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Abstract: Recently, researchers have been studying methods to introduce deep learning into
automated optical inspection (AOI) systems to reduce labor costs. However, the integration of
deep learning in the industry may encounter major challenges such as sample imbalance (defective
products that only account for a small proportion). Therefore, in this study, an anomaly detection
neural network, dual auto-encoder generative adversarial network (DAGAN), was developed to
solve the problem of sample imbalance. With skip-connection and dual auto-encoder architecture,
the proposed method exhibited excellent image reconstruction ability and training stability. Three
datasets, namely public industrial detection training set, MVTec AD, with mobile phone screen glass
and wood defect detection datasets, were used to verify the inspection ability of DAGAN. In addition,
training with a limited amount of data was proposed to verify its detection ability. The results
demonstrated that the areas under the curve (AUCs) of DAGAN were better than previous generative
adversarial network-based anomaly detection models in 13 out of 17 categories in these datasets,
especially in categories with high variability or noise. The maximum AUC improvement was 0.250
(toothbrush). Moreover, the proposed method exhibited better detection ability than the U-Net
auto-encoder, which indicates the function of discriminator in this application. Furthermore, the
proposed method had a high level of AUCs when using only a small amount of training data.
DAGAN can significantly reduce the time and cost of collecting and labeling data when it is applied
to industrial detection.

Keywords: automated optical inspection (AOI); anomaly detection (AD); defect detection; generative
adversarial network (GAN); dual auto-encoder generative adversarial network (DAGAN)

1. Introduction

To solve the problem of manual inspection, automated optical inspection (AOI) that uses image
processing algorithms for industrial inspection has been developed [1–3]. Furthermore, the automatic
detection system has been applied in computer diagnosis tasks, such as monitoring respiration
symptoms in body area networks [4]. However, AOI is limited as it can only perform inspection
tasks with a simple background and single defect type. Recently, researchers have started to apply
convolutional neural networks (CNN) to image recognition, and successively proposed classic CNN
architectures such as VGG [5], Inception [6–8], ResNet [9], and DenseNet [10]. CNNs have a
greater classification ability compared with traditional image processing algorithms. A growing

Sensors 2020, 20, 3336; doi:10.3390/s20123336 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4197-4616
http://www.mdpi.com/1424-8220/20/12/3336?type=check_update&version=1
http://dx.doi.org/10.3390/s20123336
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 3336 2 of 11

number of studies have begun to use CNNs for defect detection tasks, such as for inspecting cement
surfaces [11], industrial products [12], catenary split pins in high-speed railways [13], and cracks due
to its outstanding performance [14]. Accordingly, the CNN has been introduced into the industry to
improve the capabilities of AOI. However, the serious problem of imbalanced samples arises when
it is applied, where there are more normal samples than anomaly samples. Although a variety of
data augmentation methods have been proposed to address this issue [15–17], CNNs are still limited
in industrial inspection situations. Consequently, anomaly detection has been developed to account
for this issue. One of the promising anomaly detection algorithms utilizes the generative adversarial
network (GAN) to produce images with a similar probability distribution of the training data for
anomaly detection. This GAN-based anomaly detection technology has received increased attention,
and many networks, such as AnoGAN [18], GANomaly [19], and Skip-GANomaly [20], have been
proposed sequentially. The pipelines of these three networks are shown in Figure 1. Furthermore, the
GAN-based architecture has been applied to detection for time series data [21,22]and facial expression
synthesis [23] and showed impressive ability.

Figure 1. Pipelines of GAN-based anomaly detection networks: (a) AnoGAN, (b) GANomaly, and
(c) Skip-GANomaly.

In recent years, researchers have improved the image reconstruction ability of GAN [24–26] using
CNN and batch normalization [24], Wasserstein loss [25], and dual auto-encoder architecture [26].
This study proposed a GAN-based anomaly detection neural network with dual auto-encoders
(DAGAN) to enhance GAN-based anomaly detection in the industry. Furthermore, a series of studies
on DAGAN’s industrial detection capabilities were conducted:

1. Training and verification of DAGAN using the public industrial inspection dataset, MVTec AD,
and comparing it with previous GAN-based anomaly detection networks.

2. Verification of DAGAN’s detection ability in an actual production line with two datasets (surface
glass of mobile phone and wood defect detection datasets).

3. Verification of DAGAN’s inspection capability with less training data.

2. Related Works

2.1. Generative Adversarial Network (GAN)

GAN [27] is an unsupervised learning neural network that learns to generate images with a
probability distribution similar to that of the training data. The network uses the game theory to design
the loss function of the neural network, where the generator and discriminator compete, for training.

2.2. Boundary Equilibrium Generative Adversarial Network (BEGAN)

BEGAN [26] is a GAN model released by Google. By designing both the generator and
discriminator as an auto-encoder, BEGAN ensures that the training is more stable and easier to
converge to the expected balance point. Its image reconstruction ability is better than that of GAN,
and it does not have to consider model collapse and training imbalance.
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2.3. AnoGAN

AnoGAN [18] is the first attempt to use GAN for anomaly detection. Its main objective is to use
normal samples to train GAN, which will generate a fake image with a probability distribution similar
to that of the normal sample. By defining the threshold of residual score between the image to be
tested and fake image, the network can recognize anomaly samples. However, it requires a significant
amount of computing resources.

2.4. GANomaly

Samet Akcay et al. [19] developed GANomaly. Unlike AnoGAN, GANomaly does not need to
minimize the residual score between the detection image and generated fake image through iteration,
but directly creates the fake image after the image is imported by the encode–decode generator, which
greatly reduces the computing resources and improves the anomaly detection ability of GANomaly.
However, the image reconstruction ability of GANomaly is still not stable in all tasks.

2.5. Skip-GANomaly

Samet Akcay et al. [20] proposed an improved model of GANomaly, Skip-GANomaly. Inspired
by U-Net [28], the architecture of skip-connection was added to Skip-GANomaly, which exhibits an
outstanding ability to reconstruct images. The performance of Skip-GANomaly is more stable than
that of AnoGAN and GANomaly. However, Skip-GANomaly does not perform well in all dataset
categories, which might be caused by model collapse during the training process.

The advantages and limitations of AnoGAN, GANomaly, and Skip-GANomaly are presented
in Table 1. Inspired by Skip-GANomaly, the proposed method, DAGAN, has been designed with a
highly stable and excellent network architecture of GAN-based anomaly detection to overcome the
limitation of the previous works.

Table 1. Advantages and limitations of AnoGAN, GANomaly, and Skip-GANomaly.

AnoGAN GANomaly Skip-GANomaly

Advantages
Training without anomaly
data.

Significant improvement in
detection time.

Better ability of image
reconstruction.

Limitations Excessive time to detection. Cannot reconstruct complex
images.

Model collapse during
training.

3. Proposed Method

3.1. Pipeline

The pipeline of DAGAN, as shown in Figure 2, comprises a generator and discriminator. Inspired
by Skip-GANomaly [20] and U-Net [28], generator G (.) is designed as an auto-encoder with
skip-connection architecture. It can generate a fake image, x’, with almost the same probability
distribution as that of the input image, x. The skip-connection architecture provides DAGAN with
an excellent reconstruction ability. Conversely, DAGAN’s discriminator D (.) is inspired by BEGAN.
This discriminator is used to receive the fake image, x’. D (.) can identify the difference between the
image, x, and fake image, x’. The dual auto-encoder architecture ensures that DAGAN training is
more stable and easier to converge to the best balance point. In the training process, only the normal
samples are input, which provides the generator with better reconstruction ability for a normal sample
than for an anomaly sample. Hence, one can identify normal and anomaly samples using a proper
residual score, which is defined to represent the residual between image x to be tested and fake image
x’. The proposed method maintains the advantages of Skip-GANomaly and BEGAN in architecture
design and has strong image reconstruction ability and training stability.
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Figure 2. Pipeline of the proposed method (DAGAN).

3.2. Training Objective

To achieve the goal of anomaly detection, this study has referenced and improved the loss
functions of Skip-GANormaly and BEGAN. The loss functions are presented as follows:

1. Adversarial loss: To provide the generator with the best image reconstruction ability, the
adversarial loss function is referred. This loss function, as shown in Equation (1), will reduce
the difference between input image x and generated fake image G(x) as much as possible
when training generator G(.), whereas discriminator D(.) will distinguish the original input
image, x, and fake image, x, generated by generator G(.) as much as possible. The goal is to
minimize the adverse loss of generator G(.) and maximize the adverse loss of discriminator D(.).
The adversarial loss can be expressed as:

Ladv = Ex∼px [||D(x)− D(G(x))||2] (1)

2. Contextual loss of generator: To provide generator G(.) with better image reconstruction ability,
the proposed method uses a contextualized loss function to represent the difference between x
and G(x) pixels. It is defined as the L2 distance between the input graph, x, and generated fake
image, G(x). This ensures that the fake image is consistent with the input image as much as
possible. The equation of contextual loss of generator is defined as:

LGcon = Ex∼px [||x− G(x)||2] (2)

3. Contextual loss of discriminator: To converge to the best balance point shortly during training,
a contextual loss of discriminator is set. This loss is used to represent the L2 distance between
image x and image D(x) formed by the discriminator. This ensures that the original image and
image generated by the discriminator is consistent with the input image as much as possible.
A contextual loss of discriminator is defined as:

LDcon = Ex∼px [||x− D(x)||2] (3)

In the training process, DAGAN can be trained by the weighted summation of the above three
loss functions. The definition of the weighted summation loss function is as follows:

L = λadvLadv + λGconLGcon + λDconLDcon (4)

where λadv„ λGcon and λDcon are the weights of three loss functions.
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3.3. Detection Process

To perform the task of anomaly detection, it is necessary to design the detection process, as shown
in Figure 3. First, image x, which is to be tested, is input into generator G(.). After the generator
generates the fake image, G(x), the residual score, R(x, G(x)), between x and G(x) is calculated
through the residual score calculator, which is defined as

R(x, G(x)) = ||x− G(x)||2 (5)

The residual score, R(x, G(x)), of the normal sample will be lower because only normal samples
are trained. Through the calculation of the residual score, the residual score, R(x, G(x)), of the entire
dataset is linearized to the range of 0 ∼ 1 to facilitate the subsequent setting of thresholds and analysis.
By adjusting different thresholds θ, when the residual score of the test image is greater than or equal to
the test threshold, i.e., R(x, G(x)) ≥ θ, then the product to be tested is an anomaly product.

Figure 3. Detection process of the proposed method.

4. Experimental Setup

4.1. Datasets

To ensure that the proposed method has good detection ability in industrial inspection,
three datasets were used to train and verify DAGAN. The datasets are described below:

4.1.1. MVTec AD

The MVTec AD dataset [29] was collected by the MVTec software GmbH team. It contains
15 common industrial inspection categories: five of them are texture categories and ten are object
categories. The data are shown in Figure 4. This dataset is commonly used for validation of industrial
detection deep learning models [30–32]. In this dataset, there are 3629 training images and 1725
verification images, and the resolution of the image is between 700 × 700 and 1024 × 1024.

Figure 4. MVTec AD dataset for industrial inspection.
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4.1.2. Production Line Mobile Phone Screen Glass Dataset

In this study, a line scan camera was used to take the images of mobile phone screen glass pieces,
and the images were divided into normal and anomaly samples. The normal and anomaly images in
the dataset are shown in Figure 5.

Figure 5. Production line mobile phone screen glass dataset.

Notably, in the industrial inspection, there was dust adsorption on the mobile phone screen glass.
However, the dust can be removed only by wiping, and thus, it poses a challenge in the mobile phone
screen glass detection. In this dataset, 200 pieces of mobile phone cover glass were scanned using the
camera. There were 329 training and 54 validation images. The image resolution was 128 × 128.

4.1.3. Production Line Wood Surface Dataset

The wood surface dataset contained images of normal and anomaly wood products that were
captured by a line scan camera. This dataset comprised six labels, such as normal products, chalk, holes,
black, and knots. The sample images of each category are shown in Figure 6. This dataset contained
3075 training data of normal samples and 740 validation data of normal samples and anomaly images.
The resolution of the image was 256 × 256.

Figure 6. Production line wood surface dataset.

4.2. Training Detail

To ensure that the training is fast and effective, Adam was used as an optimizer, and the learning
rate was set to 0.001. The loss function has been defined in Equation (4). The weights of the loss
function were set to λadv = 1, λGcon = 40, λDcon = 1, and the number of training steps was set to
20,000. Furthermore, the detection ability of a U-Net auto-encoder was applied to test the necessity of
the discriminator. In this study, the model with the best detection ability in the training process was
used to verify the results. The experimental hardware used in this work was an Intel i7-9700k 3.6 GHz
CPU (INTEL MICROELECTRONICS ASIA LTD., TAIWAN, Taipei, Taiwan) and anlNvidia RTX 2080ti
11 Gb GPU (GIGABYTE Technology, New Taipei, Taiwan), and keras was used as the deep learning
framework for training and verification.
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4.3. Evaluation

The area under the curve (AUC) of the receiver operating characteristics (ROC) was used to
evaluate the performance of detection in this study. The AUC is an effective method to evaluate the
detection ability of a binary detection model, which is also widely used as a model evaluation method
of deep learning.

5. Experiment Results

5.1. MVTec AD Dataset

As summarized in Table 2 and Figure 7, the proposed method had the best performance in 9 of the
15 categories of MVTec AD. In addition, in the other 6 categories, while its AUC was not the highest,
it was almost the same as the highest value obtained. Notably, the detection ability of the proposed
method in the four categories of carpet, hazelnut, tile, and toothbrush was significantly higher than
that of AnoGAN, GANomaly, and Skip-GANomaly.

Table 2. AUCs of each category in MVTec AD dataset using AnoGAN, GANomaly, Skip-GANomaly,
proposed method (DAGAN), and U-Net auto-encoder.

Category AnoGAN GANomaly Skip-GANomaly DAGAN U-Net

Bottle 0.800 0.794 0.937 0.983 0.863
Cable 0.477 0.711 0.674 0.665 0.636

Capsule 0.442 0.721 0.718 0.687 0.673
Carpet 0.337 0.821 0.795 0.903 0.774
Grid 0.871 0.743 0.657 0.867 0.857

Hazelnut 0.259 0.874 0.906 1.00 0.996
Leather 0.451 0.808 0.908 0.944 0.870

Metal Nut 0.284 0.694 0.79 0.815 0.676
Pill 0.711 0.671 0.758 0.768 0.781

Screw 0.10 1.00 1.00 1.00 1.00
Tile 0.401 0.72 0.85 0.961 0.964

Toothbrush 0.439 0.700 0.689 0.950 0.811
Transistor 0.692 0.808 0.814 0.794 0.674

Wood 0.567 0.920 0.919 0.979 0.958
Zipper 0.715 0.744 0.663 0.781 0.750

These four detection tasks were similar in that they have a relatively complex variation
information. The backgrounds of carpet and tile had an irregular texture, hazelnut was the only
category with inconsistent sample orientation in MVTec AD, and there were multiple colors of bristles
in the toothbrush. When training these more complex tasks, AnoGAN and GANomaly had difficulty
in reconstructing the images. Although Skip-GANomaly had the architecture of skip connection, the
complexity of the image might have increased the possibility of mode collapse during its training.
However, because the proposed method had a strong image reconstruction ability and was easy to
converge to the best balance point in the training process, its advantages were remarkable in the
categories with high complexity. Additionally, the AUCs of DAGAN were significantly higher than
those of the U-Net were in the four categories, i.e., carpet, metal nut, toothbrush, and transistor. This is
because without the discriminator, the only goal of the U-Net auto-encoder is to reconstruct the image
perfectly. Consequently, it reconstructed the defect in the image, which decreased its detection ability in
these categories. Therefore, the discriminator is necessary in this application. Moreover, Figure 8 shows
the heat maps generated by the proposed method after detecting the MVTec AD dataset. Notably, the
proposed method can classify the defects, and obtain the location, area, and contour of some defects
from the generated heat maps, which is crucial to industrial inspection.
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Figure 7. AUC after testing the proposed method (DAGAN) and three other GAN-based anomaly
detection models with the MVTec AD dataset.

Figure 8. Heat maps of the MVTec AD dataset generated by the proposed method (DAGAN).

5.2. Production Line Mobile Phone Screen Glass and Wood Surface Dataset

Table 3 presents the AUCs of the glass and wood surface defects detected by the proposed method,
U-Net auto-encoder, and the other three GAN-based anomaly detection models. As mentioned in
Section 5.1, the proposed method had a better detection ability than the other three when the detection
image had a more complex variation. Owing to the noise of dust in the good products of the mobile
phone screen glass and the variety of wood background textures in the actual production line, both of
these datasets require a more solid reconstruction ability to avoid model collapse in the training process.
Thus, the AUC was significantly higher when using the proposed method for training and verification.
Further, the AUCs of DAGAN were better than those of the U-Net auto-encoder. This indicates that
the removal of the discriminator will cause a decline in detection ability, as previously mentioned.

Table 3. AUCs of glass and wood datasets generated using AnoGAN, GANomaly, Skip-GANomaly,
the proposed method (DAGAN), and U-Net auto-encoder.

Category AnoGAN GANomaly Skip-GANomaly DAGAN U-Net

Glass 0.543 0.600 0.618 0.853 0.828
Wood 0.716 0.915 0.797 0.925 0.886

Figure 9 shows the heat maps generated by the proposed method after detecting the mobile phone
screen glass and wood surface datasets on the production line. In the same way, the proposed method
can also show the residual value of each pixel through the heat maps of these two datasets.



Sensors 2020, 20, 3336 9 of 11

Figure 9. Heat maps of the glass and wood datasets generated by the proposed method (DAGAN).

5.3. Training with Few Data

In this study, four categories, i.e., bottle, tile, actual production line wood surface, and actual
production line glass, which represented the detection of object samples, detection of texture samples,
and complex detection items on the production line, respectively, were selected as the test categories
for training with few data. A total of 2n(0 ≥ n ≥ 7) images were used for training and to examine
the influence of reducing the number of training samples in the proposed method. The AUCs under
different n are presented in Table 4 and Figure 10 In the four learning categories, a reduction in the
number of training samples has little effect on AUCs, which indicates that the proposed method still
has a high reducibility to unfamiliar normal product data. It can significantly reduce the time and cost
of collecting and labeling data when it is applied to industrial detection.

Table 4. AUCs of training the proposed method (DAGAN) with few data (2n, 0 ≥ n ≥ 7).

n Bottle Tile Glass Wood

0 0.790 0.958 0.882 0.906
1 0.886 0.964 0.883 0.902
2 0.882 0.966 0.863 0.893
3 0.933 0.984 0.865 0.921
4 0.731 0.984 0.892 0.919
5 0.891 0.981 0.856 0.903
6 0.736 0.943 0.881 0.915
7 0.760 0.961 0.846 0.902

Figure 10. AUCs of training the proposed method (DAGAN) with few data (2n, 0 ≥ n ≥ 7).

6. Conclusions

In this study, a GAN-based anomaly detection model, DAGAN, was proposed and discussed.
By combining the advantages of Skip-GANomaly and BEGAN, the model showed a great
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reconstruction ability and stability in the training process. Three datasets, MVTec AD, wood surface
defects, and glass surface defects of mobile phones, were employed to train and verify the proposed
method and for comparison with the previous GAN-based anomaly detection models. The AUCs of
the proposed method were significantly higher than those of the other three GAN-based anomaly
detection models were in the categories with high variability or noise. Furthermore, the proposed
method exhibited better detection ability than the U-Net auto-encoder. Additionally, this study
examined the influence of detection capability with different quantities of training data. In this study,
four categories were used, and 2n(0 ≥ n ≥ 7) images were utilized during the training process.
The result demonstrated that the proposed method could maintain a high level of AUC even when a
small quantity of training data was entered, which indicated that the proposed method has a good
ability to reconstruct unfamiliar normal product data.
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