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Abstract: This work deals with structural health monitoring for jacket-type foundations of offshore
wind turbines. In particular, a vibration-response-only methodology is proposed based on
accelerometer data and deep convolutional neural networks. The main contribution of this article
is twofold: (i) a signal-to-image conversion of the accelerometer data into gray scale multichannel
images with as many channels as the number of sensors in the condition monitoring system,
and (ii) a data augmentation strategy to diminish the test set error of the deep convolutional neural
network used to classify the images. The performance of the proposed method is analyzed using
real measurements from a steel jacket-type offshore wind turbine laboratory experiment undergoing
different damage scenarios. The results, with a classification accuracy over 99%, demonstrate that the
stated methodology is promising to be utilized for damage detection and identification in jacket-type
support structures.

Keywords: structural health monitoring; damage detection; damage identification; offshore wind
turbine foundation; jacket; signal-to-image conversion; convolutional neural network

1. Introduction

Globally, wind power generation capacity has increased exponentially since the early 1990s, and as
of the end of 2019, this capacity amounted to 650 GW [1]. Whereas onshore wind turbines (WTs) have
dominated new wind installations in the past, the growth of offshore WTs is poised to become the new
leader because of steadier wind, in addition to vast regions where its installation is possible. In regard
to the global offshore market, the cumulative installations have now reached 23 GW, representing 4%
of total cumulative installations. Unfortunately, offshore WTs are placed in a harsh environment that
originates from the wind and sea conditions [2]. As a consequence, offshore WTs require rigorous
safety measures because it is extremely complicated to do operation and corrective work on these huge
WTs placed in remote locations. Given that approaches centered on enhancing component reliability
are likely to increase capital expenditures, system design optimization research and development
activities should instead focus on minimizing and, if possible, even eliminating unexpected failures.
In other words, the wind industry must abandon corrective maintenance (remedy failures) and move
toward predictive maintenance (repair immediately before failure) to achieve maximum availability.
Thus, the development of a structural health monitoring (SHM) strategy is particularly necessary to
achieve this goal.
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Onshore and offshore fixed WTs differ mainly in the structure of their respective foundations.
Several types of offshore foundations are used, with foundation choice depending on the water depth.
The most common foundations are shown in Figure 1, see [3]. Note that jacket foundations, which are
the object of study of this work, are preferred for greater depths (usually, between 30 to 90 m).

Figure 1. Fixed bottom wind turbine foundations [3].

The detection of early-stage damage in the foundation is of great importance to avoid the
possible future collapse of the entire structure. As stated in “Long-term research challenges in wind
energy—a research agenda by the European Academy of Wind Energy” [4]:

A defining marine environment main characteristic is that structures are always subject to
excitations. Techniques for structural health monitoring, vibration and data analysis must
be capable of coping with such ambient excitations. As the input is typically not known, a
normal input-output formalism cannot be used.

Thus, to overcome this challenge—which is posed by the fact that the input is typically not
known—in this work, a structural health monitoring strategy for jacket-type foundations is developed
based on a vibration response-only methodology. This is a challenge by itself as many of the works in
the SHM field are based on the principle of guided elastic waves with a given (known) input excitation.
See, for example, the overview of SHM systems for various WT components presented by Liu et al. [5].
In contrast, in this work, a new paradigm is introduced in which a predetermined excitation in
the structure is no longer forced, but rather, the incident wind and waves serve as the exciting
forces in the structure. In this way, the classic pattern recognition paradigm with identical excitation
(e.g., [6]) becomes a problem of pattern recognition with variable excitation. Consequently, the new
paradigm implies greater complexity in the damage detection process. Furthermore, until recently,
few contributions have targeted offshore WT foundations. Notably, work by Weijtjens et al. [7] was
focused on a real WT foundation and contributed an SHM strategy based on the resonance frequencies
of the foundation. However, the results only proved some increased stiffness of the structure and
could not give a final diagnosis about damage detection. Similarly, Oliveira et al. [8] introduced the
main aspects in the development of a vibration-based monitoring system for an onshore 2.0-MW
wind turbine based on identification of the modal properties of the most important vibration modes,
in which detailed attention was given to the statistical procedure based on regression models that was
used to minimize the influence of operational and environmental effects over the features considered
to detect structural changes in the WT. However, only damage detection was pursued with a single
type of damage. Noteworthily, the work by Zugasti [9] used damage estimators to detect damage in
an experimental offshore tower similar to that employed in this work. Nevertheless, only damage
detection was attained. In this work, in contrast to the aforementioned references, several types of
damage are studied, and not only damage detection but also its classification is achieved.
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It is important to note that the SHM standard approach for the problem at hand is usually an
unsupervised one. That is, as no one would purposely damage their assets to train a SHM tool,
only healthy data from the real structure is used. However, it is unfeasible to correctly identify
different damage states using solely data obtained during what is assumed to be a healthy state.
In this framework, detection can be accomplished by using a model of normality or unsupervised
models, but not classification on the type of damage. The approach proposed in this work is the
opposite, that is, a supervised approach. Thus, data from the damaged structure are required to train
the model. In practice, this will be accomplished by means of computer models, as the finite element
method (FEM). The FEM model should be validated with a downscaled experimental tower (as the one
proposed in this work). Then, the full-scale finite element model would be used to generate healthy
(to validate with the real asset) and damage samples. Finally, the stated supervised methodology
proposed in this work can be used. In this work, a satisfactory experimental proof of concept has been
conducted with the proposed strategy and a laboratory downscaled WT. However, future work is
needed to validate the technology in a full-scale and more realistic environment. Some examples of this
type of approach are given in [10], where bridge damage detection is accomplished by a neural network
considering errors in baseline finite element models, and [11] where the stated SHM method for an oil
offshore structure is capable to cope with several types of damage based on a finite element model.

On the one hand, it has been shown that traditional machine learning requires complex feature
extraction processes and specialized knowledge, especially for a complex problem such as WT
condition monitoring [12–14]. Moreover, extracting features with classic machine learning methods
faces the classic bias-variance dilemma from inference theory. The bias–variance trade-off implies
that a model should balance under-fitting and over-fitting; that is, the model should be rich enough
to express underlying structure in the data but simple enough to avoid fitting spurious patterns,
respectively. On the other hand, in the modern practice of deep learning, very rich models are trained
to precisely fit (i.e., interpolate) the data. Classically, such models would be considered over-fit, and
yet they often obtain high accuracy on test data. Thus, this paper proposes to use deep convolutional
neural networks (CNN) for pattern recognition (classification), avoiding the aforementioned usual
problems in the literature—e.g., [12–14]—related to feature extraction and bias–variance trade-off.
In particular, we develop a novel damage diagnosis method for WT offshore foundations based on
transforming condition monitoring multi-vibration-signals into images (with as many channels as
sensors) to be processed afterward using deep CNN.

The paper is organized in the following manner. First, in Section 2, the experimental setup is
introduced. It consists of a steel jacket-type offshore WT laboratory structure undergoing different
damage scenarios. Then, in Section 3, the proposed SHM strategy is described in detail. The approach
can be summarized by the following steps: (i) accelerometer data is gathered, (ii) a preprocess is
designed to extract the maximum amount of information and to obtain a dataset of 24 (that is, the same
number as accelerometer sensors) channel gray-scale images, (iii) 24-channel-input deep CNN is
designed and trained for classification of the different structural states. In Section 4, the obtained results
are conferred, showing an exceptional performance with all considered metrics giving results greater
than 99%. Lastly, the main conclusions are given in Section 5 as well as future work research directions.

2. Experimental Setup

The laboratory experimental setup is described in the following. First, a function generator (GW
INSTEK AF-2005 model) is employed to generate a white noise signal. Then, this signal is amplified
and applied to a modal shaker (GW-IV47 from Data Physics) that induces the vibration into the
structure. The general overview of the experimental setup is shown in Figure 2 (left). The structure is
2.7 m tall and composed of three parts:

1. The top beam (1× 0.6 m), where the modal shaker is attached to simulate a nacelle mass and the
effects of wind excitation;

2. The tower with three tubular sections connected with bolts;
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3. The jacket, which includes a pyramidal structure made up by 32 bars (S275JR steel) of different
lengths, sheets (DC01 LFR steel), and other elements such as bolts and nuts.

It should be noted that different wind speeds are considered by modifying the white noise signal
amplitude (i.e., scaling the amplitude by 0.5, 1, 2, and 3).

Figure 2. The experimental setup (left) detailing the location of the damaged bar (red circle). Location
of the sensors on the overall structure (right).

To measure vibration, eight triaxial accelerometers (PCB R© Piezotronic, model 356A17) are placed
on the structure, see Figure 2 (right). The optimal number and placement of the sensors is determined
according to [9]. The accelerometers are connected to six National InstrumentsTM cartridges (NI 9234
model) that are inserted into the National Instruments chassis cDAQ-9188. Finally, the Data Acquisition
ToolboxTM is employed to configure the data acquisition hardware and read the data into MATLAB R©.

The studied damage states are related to one of the jacket bars, see Figure 3. The damage states
include a 5-mm bar crack and loosening one of the jacket bolts. Furthermore, a pristine replica bar is
also considered.

Figure 3. Different structural state scenarios studied in this work. Replica (healthy) bar (left). Crack
damage, where L is the length of the bar, d = 5 mm is the crack size, and X = L/3 is the location of the
crack in the bar (center). Missing bolt (right).

Finally, note that the purpose of the paper is to verify that the conceived methodology has practical
potential. The laboratory tower is a simplified model, but it is valid for this preliminary study because
it is similar to the laboratory towers used, for example, in [9], where damage detection is accomplished
(but not localization or identification) via damage indicators; in [15,16], where statistical time series are
employed to detect damage; and in [17,18], where damage detection is accomplished through principal
component analysis and support vector machines.
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3. Structural Health Monitoring Proposed Methodology

The proposed SHM strategy follows the steps detailed here. First, the raw time series data are
collected. Second, the data are preprocessed to obtain a dataset of 24-channel gray-scale images. Third,
a 24-channel-input CNN is designed and trained for classification of the different structural states.
The following subsections describe the aforementioned procedure in detail.

3.1. Data Gathering

The data were gathered in different experiments with a sampling rate of 275.27 Hz and a duration
of 60 s each. Table 1 shows the total number of realized experiments for the corresponding structural
state (with its corresponding label) and white noise amplitude. A total of K = 100 experiments were
conducted. Given the k-th experiment, where k is varied from 1 to K = 100, the raw data were then
saved in the matrix X(k) ∈ M16517×24(R)

X(k) =


x(k)1,1 x(k)1,2 · · · x(k)1,24

x(k)2,1 x(k)2,2 · · · x(k)2,24
...

...
. . .

...

x(k)16517,1 x(k)16517,2 · · · x(k)16517,24

 . (1)

Note that there are as many rows as the number of measurements in each experiment—that is,
I = 16, 517—and as many columns as the number of sensors, J = 24 (because each column is related
to one sensor). Ultimately, the overall data matrix X ∈ M1651700×24(R) is constructed by stacking the
matrices that arise from each different experiment,

X =



X(1)

...
X(k)

...
X(100)


. (2)

Table 1. Total number of experimental tests for the different white noise (WN) amplitudes and for each
structural state.

Label Structural
State 0.5 WN 1 WN 2 WN 3 WN

1 Healthy bar 10 tests 10 tests 10 tests 10 tests
2 Replica bar 5 tests 5 tests 5 tests 5 tests
3 Crack damaged bar 5 tests 5 tests 5 tests 5 tests
4 Unlocked bolt 5 tests 5 tests 5 tests 5 tests

3.2. Data Preprocessing: Scaling, Reshaping, Augmentation, and Signal-To-Image Conversion

Data preprocessing is both the initial step and a critical step in machine learning. In this work,
data reshaping is employed to guarantee that each sample includes multiple measurements from each
sensor and thus has sufficient information to make a diagnosis regarding the state of the structure.
Furthermore, a data-augmentation strategy is proposed to improve the final test set error of the
prediction model. It is clear that the signal-to-image conversion as well as the architecture and
hyperparameters of the deep CNN will play a key role in the damage detection methodology. However,
the manner in which these data are scaled, augmented, and reshaped will significantly impact the
overall performance of the strategy [19].
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3.2.1. Data Scaling

The importance of preprocessing techniques for image classification by CNN is well known [20].
The main reason for data scaling is to enhance the efficiency of the neural network training process,
significantly decreasing the number of epochs required for the network to learn, and thus leading to a
better predictor. In particular, here, the data are scaled column-wise to fall within the specific range
[0, 255]. This range is selected to later allow for easy conversion into gray-scale images. In particular,
the range is computed as follows. Assuming that there are K experimental tests, I samples per
experiment, and J sensors,

Mj = max
(

x(k)ij

)
, i = 1, . . . , I, k = 1, . . . , K, (3)

mj = min
(

x(k)ij

)
, i = 1, . . . , I, k = 1, . . . , K, (4)

where Mj and mj are the maximum and the minimum values, respectively, of all the measures at
column j, where j = 1, . . . , J. Accordingly, the elements of matrix X are scaled

y(k)ij :=
(

x(k)ij −mj

) 255
Mj −mj

, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, (5)

to create a new matrix Y as

Y =



y(1)1,1 y(1)1,2 · · · y(1)1,24
...

...
. . .

...

y(1)16517,1 y(1)16517,2 · · · y(1)16517,24

y(2)1,1 y(2)1,2 · · · y(2)1,24
...

...
. . .

...

y(2)16517,1 y(2)16517,2 · · · y(2)16517,24

...
...

. . .
...

y(100)
1,1 y(100)

1,2 · · · y(100)
1,24

...
...

. . .
...

y(100)
16517,1 y(100)

16517,2 · · · y(100)
16517,24



=



Y(1)

Y(2)

...

Y(100)



. (6)

3.2.2. Data Reshaping

In this section, data reshaping is employed to guarantee that each sample has multiple
measurements from each sensor and thus has sufficient information to diagnose the state of the
structure. In particular, matrix (6) is reshaped to matrix Z ∈ M(6400)×(256·24), as given in Table 2.
It should be noted that the data in the first 256 columns are related to sensor 1 and define the first
submatrix block, denoted as Z1. Then, the data in columns 257 to 512 are related to sensor 2 and define
the second submatrix block Z2. Next, the columns 513 to 768 are related to sensor 3 and define the third
submatrix block Z3, and so on and so forth, until the last sensor related to Z24 has been accounted for.
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Table 2. Data reshaping. On the one hand, this process can be viewed as the vertical stacking of
K = 100 matrices Z(k), k = 1, . . . , K, where each matrix is associated with a different experiment.
On the other hand, this process can also be viewed as the horizontal concatenation of J = 24 matrices,
Zj, j = 1, . . . , J, where each matrix is associated with a different sensor.

Sensor 1 . . . Sensor 24

Z =



y(1)1,1 · · · y(1)256,1

y(1)257,1 · · · y(1)512,1
...

. . .
...

y(1)16129,1 · · · y(1)16384,1

...
. . .

...

y(k)1,1 · · · y(k)256,1

y(k)257,1 · · · y(k)512,1
...

. . .
...

y(k)16129,1 · · · y(k)16384,1

...
. . .

...

y(100)
1,1 · · · y(100)

256,1

y(100)
257,1 · · · y(100)

512,1
...

. . .
...

y(100)
16129,1 · · · y(100)

16384,1

· · ·

y(1)1,24 · · · y(1)256,24

y(1)257,24 · · · y(1)512,24
...

. . .
...

y(1)16129,24 · · · y(1)16384,24

...
. . .

...

y(k)1,24 · · · y(k)256,24

y(k)257,24 · · · y(k)512,24
...

. . .
...

y(k)16129,24 · · · y(k)16384,24

...
. . .

...

y(100)
1,24 · · · y(100)

256,24

y(100)
257,24 · · · y(100)

512,24
...

. . .
...

y(100)
16129,24 · · · y(100)

16384,24



=



Z(1)

...

Z(k)

...

Z(100)



=
(

Z1 · · · Z24
)

It should be noted that each row of matrix Z contains the information of one sample of our SHM
strategy. Notice that to diagnose a WT, the trained model requires at least one sample. Based on the
aforementioned reshaping process, the expected sample now contains 256 time stamps from each
sensor. In this manner, less than 1 second is required to gather the necessary data when the sampling
frequency is 275.27 Hz. Thus, this process leads to a faster detection time (amount of time that elapses
between fault occurrence and detection). The intuition behind the proposed data reshape is twofold:
(i) it supplies more information to each sample, and (ii) it simplifies the signal-to-image conversion,
as stated in Section 3.2.4, because 256 is a perfect square.

Finally, observe that from matrices Y(k), k = 1, . . . , K in Equation (6), the last samples y(k)i,j
from i = 16385, · · · , 16517, are discarded to reshape the data in the aforementioned new matrices
Z(k), k = 1, . . . , K.

3.2.3. Data Augmentation

Deep convolutional neural networks rely heavily on big data to avoid overfitting, see [21].
Unfortunately, many application domains lack access to big data. In this work, to build a better
deep CNN model, a data augmentation strategy is proposed that artificially expands the size of the
training dataset without actually collecting new data.
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The method consists of using each time stamp as the beginning of a new sample (and
using the subsequent 255 measures to complete the sample), as shown in Table 3. Accordingly,
instead of the previously defined matrices (see Table 2) Z(k) ∈ M(64)×(256·24), k = 1, . . . , K,
augmented matrices with the same number of columns but more rows are obtained, namely,
D(k) ∈ M(16129)×(256·24), k = 1, . . . , K. Thus, from the initial 64 samples per experiment, we increased
to 16,129 samples per experiment. This is an increment of 25,200% in the total number of samples in
the dataset.

Table 3. Synthetic data augmentation for experiment k, k = 1, . . . , K.

Signal 1 Signal 2 . . . Signal 24

D(k) =



y(k)1,1 · · · y(k)256,1

y(k)2,1 · · · y(k)257,1

y(k)3,1 · · · y(k)258,1

y(k)4,1 · · · y(k)259,1
...

. . .
...

y(k)16129,1 · · · y(k)16384,1

y(k)1,2 · · · y(k)256,2

y(k)2,2 · · · y(k)257,2

y(k)3,2 · · · y(k)258,2

y(k)4,2 · · · y(k)259,2
...

. . .
...

y(k)16129,2 · · · y(k)16384,2

· · ·

y(k)1,24 · · · y(k)256,24

y(k)2,24 · · · y(k)257,24

y(k)3,24 · · · y(k)258,24

y(k)4,24 · · · y(k)259,24
...

. . .
...

y(k)16129,24 · · · y(k)16384,24



Finally, the data matrix D ∈ M1612900×(256·24)(R)—which contains the scaled, reshaped,
and augmented data from all of the experiments—is defined by stacking the data matrices derived
from each different experiment (recall that K = 100),

D =



D(1)

...
D(k)

...
D(100)


. (7)

3.2.4. Signal-To-Image Conversion

The fault diagnosis method converts time-domain signals from the 24 measured variables
into 2D gray-scale images to exploit texture information from the converted images. The data
conversion process was inspired based on reference [13], although the process is enhanced here
by using multichannel images.

The image size used for signal-to-image conversion is 16× 16 (256 pixels) with 24 channels,
constructed as follows. Each row of matrix D, see Equation (7), is converted to one image of size
16× 16 with 24 channels (one channel per sensor), similar to a standard RGB image with 3 channels.
It should be noted that because the sampling time is 1/257 seconds, each image contains approximately
one second of data from each sensor, which is sufficient to capture all of the system dynamics. The total
number of images in the dataset is 1,612,900, because 16,129 images are obtained from each of the
100 experiments. Figure 4 shows one example of such a multichannel image.
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Figure 4. Multichannel gray-scale image corresponding to the 24 sensors (size 16× 16).

3.3. Deep Convolutional Neural Network

CNNs are feed-forward artificial neural networks that use the convolution operation instead of
matrix multiplication. The preprocessing required in a CNN is significantly less than that required
by other classification algorithms because features are not hand-engineered but learned. Typically,
there are three kinds of layers: convolution, fully-connected, and softmax. The main aspects pf the
convolution layer are its sparse local connectivity and filters, which significantly diminish the number
of network parameters while simultaneously increasing its performance. The convolution layer’s last
step is to apply the so-called activation function, which is a nonlinear function. Fully-connected layers
are normal neural network layers in which all the outputs from the previous layer are connected to all
the nodes in the next layer. Normally, these layers go towards the end of the network. Finally, a softmax
layer assigns probabilities to each class and connects to the final output layer that will have the same
number of neurons as classes.

To construct a deep CNN for a particular application is a complex task. In comparison to the
wealth of research related to color images, very little work has been carried out for gray-scale images.
In this work, a CNN is designed for the detection of different structural damage states based on
24-channel gray-scale images.

3.3.1. Data Split: Training Set and Validation Set

To develop the classification model, deep learning methods divide the available data into training
and validation sets. The training dataset is the actual dataset used to train the model (weights and
biases in a CNN). In other words, the training dataset is the sample of data used to fit the model.
In contrast, the validation dataset is the sample of data used to provide an unbiased evaluation of the
model fit on the training dataset while tuning the model hyperparameters.

In this work, the following dataset split ratio has been used: 75% of the whole dataset is assigned
to the training set, and 25% is assigned to the validation set. That is, 1,209,675 images with data
augmentation, or 4800 without data augmentation, are used to train the CNN. Then, 403,225 images
with data augmentation, or 1600 without data augmentation, are used to validate the model.
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3.3.2. Network Architecture

The network presented in Figure 5 was designed in this work.

Figure 5. Architecture of the developed convolutional neural network (CNN).

The input is a 16 × 16 image with 24 channels, all of which are gray-scale. Figure 6 shows
an example of one image in the dataset that was obtained after the preprocess procedure stated in
Section 3.2.

Figure 6. Example of one image in the dataset (24 channels) used as the CNN input.

The input is convoluted by a series of 7 convolutional layers. Each convolution layer is followed
by a batch normalization step, which is used to improve the speed, performance, and stability of the
CNN [22]; and a ReLU (Rectified Linear Unit) activation function ( f (x) = max(0, x)), because this
approach has been shown to speed up the training process in comparison to the classic sigmoid
alternative. The final layers of the network are three fully connected layers and a softmax block,
used to squash the 4-dimensional output into a categorical probability distribution: (1) original healthy
bar, (2) replica bar, (3) crack damaged bar, and (4) unlocked bolt.

The most significant characteristics of the CNN architecture are summarized in Table 4.
It should be noted that the convolutions with a maximum number of parameters are the

intermediate case (convolutions 4 and 5), whereas those with the minimum number of parameters
correspond to the first and last convolutions. Finally, the three fully connected layers have sizes 32, 16,
and 4, respectively, and are followed by the softmax function with four outputs.
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Table 4. Characteristics of the designed CNN. The neural network has a total of 2,176,308 parameters.
The number of output channels in each layer is highlighted in boldface font.

Layer Ouput size Parameters # of Parameters

Input
16 × 16 × 24 images 16 × 16 × 24 - 0

Convolution#1
32 filters of size 5 × 5 × 24 with padding [1 1 1 1] 14 × 14 × 32 Weight 5 × 5 × 24 × 32

Bias 1 × 1 × 32 19,232

Batch Normalization#1 14 × 14 × 32 Offset 1 × 1 × 32
Scale 1 × 1 × 32 64

ReLu#1 14 × 14 × 32 - 0

Convolution#2
64 filters of size 5 × 5 × 24 with padding [1 1 1 1] 12 × 12 × 64 Weight 5 × 5 × 32 × 64

Bias 1 × 1 × 64 51,264

Batch Normalization#2 12 × 12 × 64 Offset 1 × 1 × 64
Scale 1 × 1 × 64 128

ReLu#2 12 × 12 × 64 - 0

Convolution#3
128 filters of size 5 × 5 × 24 with padding [1 1 1 1] 10 × 10 × 128 Weight 5 × 5 × 64 × 128

Bias 1 × 1 × 128 204,928

Batch Normalization#3 10 × 10 × 128 Offset 1 × 1 × 128
Scale 1 × 1 × 128 256

ReLu#3 10 × 10 × 128 - 0

Convolution#4
256 filters of size 5 × 5 × 24 with padding [1 1 1 1] 8 × 8 × 256 Weight 5 × 5 × 128 × 256

Bias 1 × 1 × 256 819,456

Batch Normalization#4 8 × 8 × 256 Offset 1 × 1 × 256
Scale 1 × 1 × 256 512

ReLu#4 8 × 8 × 256 - 0

Convolution#5
128 filters of size 5 × 5 × 24 with padding [1 1 1 1] 6 × 6 × 128 Weight 5 × 5 × 256 × 128

Bias 1 × 1 × 128 819,456

Batch Normalization#5 6 × 6 × 128 Offset 1 × 1 × 128
Scale 1 × 1 × 128 256

ReLu#5 6 × 6 × 128 - 0

Convolution#6
64 filters of size 5 × 5 × 24 with padding [1 1 1 1] 4 × 4 × 64 Weight 5 × 5 × 128 × 64

Bias 1 × 1 × 64 204,864

Batch Normalization#6 4 × 4 × 64 Offset 1 × 1 × 64
Scale 1 × 1 × 64 128

ReLu#6 4 × 4 × 64 - 0

Convolution#7
32 filters of size 5 × 5 × 24 with padding [1 1 1 1] 2 × 2 × 32 Weight 5 × 5 × 64 × 32

Bias 1 × 1 × 32 51,232

Batch Normalization#7 2 × 2 × 32 Offset 1 × 1 × 32
Scale 1 × 1 × 32 64

ReLu#7 2 × 2 × 32 - 0

Fully connected layer#1 1 × 1 × 32 Weight 32 × 128
Bias 32 × 1 4128

Fully connected layer#2 1 × 1 × 16 Weight 16 × 32
Bias 16 × 1 528

Fully connected layer#3 1 × 1 × 4 Weight 4 × 16
Bias 4 × 1 68

Softmax - - 0

classoutput - - 0

It should also be noted that each convolution employs a padding of 1. The main intuition behind
this selection is that normally, the filter is applied by superimposing it on the image from the upper
left edge. Then, a columnar translation is applied until the filter is superimposed with its right edge on
the right edge of the image. This usual way of proceeding has a problem, the edge pixels are never
subjected to the central part of the filter. This is sometimes known as the border effect problem and can
be solved by incorporating so-called padding [23]. That is to apply the filter beginning from outside
the image frame as well as ending also outside the image, in such a manner that edge pixels reach
also the center part of the filter. In this work, a padding of 1 is used to enhance the texture features
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extracted by the CNN for all of the data in the image, regardless of whether the data are located in the
image. Table 5 compares different metrics (see Section 4.1, where a definition of these metrics is given)
with and without padding (without data augmentation). It can be observed that when using padding,
better results are attained.

Table 5. Metrics for different CNN architectures without data augmentation. The best metric results
are highlighted in boldface font.

Strategy Accuracy Precision Recall F1 Score Specificity

ReLu-Padding-L2 regularization 93.81 92.77 93.73 93.22 97.98
Relu-No padding-L2 regularization 93.69 92.73 93.44 93.07 97.92
Relu-Padding-No L2 regularization 93.63 92.73 93.82 93.25 97.89

3.3.3. Network Training

The training of the CNN consists of the minimization of a loss function by means of a numerical
optimization algorithm. In this work, the Adam optimizer [24] is employed to minimize the categorical
cross entropy [25]. The Adam algorithm combines two versions of speeding up gradient descent:
(i) gradient descent with momentum, where the basic idea is to compute an exponentially weighted
average of the gradients, and (ii) root mean square propagation (RMSProp), that makes use of the
gradient second moments. Specifically, the Adam numerical method puts together the exponential
moving average of the gradient and the squared gradient (second moment), and hyperparameters
β1 and β2 handle their decrease rates, respectively. In this work, the Adam optimizer has been tuned
and thus employs an initial learning rate of α0 = 0.01, and values β1 = 0.9, β2 = 0.992, and ε = 10−7

to avoid divisions by zero. Furthermore, here, the learning rate is decreased every 2 epochs by
multiplying with factor 0.5.

Convolutional layer initialization is carried out by the so-called Xavier initializer [26].
Mini-batches of size 75 in the initial dataset and 590 for the augmented dataset are used to update
the weights.

Finally, L2 regularization with λ = 10−6 is employed. Table 5 compares the different metrics
(see Section 4.1 for a definition of these metrics) with and without L2 regularization (without data
augmentation). It can be observed that when using regularization, better results are obtained because
regularization reduces high variance in the validation set.

3.3.4. Network Architecture and Hyperparameter Tuning

To select the best architecture and to tune the different hyperparameters usually requires
significant computational resources. As one of the most critical aspects of computational cost is
the dataset size, in this paper, following the results presented in [27,28], the small dataset (without
augmentation) is used to define the CNN architecture and quickly (coarse) tune the hyperparameters.
Next, the obtained optimal hyperparameters for the small dataset are used as initial values to fine-tune
the hyperparameters with the large dataset (with data augmentation).

3.3.5. Network Implementation

The stated methodology is coded in MATLAB R© using its Deep Learning ToolboxTM on a laptop
running the Windows R© 10 operating system, with an Intel Core i7-9750H processor, 16 GB of RAM,
and an Nvidia GeForce RTXTM2060 graphics card that has 6 GB of dedicated VRAM.

4. Results and Discussion

4.1. Metrics to Evaluate the Classification Model

To measure classification performance, several metrics can be computed from a confusion matrix
such as that shown in Table 6. Normally, these metrics evaluate binary classification problems.



Sensors 2020, 20, 3429 13 of 19

Note that true positive (TP) is the number of positive samples that are correctly predicted as such,
false positive (FP) is the number of negative samples that are incorrectly predicted, true negative (TN)
is the number of negative samples that are correctly predicted, and false negative (FN) is the number
of positive samples that are incorrectly predicted.

Table 6. Binary confusion matrix.

Predicted Class
Positive Negative

A
ct

ua
lc

la
ss Positive True positive

(TP)
False negative

(FN)

Negative False positive
(FP)

True negative
(TN)

The most common metrics for binary classification problems are the following.

• Accuracy: proportion of true results (both true positives and true negatives) among the total
number of cases examined.

Accuracy =
TP + TN

TP + FP + FN + TN

• Precision: proportion of positive results that are true positive.

Precision =
TP

TP + FP

• Recall: proportion of actual positives that are correctly identified as such.

Recall =
TP

TP + FN

• Specificity: proportion of actual negatives that are correctly identified as such.

Specificity =
TN

TN + FP

• F1-score: harmonic mean of the precision and recall.

F1 = 2 · Precision · Recall
Precision + Recall

In a multiclass classification problem, such as that considered in this work, these metrics are
also applicable using a one-vs.-all approach to compute each metric for each class, see [29]. This is,
essentially, to compute the different metrics for each label as if the problem has been reduced to a
binary ’label X’ versus ’not label X’ situation.

4.2. Results of the CNN Classification Method

To evaluate the developed methodology, this section presents the results obtained from the
proposed SHM strategy. A flowchart of the proposed approach is given in Figure 7. When a WT
must be diagnosed, the accelerometer data are scaled, reshaped, and converted into gray-scale images
that are fed into the already trained CNN, and a classification is obtained to predict the structural
state condition.
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Figure 7. Flowchart to illustrate how the proposed structural health monitoring (SHM) strategy is
applied when a wind turbine (WT) must be diagnosed.

To thoroughly test the functional characteristics of the algorithm, the datasets with and without
data augmentation are considered, as well as comparison with two other methodologies given in [9,17]
that make use of the same laboratory structure. The first methodology, given in [17], is based
on principal component analysis and support vector machines. The second methodology, given
in [9] (page 67), is based on the well-known damage indicators: covariance matrix estimate and
scalar covariance.

Figures 8 and 9 illustrate the confusion matrices for the validation dataset without and with data
augmentation, respectively. The rows represent the true class, whereas columns represent the predicted
class. The precision and false discovery rate are given in the rightmost columns. Finally, the recall and
false negative rate are given at the bottom rows. An examination of both confusion matrices reveals
that some misclassifications come from the model confounding the healthy and replica bars (labels 1
and 2). However, this level of misclassification is acceptable because both bars are in a healthy state. In
contrast, some errors are derived from the model misclassifying the crack and unlocked bolt damages
(labels 3 and 4), which will not correctly detect the type of damage but would at least lead to a damage
alert. Finally, it should be noted that very few damaged samples (labels 3 and 4) are classified as
healthy or replica bar (labels 1 and 2).
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Figure 8. Confusion matrix for the validation dataset without data augmentation.
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Figure 9. Confusion matrix for the validation dataset with data augmentation.

From the confusion matrices, the different metrics to evaluate the classification model,
see Section 4.1, are computed and presented in Table 7.

Table 7. Metrics for each label of the multiclassification problem and comparison between the datasets
without and with data augmentation.

Dataset Label Precision Recall F1-Score Specificity

Without data augmentation

1: Healthy bar 97.97 94.14 96.02 98.61
2: Replica bar 90.31 94.75 92.48 97.61
3: Crack damaged bar 90.31 92.63 91.46 97.59
4: Unlocked bolt 92.50 93.38 92.94 98.13

With data augmentation

1: Healthy bar 99.89 99.96 99.92 99.92
2: Replica bar 99.90 99.87 99.88 99.97
3: Crack damaged bar 99.94 99.86 99.90 99.99
4: Unlocked bolt 99.90 99.86 99.88 99.97
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The impact of the data augmentation strategy can clearly be seen. Although no new experimental
data were collected, nonetheless the metrics were significantly improved. It should be noted that
all of the metrics (precision, recall, F1-score, and specificity) are higher than or equal to 99.86% for
each label when using the augmented dataset in comparison to values between 90.31% and 98.61%
for the initial dataset. Despite all metrics being relevant, considering the specific problem at hand,
the most important metric is recall, which is the proportion of actual damaged cases that are correctly
identified as such. It can be observed that the crack damage and the unlocked bolt, even without data
augmentation, obtain recall values of 92.63% and 93.38%, respectively. When data augmentation is
used, the recall values are all higher than or equal to 99.86% for all of the studied classes. The results
associated with the precision metric are also satisfactory. When the initial dataset is used, precision
values are between 90.31 and 97.97, but with the augmented dataset, such values are all higher than
or equal to 99.89. Finally, it should be noted that the specificity metric is that which experiences less
improvement when using the augmented dataset.

As already mentioned before, here, a comparison is made between our obtained results and
two other methodologies. On the one hand, when using the first approach stated in [17], the crack
damaged bar has a recall of 96.08%, and is thus inferior to the one obtained with the proposed strategy
in this work which attained a value of 99.86%. Note that the crack damage is the most challenging.
In fact, the second approach stated in [9] (page 82) was not capable of detecting this type of incipient
damage when using the scalar covariance or mean residual damage indicators. On the other hand, the
first approach obtains a recall of 99.02% for the unlocked bold damage; whereas with the proposed
strategy, a slightly higher value of 99.86% is obtained. Finally, note that the unlocked bold damage is
not studied in the second approach

The proposed CNN exhibits low bias and variance for both datasets, because the training and
validation errors are small (low bias), as well as the difference between them (low variance), as shown
in Table 8. In particular, when using the initial dataset, the training error is equal to 0.1167 and the
validation error is quite close to this same value, being equal to 0.1692. When using the augmented
dataset, the training error diminishes to 0.0026 and the validation error is only slightly greater at
0.0044. From this table, the significantly increased training time (1196 min) of the augmented dataset in
comparison to that of the initial dataset (11 min) can be seen, which is easily understood due to the size
of each dataset. That is, there are 1, 612, 800 images in the augmented dataset and only 6400 images in
the initial.

Table 8. Comparison of obtained accuracy, validation error, training error, and training time when
using data augmentation with respect to the original dataset.

Accuracy Validation Error Training Error Training Time # of Images

Whitout data augmentation 93.81 0.1692 0.1167 11 min 6400
With data augmentation 99.90 0.0044 0.0026 1196 min 1,612,800

Finally, Figure 10 shows the accuracy and loss curves during training and validation (black dotted
lines) when using the augmented dataset. It should be noted that after 5 epochs, the CNN obtains an
accuracy of 99.90% and a final validation loss of 0.0044, as shown in Table 8.
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Figure 10. Accuracy and loss curve for the augmented dataset.

5. Conclusions and Future Work

In this work, a strategy based solely on vibration response was demonstrated for the structural
health monitoring of offshore WT foundations. The approach was tested on a laboratory setup,
for which four different structural states for a jacket bar were studied: healthy bar, replica, crack
damage, and an unlocked bolt.

The contribution of this work is twofold: (i) how three-dimensional data (derived from
different time, sensors, and experiments) are preprocessed (collected, scaled, reshaped, augmented,
and converted into gray-scale images with as many channels as sensors), and (ii) the design of a deep
CNN, the architecture and hyperparameters of which play a key role in the specific application that
concerns us—damage diagnosis. Furthermore, the proposed method does not require hand-designed
features beforehand because the CNN learns features automatically.

The conceived SHM methodology with data augmentation shows exceptional performance,
with all considered metrics (accuracy, precision, recall, F1-score, and specificity) giving results greater
than 99.8%. In particular, a noteworthy overall accuracy of 99.90% is obtained with data augmentation.
These results show that large (deep) CNNs are promising for the development of SHM strategies for
WT offshore foundations.

Future work will focus on three main areas. First, based on open set domain adaptation [30],
research to render capability of separating unknown damage from known targeted types of damage
will be conducted. Second, not only detection and classification but also the localization of the damage
will be attempted by designing an ensemble of deep CNNs, the main idea being to take advantage of
individual information from each sensor signal. Lastly, to deal with the validation of the proposed
strategy in a more realistic environment, a water tank facility will be used, in which the laboratory
tower will be placed and subjected to the action of regular and irregular waves.
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