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Abstract: Travel time prediction is critical for advanced traveler information systems (ATISs),
which provides valuable information for enhancing the efficiency and effectiveness of the urban
transportation systems. However, in the area of bus trips, existing studies have focused on directly
using the structured data to predict travel time for a single bus trip. For state-of-the-art public
transportation information systems, abus journey generally has multiple bus trips. Additionally, due to
the lack of study on data fusion, it is even inadequate for the development of underlying intelligent
transportation systems. In this paper, we propose a novel framework for a hybrid data-driven
travel time prediction model for bus journeys based on open data. We explore a convolutional long
short-term memory (ConvLSTM) model with a self-attention mechanism that accurately predicts the
running time of each segment of the trips and the waiting time at each station. The model is more
robust to capture long-range dependence in time series data as well.

Keywords: travel time prediction; bus journey; convolutional long short-term memory;
attention mechanism

1. Introduction

The usage of intelligent transportation systems (ITSs) is motivated in a significant part by passenger
increases and sustainable development [1,2]. The ITS has a direct impact on energy consumption,
personal living expenses, public health and safety. Seamless integration of vehicles and sensing devices
has made it possible to capture and collect large amounts of sensor data from various data sources
in real time. Developing sustainable and intelligent transportation applications operate and manage
real-time and historical data efficiently, which has become an increasingly important yet challenging
task. It also plays a vital role in achieving the main objectives of ITS, which include accessibility and
mobility, environmental sustainability and economic development [3,4]. With the advent of artificial
intelligence (Al), machine learning and expert system-based paradigms have driven the development
of society and the steady growth of the economy. Besides, deep learning can discover patterns in
complex data sets, which could not be found via conventional methods. The merging of machine
learning and transportation science has tremendous potential to enhance the performance of ITS.

Travel time refers to a period spent traveling from the origin to the destination. Providing
real-time travel information is indispensable for ITS. However, real-time travel time is unlikely to be
observed because it is already historical data rather than ‘real-time data’ since it was collected [5].
Using predictive methods to estimate future travel time is an effective way to provide real-time
information. Furthermore, travel time prediction is a known and challenging research area because of
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the inherent uncertainty [6]. Existing studies on bus travel time prediction mainly focus on improving
the prediction accuracy of a single trip. This is inadequate for implementing efficient applications in
an intelligent transportation system, where a bus journey has multiple bus trips [7]. Although the
ConvLSTM has shown excellent performance in travel time prediction, adding the attention mechanism
to LSTM-based models has the potential to improve the predictive accuracy [8,9]. The integration of
their strengths remains an unsolved research task. Studies have applied LSTM-based deep learning
methods with applications to journey travel time prediction that rely on high-quality labeled data.
However, data acquisition is a challenging task.
The contributions of this study are summarized as follows:

(1) We designed and developed an open-source data collection framework that can automatically
collect and pre-process large amounts of high-quality data over a long period without involving
personal privacy, for example, an entire season or even several years.

(2) This paper proposes a hybrid model that applies the ConvLSTM network with an attention
mechanism to explore a suitable model for the bus journey time prediction on open data.

(3) We also discuss input features for journey travel time prediction and suggest directions for
future research.

The remainder of the paper is organized as follows. Firstly, we demonstrate a brief overview of the
basic definitions. Secondly, an integrated system framework is introduced to target the problem of bus
journey time prediction and provides a ConvLSTM-based method with self-attention. Furthermore,
the datasets’ baseline and evaluation metrics are used in this study. Finally, the findings and suggestions
for further studies are summarized.

2. Related Works

The sustainable development of smart cities requires reliable and efficient transportation systems [10].
Internet of Things (IoT) can be applied with the existing infrastructure and service networks for the design
of transportation systems, such as software-defined networks and communication technologies [11-13].
IoT-based intelligent transportation systems (IoT-ITSs) can be classified into four main fields: Advanced
traveler information system (ATIS), advanced public transportation system (APTS), advanced traffic
management system (ATMS) and emergency management system (EMS) [13]. Transportation systems
are shifting from conventional technology-driven systems to more powerful multifunctional data-driven
ITSs [14-16]. Massive traffic sensor data gathered by various sensors are vital for informed scientific
decision-making processes in traffic operation, pavement design and transportation planning [17].
Data analytics in ITSs consider important factors that influence decision-making processes, such as travel
time or traffic congestion of public transport services [18,19]. The fusion of traffic data from multiple
sources produces a better understanding of the observations to reach a better inference in ITSs [20-23].

Accurate estimation of travel time is essential to the success of ATMS and ATIS [24]. The approaches
to studying travel time prediction can be mainly divided into three categories: Knowledge-driven,
model-driven and data-driven approaches. Knowledge-driven approaches usually employ a database,
a knowledge base in the form of rules and an inference engine in the form of algorithms [25].
Lee et al. proposed a knowledge-based expert system that predicted travel time by combining general
rules from location-based service applications and meta-rules from human domain experts [26].
Nonetheless, as the knowledge base becomes increasingly large, the time to obtain accurate
predictions increases as well. Model-driven approaches can be divided into four levels: Macroscopic
(e.g., TOPL [27]), mesoscopic (e.g., DynaMIT [28] and Dynasmart [29]), cellular automaton (CA)
(e.g., OLSIM [30]) and microscopic methods (e.g., AIMSUM online [31]) [32]. In the past, most of
the studies on travel time forecasting have focused on model-based methods. Transport simulation
software is intended for simulating traffic state information on virtual networks. It is primarily focused
on research in traffic control and management, such as the effects of ramp metering, variable speed
limits and traffic incidents. To perform research on model-based practices, we need to acquire and
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use travel demand data, which is known as an origin-destination (OD) matrix or population data [5].
Nevertheless, accurate OD data is difficult to obtain, time-consuming and expensive. Presently,
only a few institutions have accumulated essentially useful OD data to build integrated travel time
forecasting systems.

Recently, data-driven approaches have been receiving increased attention and gained interest
within the transportation research community due to the increased computing power available and the
vast amount of data collected in ITSs. Deep learning leads to an advantage over conventional machine
learning algorithms with big data analytics of urban traffic. Kumar et al. compared the performance of
the data-driven artificial neural network (ANN) approach and the model-based Kalman filter (KF)
approach concerning bus travel time prediction in [33]. The experimental results showed that the
data-driven ANN can achieve better performance, but compared to KF, the model needs a rich set
of data for neural network training. Hou and Edara proposed long short-term memory (LSTM) and
convolutional neural network (CNN) to predict travel time in a road network; compared to CNN,
random forests (RFs) and gradient boosting machines (GBMs); the computation time of LSTM was
the shortest in the model training process and prediction process [34]. Petersen et al. utilized the
convolutional LSTM to propose a multi-output multi-time-step system for bus travel time prediction [8].
Yu et al. presented a random forest based on the near neighbor (RFNN) model to predict the travel
times of buses between bus stops, which include the running time and waiting time as two input
variables separately. Correspondingly, the model also considers traffic conditions, which is an essential
factor affecting bus travel time [35]. However, studies on bus journey time forecasting is rather limited.
Our work focuses on forecasting the travel time of the bus journey for travelers. A trip is to use one
transport mode to travel on a single line or route, and a journey has one or more trips, where transfers
occur between bus services during a period of travel time [7]. Therefore, there is still a need for
developing a well-designed system framework to discover the advantages of various methods that
achieve a deterministic and meaningful outcome, which is closer to the real world’s needs.

However, none of the existing studies have considered the travel time problem of a bus journey
via the ConvLSTM with the self-attention mechanism. Thus, the objective of our study was to predict
the travel time of bus journeys by leveraging a data fusion component, which offers appropriate inputs
to deep learning models.

3. Methodology

3.1. Bus Travel Time

In this section, we define some terms in Table 1, which will be used throughout the rest of
the paper.

Table 1. List of important notations.

Symbol Description
T bus tripid T
n number of bus stops in T
S abusstopina trip T
ty bus departure time from the station S
ta bus arrival time at the station S
Frotal total time of a trip T

actual running time in T
actual waiting time in T
predicted running time in T
predicted waiting time in T
actual value of evaluation metrics
predicted value of evaluation metrics
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A bus usually runs along a fixed route based on a regular schedule. The travel time depicted in
Figure 1 is the time cost to complete a trip, which departs at time ¢. It follows an itinerary characterized
by an original station A, a destination station B and some stops (e.g., station S; and station S5).

Running Time Waiting Time Running Time Waiting Time Running Time

Q) —cy D —

A

Figure 1. Running time and waiting time for a bus trip.

In this paper, we predict the total travel time of a bus journey by using the actual running time and
waiting time from open data. For any stops in the trip, a bus is scheduled to arrive and depart from a stop S
at different specified times, defined in the timetable, respectively, £;T, S and t,T, S. In general, travel time
forecasting is an estimate of the trip from a station of origin to a station of destination. The running time is
the absolute difference between the arrival time of the current station and the departure time of the previous
station, such as Ry = f,T, 52 — 4T, S1. The waiting time is the absolute difference between the departure
time and the arrival time in a fixed stop station, such as, D1 = t;T,S1 — £,T, S1. Our study defines segments
based on information about the stops of a trip pattern. The segment-based method divides the stop points
into running time and waiting time segments. Our predictive models predict the running and waiting times
based on different ¢, and t;. According to Figure 1, it is evident that the numbers of input data for the
prediction of running time and waiting time are different. This is because for each trip of a specific bus,
the running time will have one more record than the waiting time. The total travel time of a bus journey can

be described with Equation (1):
n n-1
trotal = ZR"FZ[A)I 1)
i i

3.2. Leveraging Machine Learning and Logical Reasoning

With the rapid development of ITSs in recent years, data availability issues have always plagued
researchers. Notably, the studies of multi-modal transport require a large amount of data from diverse
data sources. Open data platforms release a variety of data that is freely available to everyone to reuse.
Moreover, domain experts structure and classify data, such as general transit feed specification (GTFS) and
GTFS-Realtime [36]. Researchers can create structured data, namely the process of data curation, for the
corresponding studies through data cleansing and data fusion. To predict a complex and uncertain event,
we need to have multiple sources of data to provide more information for generating a predictive model.

Figure 2 illustrates the framework of an integrated system for journey time prediction,
which consists of six components: GTFS-Realtime and GTFS static data stores, data fusion, knowledge
base, feature extraction, deep learning models, and running time prediction and waiting time prediction.
As Figure 2 shows, in the first step, we collected data from two types of GTFS and cleansed them,
for example, by deleting duplicate data and sorting the data in chronological order. In order to build
a knowledge base, the data fusion approach plays an essential role. Data from different data sources
sometimes cannot be integrated and saved into a relational database or a two-dimensional data format,
due to some data failing to match one-to-one or one-to-many mapping relationships, such as the
running time from the station S; to S» and probe vehicle speed data. The use of the knowledge base
enables deep learning models to exploit logical reasoning from data. Applying domain knowledge to
classify the raw data not only avoids the impact of irrelevant data but also reduces the computation time
of the model. Furthermore, data fusion employs mathematical methods and programming languages
to synthesize useful information or inferences. The theoretical framework can also be developed as
an extended version to involve verification mechanisms [37].
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Figure 2. The framework of journey time prediction.

3.3. Bus Journey Travel Time with Multi-Step Time Series Prediction

The ConvLSTM model is a powerful kind of recurrent neural network (RNN), with a combination
of convolutional and LSTM layers, which contains the operation inside the LSTM cell [38]. On the other
hand, the travel time prediction of a bus journey can be treated as a time series prediction problem.
In recent years, LSTM is an elegant solution to the time series analysis by exploiting spatiotemporal
data. Additionally, the ConvLSTM applies the convolution operators to capture the spatial and
temporal dependencies in the dataset so that it generally performs better than fully connected LSTM
(FC-LSTM) [38]. The calculation steps are as follows:

Firstly, calculate the input gate:

it = 0(Wyi X X + Wy X by_q + W01 + b;), @)
Forget gate:
fi :G(fo Xxt + WypXhi—y + Wepocr +bf), 3)
Cell state:
¢t = froci_q + i o tanhWiye X xp + Wie X hy_q + b, 4)
Output gate:
0r = 0(Wio X x¢ + Wi X Iy—1 + Weo 0 ¢t + by), ®)
Hidden state:
hy = op o tanh(cy), (6)

where ¢ is a sigmoid function, o is the Hadamard product, and X is the convolution operator. W,;, Wy,
Wy and Wy, are the weight matrices connecting the inputs x1, ... , x; to three gates and the cell input;
Whi, Wi r, Wi and Wy, are the weight matrices connecting the hidden states iy, ... , i1 to three gates
and the cell input; W;, W, £ and W, are the weight matrices connecting the ¢y, ..., ¢; to three gates;
and b;, b iz be and b, are the bias terms of three gates and the cell state.

Recently, the attention mechanism has succeeded in a wide range of sequence-to-sequence
learning tasks [39-41]. Liang et al. presented a multi-level attention-based recurrent neural network
for predicting geo-sensory time series [42]. The attention model focuses on the vital issue with the
LSTM-based model for bus travel time prediction, which tends to select near-term data that is highly
correlated to future travel time. In our experiments, the encoder is the underlying ConvLSTM model
generating the hidden state representation ;. We leverage a self-attention mechanism to the inputs
after the operations of Equations (1)—(6):

My = tanh(Wmht + Wyrhp + bm), (7)

ety = 0(Wampp + bg), 8)
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ay = softmax(et), )
n
=) a xh, (10)
p=1

where a; ¢ is an attention matrix; b, and b, express bias terms; W;, and W,,» express weight matrices
corresponding to the hidden states &y, hy; and finally, It represents a weighted sum of hy [43].

Figure 3 demonstrates an overview of our proposed model, which consists of two main components:
Running time prediction and waiting time prediction, which are two independent components for
estimating running and waiting times based on GTFS-Realtime. The first step is to divide the historical
observations from a sequence dataset into two smaller sequence datasets so that the input data of the
ConvLSTM model are arranged into a 3-D-tensor for a single bus line. For example, in N day samples
and time steps k, a sequence of running times R; with a single bus line can be represented as (N, k,
R;). Secondly, 1 and I; show how much the weight of the historical observations affects the predicted
values. Finally, the outputs are merged to get the results by using Equation (1).

Convlstm  Attention Mechanism

Input Sequence

| hl |

m Convlstm  Attention Mechanism

Suidaap ndinQ

m Result

h2 2
Figure 3. Self-attention-based ConvLSTM network.

The entire training process of an attention ConvLSTM is presented in Algorithm 1. We firstly
construct multiple historical observation sequences as inputs. Then, the model is trained to predict the
running time and waiting time separately.

Algorithm 1 Attention-Based ConvLSTM Training Algorithm

Require:
Historical running time and waiting time observations:
(R,RT...RY) and (DI,D]...DT_));
Sequence lenght: n;
Lengths of running time, waiting time: Ig, Ip;
running time: R;
waiting time: D.
Ensure: Attention-based ConvLSTM Model
for epoch = max—epoch do
Perform forward propagation recurrently using Equation (2)—(10) to
calculate
Sg = (RT,RIART)
Sp = (DI, D]AD})
compute output error:
Yr - YR
Yp -Yp
merging the predicted outputs to obtain the total travel time:
trotal = YR + ?D
end for
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4. Experiments and Discussion

4.1. Dataset Description and Preprocessing

We verified our model on real-world traffic datasets from TINSW (Transport for NSW) Open Data
Bus Realtime Trip Update (BRTU) collected by a Python program that read the TENSW real-time feed
application programming interfaces (APIs) [44]. The dataset contains key attributes of bus journey
information with corresponding timestamps, as detailed below.

BRTU was gathered from Sydney’s bus system in real time. For our experiment, the data was
collected every 60 s, about 12 GB of data a day. Note that the better frequency is 10 s, around 60 GB
a day). The period used was from 6th May 2019 to 28th June 2019 except the weekends. We selected
the first three weeks of historical travel time records as a training set and the rest served as a test
set, respectively. BRTU has information about the departure time, arrival time, delay and route.
The GTFS-static contains station names, coordinates and route names.

The proposed model and other comparative models were implemented in Python via the
TensorFlow Framework [45] and trained with the Adam algorithm [46]. The proposed network was
composed of several layers: A ConvLSTM2D [38], a flatten layer, a RepeatVector layer, a self-attention
layer and two TimeDistributed layers. The training details about the network are presented in Table 2.

Table 2. Training details about self-attention-based ConvLSTM.

Variable Value
learning rate 0.001
epochs 20
batch size 16
loss Mean Squared Error
optimizer Adam

4.2. Evaluation Metrics and Results

In our experiments, we applied two standard metrics to evaluate the performance of running time
prediction and waiting time prediction, including root mean square errors (RMSEs) and mean absolute
errors (MAEs). They were defined as presented in Equations (11) and (12), where y; represents the
actual value for sample f and {J; represents the predicted value. As the multi-time-step model predicts
bus travel time for all stops for the next n time-steps, bot y; and #; have the dimensionality (N, k, R;):

1 n
RMSE = ;Z{(yt—m)z, (11)

1 ¢ .
MAE = ZlZ‘f|yt—yt|. (12)

We explored the patterns of the bus running time and waiting time on weekdays. Respectively,
Tables 3 and 4 present the results of the trip id “27134” from Campbelltown station to Narellan Town
Centre station. The trip “27134” has 37 records per day. As evidenced by the results, the performance
of three types of LSTM does not have many differences. The output of our experiments is consistent
with Greff et al.’s findings as well [47]. Standard LSTM and variant versions do not have significant
performance differences.

Our design explores the pattern of each record (a stop). As can be seen from Tables 3 and 4,
we found that the attention ConvLSTM is a more stable model by observing each prediction result.
It adjusts the predictions reasonably based on previous inputs. However, it cannot model very
long-range temporal dependencies (e.g., period and trend), and training becomes more complicated
when the depth increases [48].
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Simply put, when the amount of input data increases, the time calculated by the model will
increase dramatically. The attention mechanism can effectively overcome the drawbacks of modeling
long-range temporal dependencies. Additionally, it could reduce the computation time in every
training by using less training data.

To further verify the performance, we used LSTM and attention-based ConvLSTM to predict the
running time and waiting time of one of the stops, “Mt Annan Leisure Centre, Welling Dr” (stop 18).
In Table 3, a significant difference is shown. By observing each predicted value of the CNN model,
we find that there is a significant difference between the upper and lower bounds for the CNN model.
In this case, the prediction of the model is very unreliable. Compared with the results of LSTM models,
it can be seen that the forecast results are improved in Tables 3 and 4. Attention-based ConvLSTM'’s
mean errors and standard deviation (SD) are the lowest. In conclusion, attention-based ConvLSTM
achieves the best overall performance compared to the other models in Tables 3 and 4. It is a more
reliable model for the prediction of travel time on data with large residuals than other models.

Table 3. Performance comparison of the bus running time prediction models for a stop.

Models RMSE (s) MAE (s)
Mean SD Mean SD
CNN 121.770 15.350 115.095 18.318
LSTM 49.849 5.046 47.146 4.583
ConvLSTM 43.720 15.468 37.533 13.821
Attention-ConvLSTM 41.449 5.623 36.328 4.539

Table 4. Performance comparison of the bus waiting time prediction models for a stop.

Models RMSE (s) MAE (s)
Mean SD Mean SD
CNN 7.891 6.415 6.912 1.747
LSTM 6.415 0.283 5.544 0.284
ConvLSTM 5.683 0.113 5.060 0.134
Attention-ConvLSTM 3.740 0.227 3.166 0.441

It is worth mentioning that our aim was not to solely improve the accuracy of predictions, as deep
neural networks are less interpretable. Instead, we strived to find a practical data-driven model on
open data by exploring the combination of deep learning methods and domain knowledge. Moreover,
GTEFS provides uncertainty values, which can be utilized to test the robustness of the generic model.
The model based on GTFS will have a level of portability and reproducibility to the application in
real scenarios.

Figure 4 reports the performance of CNN, LSTM, ConvLSTM and Attention-ConvLSTM for the
prediction of the running time and waiting time. The y-axes of RMSE and MAE from (a), (b), (c) and
(d) represent the errors in seconds, respectively. All models have significant prediction errors (mean
and standard deviation) in running time predictions. Especially, CNN reaches the most significant
prediction errors in all cases. The waiting times indicate small variations, which are to a great extent
explained by the input in the corresponding models. A weak dependence on the journey travel time
prediction is established. However, the variability of the running times cannot be fully explained
by the selected input variables. Additionally, it shows that Attention-ConvLSTM effectively reduces
errors. The proposed model needs to use more relevant factors to improve the predictions, such as
vehicle speed or weather information.
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Figure 4. RMSE and MAE for the journey travel time prediction listed as: (a) The mean RMSE for the
running time and waiting time; (b) The standard deviation of RMSE for the running time and waiting
time; (c) The mean of MAE for running time and waiting time; (d) The standard deviation of MAE for
the running time and waiting time.

5. Conclusions and Future Work

In this paper, we investigated the problem of predicting bus journeys’ travel time with publicly
available GTFS data by taking into account the bus running time along routes and the waiting time at
stop points. The basic idea was to use domain knowledge to classify raw data to obtain a knowledge
base, which can offer useful information for assisting in deep learning models to explore the hidden
patterns of data. Thus, we proposed a comprehensive framework using open data to bridge deep
learning models and logical reasoning from a knowledge base. We used an attention-based ConvLSTM
to predict the running time and waiting time separately. Ultimately, the total travel time prediction
was obtained by merging the predicted outputs.
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In the future, we will consider adding weather information, vehicle speed and traffic condition
data into our deep learning models. Furthermore, we will explore evolutionary algorithms to find the
best dataset size for the accurate prediction of travel time, and to find the best model number of layers
and number of units per layer. According to our experiments, the use of GTFS data exchanged API will
make it easier to obtain high-quality input data for multi-modal traffic prediction studies. Our future
work will also focus on employing more advanced data-driven models to shift from single-mode
prediction to multi-modal prediction.
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