruption to traffic during installation. Cardini and
Dewolf [138] applied BWIM through using strain gauges to gain information on the quantity and
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weights of the trucks crossing the highway bridge. The proposed system was able to determine the
volume of trucks crossing the bridge, their gross vehicle weights, the lanes used by the trucks, and the
number of overload trucks. Cantero et al. [139] proposed a BWIM-based damage identification method
by introducing the concept of ‘Virtual Axle’ to derive a damage indicator. The investigations on the
influence of the key parameters such as the degree and location of damage, noise levels, span lengths,
and profile irregularities on the accuracy of the method show that the ‘Virtual Axle’ method can detect
small local damages in statically indeterminate structures. Gonzalez and Karoumi [140] proposed a
model-free damage detection method using deck accelerations response and BWIM. The proposed
method is a combination of an artificial neural network and a Gaussian process that applies to railway
bridges. The result of the numerical study shows that the data on the load’s position, magnitude,
and speed improve the accuracy of the damage detection algorithm. Kalyankar and Uddin [141]
developed a three-dimensional finite element model to estimate multi-vehicles–bridge interaction in
a BWIM. Several mechanical properties of vehicles including suspension, damping, tire movement,
air pressure, mass distribution on the axles, material and geometric behavior was considered in the
developed 3D model for a more reliable estimation. Lydon et al. [128] developed nothing on the road
(NOR) axle detection method by introducing a fiber optic BWIM system. The strain response of the
live loading at various locations on the bridge was measured. The results confirmed the viability of a
new strategy for axle detection. Kawakatsu et al. [142] proposed a single strain sensor-based BWIM.
The obtained data were automatically optimized by consulting a surveillance camera. Satisfactory
results were obtained using a single sensor application in BWIM.

Vision-based vehicle classification is another technique that is used in health monitoring of
structures. Akbar et al. [143] investigated the application of an unmanned aerial vehicle-based system
to provide images of the structural site. Speeded up robust features (SURF) was used for stitching
images. SURF are first reduced then transformed to align the images for final stitching. The comparison
between the actual and previous view provides the structural differences. The proposed approach has
also been applied on a concrete structure, and the displacement detected on the column of the structure’s
backyard verified the feasibility for real-world SHM. Shan et al. [144] presented a vision-based surface
flaws detection method using the Scale-invariant feature transform (SIFT) feature. In-situ tests of
surface flaws are conducted on the piers of Yiqiao Bridge at Hangzhou bay. The experimental results
show that the proposed method is reliable and useful for measuring surface flaws on the piers of bridge
structures. Chen et al. [145]

Light detection and ranging (LiDAR) has several significant advantages over existing
approaches including limited disruption to traffic, low labor requirements, and providing permanent
documentations of the temporal changes of a structure. Liu et al. [146] conducted a study to explore
the potential of applying LiDAR scanners for bridge-health monitoring. A surface damage detection
algorithm called LiBE was presented. The LiBE algorithm differentiated information obtained from an
original bridge surface through surface gradient and displacement calculation. Most of the bridge
surface defects detected by the LiDAR scanner were visible to human eyes and were documented as
digital photo images. Bian et al. [147] conducted a process analysis of the LiDAR bridge inspection.
Several issues associated with the application of LiDAR scanning in the inspection process were
pointed out.

Other vehicle classification methods such as laser Doppler vibrometers [148], vision-based
methods [149,150], Microwave radar interferometer [151] are also used for SHM of bridge structure.
Table 8 presented important studies conducted on vehicle-classification-based methods for SHM.
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Table 8. Vehicle-classification-based methods for SHM.

Reference Method Feature Details

Mei et al. [61] Sensors mounted on a large number of
passing-by vehicles

Transformed features related to bridge
damage are extracted from MFCCs and PCA Damage identification

Martínez Otero and et al. [148] Laser Doppler vibrometers (LDVs) installed
on a vehicle Instantaneous Curvature of the velocity (RIC) Damage identification

Hou et al. [150] Cameras, bridge monitoring systems, and
WIM weigh parameters Re-identification of trucks

Kawakatsu et al. [142] BWIM Strain data Speed, locus, and wheel positions
Sadeghi Eshkevari and Pakzad

[152] Moving vehicle acceleration measurements Accelerations inside rigid vehicles Natural frequencies and mode shapes

Liu and Yu [153] Traffic load identification Static and time-varying components Weight of moving traffic loads
Kawakatsu et al. [154] Strain prediction for bridges Camera and strain sensors Strain responses and bridge dynamic model

Deng et al. [127] Detecting the speed and axles of moving
vehicles Flexural strain signal Gross vehicle weight (GVW) and axle weights (AWs), and

vehicle speed and axle spacing (AS)
Zhang et al. [151] Microwave radar interferometer - Bridge dynamic responses

Khuc and Catbas, [149] Computer Vision-Based technologies Unit influence surface (UIS) Damage identification
Catbas et al. [155] Computer vision-based technologies - Vehicle weight estimation
Lydon et al. [128] BWIM Fiber optic sensors Statistics on vehicle weight, class and frequency

Wattana and Nishio [156] Traffic volume estimation Dynamic response data Traffic volume

Kalyankar and Uddin [141] BWIM Vehicle characteristic Obtain vehicle parameters such as velocity, axle numbers,
and their distances

Fischli et al. [157] Fiber-optic strain gauges (FBG) - Number of axes per vehicle and driving speed
Fischli et al. [157] Long-gauge strain influence line The influence line of long-gauge strain Axle load, wheelbase and velocity on a bridge

Gonzalez and Karoumi [140] BWIM Load’s position, magnitude and speed Assessing healthy or damaged state of bridge
Cantero et al. [139] BWIM Bridge deformation Detect small local damages

Cantero and González [134] WIM Deformation of the bridge Axle weights and distances between axles for each vehicle

Zhang et al. [158] WIM and VBI Traffic loads To identify bridge load characteristics such as the weight
and speed of trucks

Augustine et al. [159] Estimation of the applied load from
measured structural response Strain data measured at optimum locations Estimating moving loads

Seo and Hu [160] WIM Network of strain sensors -
Zong et al. [161] WIM WIM data and the dynamic influence line Vehicle weight and the vehicle gaps

Chen et al. [162] WIM WIM data Vehicle traffic volume, vehicle traffic composition, axle load
spectrum and gross vehicle weight spectrum

Xu et al. [163] WIM WIM data Traffic condition and vehicle loading
Cardini and Dewolf [138] BWIM WIM data Gross vehicle weights of trucks crossing steel girder bridges
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Health monitoring of bridges using traffic information obtained using vehicle classification
methods such as WIM, BWIM or strain gauges has been practiced for many years, and methods
and apparatus used prior, have been modified to suit the then-current needs. However, the concept
and technical principles of these methods remained largely unchanged for more than a half-century
whereas the vehicles are undergoing a distinct evolution in design, and technology. The available
WIM, BWM, and vision-based methods, rely on fixed-location sensors and they usually require on-site
work that imposes interference with traffic. On the other hand, these methods are too expensive or
subject to errors/limitations under specific situations.

5. Criteria and Guidelines

Obtaining the accurate knowledge of bridges’ behavior under real traffic load levels is one
of the prerequisites for an effective condition monitoring application. However, traffic loads are
entirely stochastic that makes quantitative analysis of structural load effects especially difficult [164].
Load testing offers a unique opportunity to study the real behavior of bridges [165].

5.1. Conventional Vehicle-Assisted SHM

Load testing of bridges is as old as their construction and in the early days loading tests were
carried out before the opening of the bridge [166]. The results of the loading test were an indicator
that the bridge is safe enough to be opened traveling public. Sometimes it led to the collapse of
the new bridge. However, the loading test is still the prerequisite before opening in some countries,
such as Switzerland and Italy [166–168]. Nowadays the analytical method in bridge design is much
more improved and more reliable methods are introduced to predict static and dynamic behavior of
structures. However, the bridge loading is the most precise method to provide information about the
real behavior of a bridge considering the uncertainty exposed due to the effect of the deterioration
mechanism. Field testing helps engineers to have more exact values for load modeling and analysis
with low uncertainty levels. On the other hand, the loading test gives more precise material properties
for an existing bridge that can include resistance strength, stiffness, and impact value. Dynamic
response, strain measurement, and recording displacement are of the most common data taken in a
normal loading test [168].

Load tests are tools in getting an insight into adequacy or otherwise inadequacy of the bridge
superstructure [169]. Moreover, load testing can be used for condition monitoring of constructed
bridges which are faulty or which have undergone a major structural repair or strengthening [170].
The main forms of load testing of bridges are presented in Table 9.

Table 9. The available load testing methods used for SHM of bridges [170].

Type of the Loading Test Objective Load Level Potential Induced Damages

Supplementary load tests As a complement of the
analytical methods

Not exceeding normal
traffic loads

No permanent structural
damage

Proof loading As a proof of satisfactory
design and construction

Serviceability limit state
loading.

No permanent structural
damage

Proving load testing
As a proof of the

load-carrying capacity of the
structure

Considerably higher
levels of loading than
other forms of testing

Risk of irreversibly damage
to bridge

Dynamic load testing To evaluate the performance
of a structure

Ambient or forced
vibrations

No permanent structural
damage

The desired types of measurement, location of the instrumentation, and the applied test loads
should be determined by conducting a feasibility study. For instance, using global or local loading or
a combination of both as the loading system should be determined. In the case of any possibility of
damage to a structure, it is desirable to impose loading which is well below the threshold of tolerance
by a structure [170]. Dynamic load is usually provided in a form of normal traffic, test vehicles,
sudden release of deflection, sinusoidal exciter, energy input device, or the braking of a vehicle on the
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bridge [171]. The purpose of dynamic tests is to determine the dynamic characteristics of the bridge
such as natural frequencies, mode shapes, and damping factors. Furthermore, the strain response
and displacement are other parameters that are of importance that are recorded during a loading test.
Bridge tests can be either for static loads that the applied load does not exceed the elastic range of
structural response (or sometimes ultimate load tests) [171].

5.2. Detectability Range of Vibration-Based SHM

Generally, damage is defined as any change in spatial characteristics, mechanical properties,
integrity, or boundary conditions of a structure which adversely affects performance, although the
structure can still function satisfactorily [4,172]. Type of materials is an important factor in developing
and evolving damages in structures. Concrete and steel are of the most used conventional materials
in bridge construction. In concrete structures, reduction of reinforcement bar diameter, loss of bond
between the steel–concrete interface, and concrete cracking are of the most reported defects [173].
On the other hand crack and corrosion are two main defects that threaten the integrity of steel
structures [174,175].

The reduction of the cross-section in the reinforcement bar is a frequently cited damage to concrete
structures. VDD methods mainly rely on loss of stiffness in structures. Since the concrete parts mainly
contribute to the stiffness, deterioration of the reinforcement has little effect on natural frequency.
As a result, reduction of cross-sectional area in steel reinforcement is not easy to be identified unless
in structures with significant loss of reinforcement bar [176,177]. Corrosion of prestressed cables is
one of the most important defects in prestressed structures. These tendons are in the form of either
pre-tensioned or post-tensioned in concrete structures. Significant corrosion of prestressed cables
may lead to a reduction in tensile strength and collapse of the structure. The stiffness of structures
contributed predominantly by the concrete, as a result, it is difficult to detect damages of tendons using
stiffness changes. Loss of prestress tendons in structures is detectable only if it is accompanied by
propagation of tensile cracks [178]. Without significant loss of cross-sectional area, other damages in
concrete structures such as scaling, delamination, spalling, efflorescence, pop-outs, wear and abrasion
also are not detectable using conventional damage detection methods.

Steel structures are of the most frequently used structural forms in civil engineering. In steel
structures, members are often connected by welding joints, bolts, or rivets. Steel structures are
vulnerable to failure by fatigue and fracture. As reported, fatigue and fracture were related to 80% to
90% of the failures in steel structures [176,177]. The development of fatigue cracks can be divided into
three stages of initiation, propagation, and fracture. In the initiation phase, microcracks are distributed
over a structure whereas in the propagation phase the microcracks are evolved into macrocracks.
In the last phase, the macrocracks grow until the structure fails. The growth of fatigue crack increases
progressively in the form of the exponential function. Much fewer numbers of cycles are required to
drive microcracks into fracture collapse [179]. Due to significant change in the cross-sectional area of
the element, detectable variation in modal frequencies is found in the fracture phase. However, there is
a high probability of masking damage by the environmental or operational noises before reaching the
fracture phase. Bolt connections are frequently used joints in steel structures. Deterioration or failure
of bolted joints may affect the overall integrity of a structure. In many cases, total loss or deterioration
of connecting bolts is detectable using vibration-based methods. However, partial loss of bolts is not
detectible due to the friction in the remaining bolts in some occasions where the connection may appear
to be fixed [176,177].

As a concluding remark, one may note that the type of imperfection is a very important factor in the
detectability of a damage detection system. Member loss, cracks, and bolt removal are the most probable
damages that can be detected by SHM techniques and damages caused by corrosion— degradation of
materials, etc.—generally cannot be distinguished by these methods. The vibration-based methods
provide a powerful tool to achieve an integrated assessment of the global state of structures. However,
using VDD does not necessarily mean that to expect all local and global damages in structure could be
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diagnosed. Perhaps these methods should be accompanied with techniques to produce a richer picture
of the health state in bridge structures. A review of various testing methods and the acceptance criteria
for detection damages are available in various codes and standards [180,181].

6. Future Works

The available vehicle-assisted SHM methods reviewed in this paper have valuable features
and potentials that can be used by combining them with other SHM techniques such as providing
complementary functions to other VDD techniques; however, using each method as a reliable standalone
tool is in doubt due to several deficiencies of each method.

VBI-based methods have an analytical framework and they have been introduced for some
simplified scenarios which are not expandable for analyzing large and complex models of bridge
structures. Future research in this promising area should be concentrated on developing new methods
which relate to the actual complexity level of the structures and transition load in multi-vehicle cases
passing through various lanes of a highway bridge. It could be facilitated by incorporating new
technologies in computer engineering such as advanced software, ultrafast computing, and high
capacity storage systems. Having access to real-time mobility and physical information of the vehicles
passing through a bridge structure makes it possible to estimate the vehicular loading that results in
the extraction of real-time behavior of the structure.

Drive-by methods are still in the research phase and could be potentially a method of choice for
specific applications and to gain an overall assessment of the health state of a bridge. These methods
have many limitations such as mobility parameters of vehicles which result in inconsistent results
dealing with high-velocity travel speed. Moreover, there are lots of influential parameters such
as physical characteristics of vehicles as well as the contact surface which have a direct impact on
the obtained dynamic response. These issues significantly downgrade the applicability of these
methods for real-life applications. Future work should focus on approaches to further alleviate
the downsides of drive-by approaches to disentangle the complexities to make a more flexible and
transparent framework.

Health monitoring of bridges using traffic information obtained using vehicle classification
methods such as WIM, BWIM, or strain gauges, has been widely used for many years. The concept
and technical principles of these methods remained largely unchanged for more than a half-century,
whereas the vehicles are undergoing a distinct evolution in design, and technology. Nowadays
autonomous and autopilot vehicles are fleeting on the roads and they are expected to revolutionize the
transportation system in an unprecedented manner. Smart vehicles are equipped with various types of
sensors such as cameras, LiDAR, radar, and ultrasonic sensors to observe the vehicle’s environment.
Moreover, these vehicles have access to GPS, on-board unit (OBU), and a computing cloud that provides
a valuable combination to be used for SHM. Hence, it is necessary to direct future efforts towards
the integration of smart vehicle technology with SHM. The future of vehicle-assisted SHM is tightly
linked to development and progression in other fields of industry such as automotive, electronics,
and adaption of smart technologies in the transportation system. Furthermore, providing the required
infrastructure and facilities is a prerequisite for a transition into intelligent health monitoring of bridges
to suit the new generation of smart vehicles including autonomous or self-driving vehicles as well as
autopilot ones. The adoption of smart-vehicle-assisted techniques in SHM could lead to advantages
such as economic viability, ease of use and automated technology, higher reliability, decision-making
capabilities, and self-sufficiency.

7. Conclusions

Vehicle-assisted health monitoring of bridges take advantage of vehicular data in the assessment
of the health state of bridges. The obtained information could be in the form of acceleration or strain
response, deformation, estimation of traffic counts for the reconstruction of the applied load, or in any
other form. The methods can be grouped into three main classes of vehicle classification-based methods,
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drive-by and VBI-based methods. Each SHM methods have their particular assets and peculiar demerits.
Depending on the objectives, available resources, and particular constraint, the optimum class of the
vehicular-assisted techniques can be used for assessing the health state of bridges.

The main vehicle classification-based methods in SHM include WIM, BWIM, and vision-based
techniques. BWIM and WIM have originally similar concepts and in their process, the axle parameters
and gross vehicle weights can be determined during traveling over an instrumented bridge. The variety
of vehicular data measured by WIM sites provides a rich source for traffic monitoring and analysis
systems. WIM techniques utilize traffic-intrusive sensors and their installation and maintenance usually
require on-site work that interferences with traffic. On the other hand, vehicle classification-based
methods are too expensive or subject to errors/limitations under specific situations. For example,
the vision-based methods may be sensitive to vehicle occlusions, weather conditions, shadows, and
lighting changes.

Drive-by techniques could be considered as a low-cost alternative for existing SHM techniques
that involve direct instrumentation of the bridges with sensors and equipment for the measurement of
vibration parameters of a structure. In the drive-by technique, instrumented passing vehicles over a
bridge are used to gather dynamic properties of the bridge and the vehicle can be considered as both
exciter and receiver. Though these methods show considerable potential, they possess some limitations
such as lacking comprehensive experimental verification, and field trials. The obtained successful
results have been mainly limited to bridge frequency identification under controlled conditions.
The existing research addressed three main challenges for drive-by bridge monitoring that includes
accuracy dependency of these methods on-road profile, speed, and environmental factors. VBI-based
models are promising analytical techniques for bridge SHM under moving loads. The simplified finite
element model of vehicle–bridge interaction under the action of the moving load is simulated in static
conditions. Hence, the main drawback of these models is primarily due to not taking into account the
dynamics of the vehicles and also the mutual interaction between bridge and vehicle.

Overall, this paper shows that there is a long way to go before reaching a desired level of accuracy,
and robustness for vehicle-assisted bridge SHM. The prospect of these methods is tightly linked to the
development of practical solutions that well-match the unique features of smart vehicle technology.
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