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Abstract: In recent years, the application and wide adoption of Internet of Things (IoT)-based
technologies have increased the proliferation of monitoring systems, which has consequently
exponentially increased the amounts of heterogeneous data generated. Processing and analysing
the massive amount of data produced is cumbersome and gradually moving from classical
‘batch’ processing—extract, transform, load (ETL) technique to real-time processing. For instance,
in environmental monitoring and management domain, time-series data and historical dataset are
crucial for prediction models. However, the environmental monitoring domain still utilises legacy
systems, which complicates the real-time analysis of the essential data, integration with big data
platforms and reliance on batch processing. Herein, as a solution, a distributed stream processing
middleware framework for real-time analysis of heterogeneous environmental monitoring and
management data is presented and tested on a cluster using open source technologies in a big data
environment. The system ingests datasets from legacy systems and sensor data from heterogeneous
automated weather systems irrespective of the data types to Apache Kafka topics using Kafka Connect
APIs for processing by the Kafka streaming processing engine. The stream processing engine executes
the predictive numerical models and algorithms represented in event processing (EP) languages
for real-time analysis of the data streams. To prove the feasibility of the proposed framework,
we implemented the system using a case study scenario of drought prediction and forecasting based
on the Effective Drought Index (EDI) model. Firstly, we transform the predictive model into a form
that could be executed by the streaming engine for real-time computing. Secondly, the model is
applied to the ingested data streams and datasets to predict drought through persistent querying of
the infinite streams to detect anomalies. As a conclusion of this study, a performance evaluation of
the distributed stream processing middleware infrastructure is calculated to determine the real-time
effectiveness of the framework.
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1. Introduction

The emergence of the Internet of Things (IoT) has enabled the adoption and development of
several real-time monitoring systems for diverse spheres of life such as energy management, health,
smart environment, manufacturing, and security. As a result, the global IoT market is expected to hit
over $10 trillion in 2025 [1]. For instance, in the environmental management and monitoring domain,
ubiquitous sensors, actuators, instruments now provide real-time data acquisition, data-logging with
telemetry capabilities [2]. These devices keep generating an avalanche of unbounded data streams
related to the current status of the deployed environment. The enormous amount of data generated
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represents big data, which has the potential to provide more meaningful insight towards the timely
understanding of complex environmental phenomena if properly analysed in real-time [3–7].

However, despite these potential benefits, building a real-time data analytics system is still
challenging due to the variety of data, higher speed of data generation, volume of data to be processed,
and the lack of a reliable, scalable and interactive platform [8–10]. In addition, processing and analysing
of data for vital environmental information in real-time emergency cases are rarely done due to low
adoption of state-of-the-art technologies [11]. Then, the application of big data technologies such
as stream processing in the field of environmental monitoring would, therefore, be beneficial for
predicting complex environmental phenomena for an effective decision-making process [12]. It allows
scientists and researchers to integrate and analyse heterogeneous data from multiple non-interoperable
sources in a stringent way [2–4,6,13]. Stream processing of data streams ensures enhanced analytic
functionality, which would provide the necessary meaningful insight from IoT data and increases the
productivity of processes for real-time data utilisation [3,6,12].

Hence, for multiple sensor nodes and large clusters, Apache Storm [14], Apache Flink [15],
Apache Kafka [16], Apache Spark [17] are some modern stream processing architecture widely used for
real-time data analytics. These technologies are mostly implemented in a cloud-based environment
such as AWS EC2 [18], Microsoft Azure [19] or Google Cloud [20], for seamless integration with other
IoT systems and platforms. However, its application in the environmental monitoring domain is
limited due to the continued use of legacy devices within the infrastructure ecosystem, preventing
integration and scalability. Therefore, the real-time processing of heterogeneous datasets using the
big data platforms is not currently ideal due to the heterogeneity of data and higher communication
latency caused by incompatible systems [10]. To use stream processing techniques effectively for
real-time analysis of environmental data, a distributed framework is required to foster integration
between heterogeneous data types and ensure system interoperability.

In this paper, as a solution, the authors introduce a stream processing middleware framework,
called ESTemd, suitable for real-time event analysis of environmental management and monitoring
data from heterogeneous systems using big data techniques. The use of established big data techniques
would provide real-time analysis of the data, foster data integration, low-latency processing with
high throughput [3]. We designed the ESTemd framework on top of publish/subscribe service strata.
Hence, the presented framework solution is based on open-source Apache Kafka—a messaging system
with robust data integration libraries (Kafka Connect) and stream processing API (Kafka Streams)
to meet the need of real-time data/message processing in Confluent Platform [21]. Multiple data
generated by heterogeneous producers’ nodes were ingested using Apache Kafka Connect APIs;
transformed, and processed by the Kafka stream processing engine based on a chosen numerical model.
Apache Kafka aims to unify offline and online processing by providing a mechanism for the integration
of heterogeneous dataset as well as the ability to analyse and process streaming data over a cluster
of machines [22].

Specifically, this paper makes the following contributions:

• It presents a distributed stream processing middleware framework for real-time analysis of
heterogeneous data sources based on open source big data analysis techniques.

• Each component of the stream processing framework was presented in a layered level to emphasise
the unified data pipeline.

• The presented framework is implemented in an environmental management and monitoring
domain to demonstrate the effectiveness and adaptability of the proposed framework.

The rest of this paper is organised as follows: Section 2 motivates our work with examples
relating to the current bottleneck in the domain requiring real-time processing. The background
information on the research and related work were presented in Section 3, whereas Section 4 presents
the distributed stream processing framework design. Then, we describe the case study experiment
conducted to confirm the feasibility of the proposed framework in Section 4. This is followed by results
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and discussion of the performance of the proposed system in Section 6. Lastly, Section 7 concludes this
article with some remarks and discussion of future work.

2. Motivation Goal and Scenario

The whole idea of a distributed framework is to facilitate interoperability between several
heterogeneous components [23] and to hide the complexities of the underlying platform using a unified
data pipeline to eliminate data heterogeneity. The framework layers can be categorised as a middleware
which is a software layer composed of a set of sub-layers interposed between the application layer and
different types of physical layers [23–25]. This ensures the ease of integrating heterogeneous devices
while supporting interoperability within the diverse applications and services [26,27], which will be
beneficial in any domain that deals with heterogeneous data sources.

Our goal was to develop a distributed stream processing framework for the analysis of
heterogeneous data in the environmental monitoring domain using big data techniques. This approach
will eliminate over-reliance on batch processing, slow processing period and data heterogeneity.
To illustrate the current challenges, consider the following two examples. These two examples illustrate
how heterogeneity of data and lack of an integrated system for real-time data access is affecting the
application of big data techniques for real-time data analysis.

Example 1 (TAHMO). The Trans-African Hydro-Meteorological Observatory (TAHMO) (https:// tahmo.org/)
is a meteorological service with a vast network of weather stations on the African continent. This service
provides current and historical environmental data from a dense network of hydro-meteorological weather
monitoring stations located in several regions on the continent as a solution to bridge the huge data gaps in
Africa. The weather stations network provides accurate localised weather dataset crucial for environmental
monitoring and prediction.

A researcher could request access and download TAHMO raw data containing environmental data such
as temperature, precipitation, relative humidity, wind direction, wind speed through the TAHMO web data
repository (https://portal.tahmo.org). The near-real-time data are saved using relational schema and provided in
different file format for use in numerical computation, modeling or analysis. TAHMO, does not offer a readily
open system that could easily integrate with current big data platforms. Also, the heterogeneity of the data makes
the data incompatible with big data platforms.

Example 2 (University of KwaZulu-Natal—UKZN Weather Station). Another key challenge for climate
monitoring in Africa is the availability of historical data in manual written form on paper and not catalogued
electronically. Some of the legacy weather stations are in remote regions where data are manually recorded by
meteorological officers and essential for any environmental monitoring modelling process. To mitigate this,
UKZN, under the uMngeni Resilience project, has installed an automated weather station with the capability to
access sensor readings online in real-time (http://agromet.ukzn.ac.za:5355/index.html). However, this system
and dataset are incompatible with current big data platforms, and any form of big data analysis approach is
clearly impracticable.

From the examples above, it is seen that the heterogeneity of the data prevents the application of
big data techniques while the heterogeneity of systems prevents seamless integration with current big
data technologies, such as Apache Flink [15], Apache Storm [14] and Apache Kafka [16]. A framework
with a unified data pipeline—serving as inputs for the big data platform will ensure streamlined
data processing, synchronization, real-time analysis with high throughput is necessary. The proposed
framework will ensure execution of a stream processing technique based on appropriate numerical
model logic or algorithm irrespective of the data source and data type. The framework will also enable
data integration and interoperability of distributed applications that run on different platforms for
performance improvement.

https://tahmo.org/
https://portal.tahmo.org
http://agromet.ukzn.ac.za:5355/index.html


Sensors 2020, 20, 3166 4 of 25

3. Related Work

3.1. Background

In this section, we introduce the background information related to the proposed framework,
including a description of the technological components, services, top-level interface with the big
data techniques and platforms to be implemented. The distributed framework acts like a bond
joining heterogeneous systems over heterogeneous interfaces for the application of stream analysis
on the data using big data platforms. Moreover, through the use of the framework, data are sourced
from a collection of apparatus forming the Data Acquisition Functional Group (FG), transformed
and channelled via a unified data pipeline for utilisation in the big data infrastructure. The results of
the analysis are published through the Data Publishing FG.

Figure 1 shows an overview of the framework as a distributed three-tier system architecture that
stretches across multiple systems or applications. The proposed distributed framework consists
of the following sub-systems: Data Acquisition FG, Middleware, and the Data Publishing FG.
The data acquisition components are responsible for the acquisition of data from heterogeneous
sources using APIs. These sources have different specifications and characteristics which cannot be
generalised. The middleware ingests the data using compatible APIs before the data are processed
by the middleware’s streaming engines. On the other hand, the output results obtained by way of
real-time analysis of the data streams are published by the data publishing FG components through
designated APIs. The authors believe this approach simplifies the integration of heterogeneous data
types from multiple sources for analysis by the big data platform.

Figure 1. Overview of the distributed system.

In the middleware component is a stream processing engine that executes computational models
and logics written in Event Processing Language (EPL) for real-time processing of the data streams.
The processing engine provides high-level programming models such as EPL with built-in functions for
event filtering, correlation, and abstraction (e.g., Flink, Storm, Kafka, Samza). The EPL is used to define
patterns, prediction model logics—specifying the parameter threshold, formula—including temporal
relations, aggregations, indices models and event correlations. The event patterns used in the inference
mechanism are classified by [28] as (i) selection pattern—used to detect a simple event; (ii) windows
data—which is used to assign windows of stream of data for scope restriction; (iii) temporal sequencing
of events—used to specify temporal ordering of events; (iv) pattern combinations—for combining
several patterns using logical operators (AND, OR, NOR etc.) with temporal connectors (while
or until).

3.1.1. Stream Processing Engines and Platforms

Stream processing as a subset of event processing is the type of computing which captures the
occurrence of real-world incidents in the form of time-series observation and processes the data in
real-time. The processing involves the use of an EP engine that performs computational operations
such as averaging, pattern matching, event prediction (forecasting), event filtering, correlation,
and abstraction on the input data streams or dataset. The information from the mined data is
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consumed by custom application or information systems. Over the years’ various stream computing
platforms have been developed [29], some are developed following a publish/subscribe pattern
with an integrated EP engine and message broker. In contrast, others are standalone EP engine
that requires an external resource (e.g., message broker). Apache Storm [14], Apache Flink [15],
Apache Kafka [16], Apache Spark [17], IBM InfoSphere Streams [30], DataTorrent Real-time Streaming
(RTS), Apache Samza [31], SQLStream s-Server, Apache Storm [14], etc. are some notable examples for
event processing engines and platforms. A summary of features of some existing stream processing
engines, platforms and message brokers is shown in Table 1.

Table 1. Features of existing stream processing engines, platforms and message brokers.

Features Storm Kafka Samza Flink Spark RabbitMQ

Scalability Yes Yes Yes Yes Yes

High availability High High High High High High

Performance High Very high High High High High

Replication No Yes Yes No

Latency Low Low Low High

Cluster Manager Zookeeper Zookeeper YARN YARN, Mesos YARN, Mesos

SQL Querying No KSQL SamzaSQL No SparkSQL No

EP Engine Yes Yes Yes Yes

Message Broker Yes Yes No No No Yes

Throughput High Very high Very high High High High

Table 1 highlights the salient features of different stream processing engines, platforms
and message brokers. This table serves as a guide outlining the features of Apache Kafka as a suitable
processing architecture for this case study. In the feature summary table, each specific details are
highlighted, if the detail of a particular feature is not known we keep the cell in empty status. From the
available open-source architectures, Kafka provides critical features in terms of system scalability,
high availability, high performance (up to 100,000 message/s on a single server) and persistent
querying of the input streams in real-time. These features are essential in processing heterogeneous
data streams in the environmental monitoring and management domain. Features such as EP engine,
integrated message broker, SQL-like querying and the ability for centralised cluster management are
also supported by Kafka. A detailed benchmarking and comparison is available in [32–35].

3.1.2. Apache Kafka

Apache Kafka is an open-source distributed event streaming processing engine by
Apache [16]—available in the form of IaaS (Infrastructure-as-a-Service) and used to provide the
functionality of analysing data streams using filters, aggregations, joins on a set of window data based
on different predefined patterns for predictive inference generation. It is a streaming platform with
the capabilities to publish and subscribe to data streams, store streams of data in a fault-tolerant
way and process the data streams in real-time [16]. The streaming processing engine processes
sensor data streams or datasets in real-time to determine event patterns from incoming sensors’
observation/readings and correlate the data with a predefined/preset value threshold for predictive
analysis. The platform is similar to an enterprise messaging system based on the ability to process
data streams from the heterogeneous producers using APIs in a fault-tolerant way as they occur in a
producer-publish and consumer-subscribe fashion (Figure 2).
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Figure 2. A simple Apache Kafka ecosystem [16].

Apache Kafka processes and analyses streaming data through Kafka-centred data pipelines that
reliably get data between heterogeneous systems or applications with core Kafka Connect APIs.
Kafka also utilises KSQL—a streaming SQL engine for Kafka to perform real-time persistent querying
without the need to commit the data stream to the database like conventional extract, transform,
load (ETL) systems [36]. Data streams which are never-ending potential flow of data records and
the input streams are analysed as generated through the stream processing engine to produce
the output streams (Figure 3). Several use cases in the literature have shown the significance of
real-time predictive analysis from a stream of sensors data or compatible data sets for smart cities,
healthcare, energy management, to business intelligence [37,38]. This provides a huge benefit in
IoT-enabled environmental management and monitoring systems for real-time monitoring of complex
environmental phenomenon, which is crucial for predictive analysis.

Figure 3. Infinite flow of streams [16].

Apache Kafka can be run as a cluster on a local server or implemented in a cloud environment,
with every producer connected to the cluster using the Kafka Connector APIs, processed by the stream
processors. The cluster stores a stream of data records in categories called topics. Each record consists
of a key, a value, and a timestamp. The Kafka stream processing engine consumes the input stream from
the available topics, producing an output stream to one or more output topics, effectively transforming
the input streams to output streams.

The application use case of Apache Kafka in the context of environmental monitoring
and management is to serve as a centralised messaging system that facilitates exchanges of messages
between heterogeneous devices and systems. The stream processing of the heterogeneous data is
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performed using the Kafka streams API in real-time. This will facilitate the decoupling of data and system
dependencies to ensure seamless integration and utilisation of existing legacy systems with newer
systems for integration with big data platforms.

3.1.3. Apache Kafka Features

Topics

In a Kafka cluster, messages are categorised to topics based on similar attributes. Each topic is similar
to tables in a database such as PostgreSQL—however, without the constraints. In Kafka, several topics can
be created to categorise the similarity, with each topic uniquely identified by its name. Topics are split
into partitions in an ordered list with messages/data in each partition of the topic identified using an
incremental identifier called an offset [39]. The messages or event records generated from the Producer
are written to the appropriate topic in chronological order or sequence of arrival, where consumers make
use of the messages by reading the messages from the topics.

Brokers

A Kafka cluster is composed of multiple brokers with each brokers acting as a server in the cluster.
The brokers contain the topic partitions and are uniquely identified with an integer ID. Each broker
contains topic partitions with topics’ data in a distributed form. Partitions are one way in which Kafka
enables horizontal scalability for replication of messages across cluster [40]. Replication is a critical
criterion in any distributed systems, hence, Kafka ensures a replicated copy of all topics is available
with another broker within the cluster depending on the topic replication factor.

Producers

The producers in Kafka are the data/message sources that write to topics, which are subsequently
written to partitions and saved on the brokers in the cluster. They are the event producers and vary
from sensors, devices, manual or automatic systems.

Consumers

The consumers ingest or consume the messages/data generated by the producers by subscribing
to a particular topic [41]. The consumers are automatically configured and programmed with read
access to connect with the appropriate broker to read the streaming data. In the case of broker failure
in the cluster, consumers automatically fetch the data from the next available broker in the cluster.
Data/messages in the partitions are consumed in the order based on the offsets. Consumers offsets are
like standard bookmarks that enable the consumers to know where to start reading the streaming data
of the topic. In cases where there is more than one partition of a topic, the data/messages are read in
parallel by the consumer and randomly from multiple partitions for the same topic.

KSQL

KSQL is an abstraction of the Kafka Stream API that is similar to the SQL with almost identical
syntax and mode of operations to normal SQL and allows the continuous queries on infinite streams of
data [39]. KSQL allows the stream processing of data streams using SQL-like operators such as WHERE
clause for data filtering and transformation, JOINS for data enrichment, and data manipulation with
scalar functions. KSQL consumes streams of data mostly dataset in AVRO, JSON or CSV stored in
Kafka topics and processes them using SQL-like queries and the output are stored in a Kafka topic.

3.1.4. Confluent

The confluent platform is an enterprise streaming platform based on open-source Apache Kafka
developed to achieve a fully streaming architecture in the IoT domain for different streaming pipelines
of different sensor types and devices [21]. The central platform provides the ability to configure various
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data pipelines for data integration and interoperability. The confluent dashboard accessible through
the localhost provides an integrated platform to monitor the health of the clusters; brokers in the
cluster, system load measurements and performance view with the aggregate statistics at a broker or
topic level.

3.2. Related Research on the Application of Big Data Analytics

Big data analytics has become an integral research area with the need to figure out how to harness
and gain actionable insights from big data [42]. The enormous datasets generated on daily basis
from avalanche of devices and systems have exceeded the capacity of commonly utilised analysis
techniques and devices to catch, process, and correlate information inside an allowable bearable period.
Current methods such as machine learning, data mining have been used to analyse and extract useful
information from enormous digital data generated from a plethora of systems and devices.

Recently, climate change has been fueling the need for more crucial data for predicting and
forecasting the environment. This has led to the application of cutting-edge technology for data
acquisition in conjunction with the use of existing legacy systems datasets. The data generated
from these infrastructures are huge and increases dramatically. Therefore, the application of big
data analytics technologies is essential for building an efficient real-time processing system for the
environmental management and monitoring domain [9]. In the past, ETL techniques with Relational
Database Management Systems (RDBMS) are used due to the homogenised nature of the data
and relatively small volume. Currently, RDBMS cannot be used due to the enormous size of the
data, the complexity and heterogeneity of the data.

Big data analytics has been studied in many systems such as tsunami detection systems and early
warning systems in order to increase the efficiency of processing massive datasets [43]. Most of
these analytics solutions are focused on using batch processing techniques and technologies like the
Hadoop, for the batch processing of large data sets across distributed clusters using the MapReduce
programming model [44]. However, considering the advantages of big data analytics and technologies,
the application rate in the smart environment and environmental monitoring domain is slow due to
underlying fundamental challenges of data and systems heterogeneity [45,46]. While a comprehensive
review of existing application scenarios is beyond the scope of this paper, some notable examples are
discussed and investigated.

In Ref. [47], the Real-time Observatories, Applications, and Data-Management Network
(ROADNet) project was the successor to the Antelope Environmental Monitoring System developed
for large-scale real-time seismic monitoring. The ROADNet project aims to develop an integrated,
seamless environmental information network to process and analyse geophysical, ecological and
physical data in real-time through system interoperability [47,48]. As in our framework, it utilises
third-party open-source software, in this case for visualisation (based on Keyhole Markup Language
(KML)). However, it does not address seamless data integration issues from heterogeneous devices.

Real-time Environment for Analytical Processing (REAP) is a cyber-infrastructure development
project to access, monitor, analyse and present information from field-deployed sensor networks,
for both the oceanic and terrestrial environments and across multiple spatio-temporal scales [49,50].
However, it is a near real-time analytic processing framework for executing scientific models for
data streams from the sensor network and does not integrate data from other sources. Eleftherakis
and others [51] also proposed a distributed sensor network architecture for IoT using middleware
for messages dissemination. The proposed middleware facilitates interacting between things
without further processing. Also, [52] apply ontological concepts and semantic stream processing
technologies to facilitate combination, comparison, and visualization of heterogeneous data from
various sources using C-SPARQL [53] as the stream processor, and reasoning capabilities through
SPARQL extensions [54].

Furthermore, there have been several evaluation studies for resource optimization and
utilisation [35,55–57]. In Ref. [55], the authors address the scheduling of big data services in cloud-based
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environments as a means to minimize the amount of utilised resources. To do so, they design a trust
aware scheduling solution called BigTrustScheduling that consists of three stages: VMs’ trust level
computation, tasks priority level determination, and trust-aware scheduling. They experiment with
a real Hadoop cluster environment using real-world datasets. Their approach is meaningful when
scaling up the real-time processing of big data to increase the performance of big data services
execution. The authors of [56] propose a system to support intent-based multi-tenancy in modern
distributed stream processing systems. The system allows each job to specify critical requirements that
capture latency and throughput needs towards maximizing the system utility. This is possible with the
retention configuration of the messages in the broker. In Ref. [35], the authors investigates the impact
of processing time on the number of stream records of the streaming engine towards improving the
processing efficiency. The experimental result shows a higher duration of time interval causes rapidly
processing speed. The challenge identified from the study has been mitigated by Kafka through the use
of dedicated topics with offsets.

The aforementioned related works focus on the application of event processing techniques,
resource optimization with efficiency, which are relevant in the context of this research. To tackle some
limitations and harness the benefits of the discussed works, we propose in this paper, a distributed
solution that employs stream processing techniques, resource optimization and multi-tenancy
approach for real-time processing of heterogeneous data sources in the environmental monitoring
and management domain.

4. Distributed Stream Processing Framework Design

4.1. High-Level Architecture

The proposed distributed stream processing framework utilised Apache Kafka and the Kafka
streaming processing engine in an enterprise-based Confluent environment. The high-level architecture
of the framework is depicted in Figure 4 and categorised into five layers: (i) data ingestion layer, (ii) data
broker layer, (iii) stream data processing engine and services, (iv) data broker layer, and (v) event hub.
The framework will process real-time data ingested from connected devices for real-time data analytics.
Firstly, heterogeneous devices (producers) which form the data ingestion layer, acquire data from
sensing devices, automated fixed station and manual weather stations. The data stream generated
is captured by the Kafka Connect Source API to respective topics based on the data properties and
attributes [22]. The topics are processed and analysed in real-time by the Kafka streaming processing
engine using appropriate numerical model logic represented in EPL.

Figure 4. The high-level view of ESTemd distributed middleware framework for real-time analysis of
environmental management and monitoring data.

The stream processed outputs (data) are passed to the Event hub layer for storage into
an appropriate storage medium using compatible Kafka Connect Sink API. This layer consists of
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necessary APIs that make the data materialize for elastic search indexes for visual representation
analysis in the form of charts, lines and tables by Kibana. The output data is interpreted by
the policymakers or further consumed by another set of consumers or systems connected to the
middleware. Figure 5 below presents the ESTemd framework as a stack illustrating the data flow.

Figure 5. ESTemd Unified Middleware Framework Stack.

4.2. ESTemd Framework Layers

4.2.1. Data Ingestion Layer

In the ESTemd framework, the data ingestion layer is a component of the Data Acquisition FG and
consists of sensors, weather stations, legacy system, or databases—called Producers (Figure 6). The vast
range of heterogeneous devices produces the time-series data in different data formats. The generated
data include not only streaming data but also data from legacy systems and stored datasets. The data
after ingestion is transformed by the Kafka source connectors API. The Kafka source connectors API is
defined in accordance with the producer’s data format. It buffers the incoming data streams from the
producers and transfers the data to the broker. Furthermore, It helps to achieve better fault tolerance
with load balancing in the eventuality of component failure.

(a) Micro-controllers (b) Weather station

Figure 6. IoT devices and automated weather station.
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4.2.2. Data Broker Layer (Source)

The data broker layer performs the coordinated processing and transformation of the unbounded
data stream coming from various heterogeneous devices and systems in the data ingestion layer with
multiple transport protocol support. The data are received from the Data Ingestion layer using Kafka
Connect Source API, with additional data preprocessing performed. Apache Kafka Connect Source
API acting as a broker will buffer the incoming data streams from the producers and help to achieve
better fault tolerance and load balancing in the eventuality of component failure [22,58] as depicted in
Figure 7 below.

Figure 7. Overview of the Apache Kafka streaming engine [16].

Kafka Connect Source provides the set of API classes based on different messaging protocols to
facilitate stream messages from different producers’ gateways channels to the Kafka cluster. The Kafka
Source Connectors broker buffers the incoming messages, keeping it in a queue and are replicated
across all the brokers in the cluster [22]. The connectors automatically perform data transformations
on the messages to make it easier to process. The source connectors ingest the data streams table or
entire database and pass it on to the appropriate Kafka topics in the broker.

Typically, a Kafka source connector ingests entire databases and streams messages from the
producers’ gateway channels to respective Kafka topics in the cluster. The Kafka Source Single
Message Transform makes real-time light-weight modifications to the raw messages before publishing
to Kafka streaming engine [22,59]. There are several source connectors available on the Kafka
platform, depending on the native language of event producers. For example, Kafka Connect MQTT,
Kafka Connect RabbitMQ, Kafka Connect JDBC, Kafka Connect CDC Microsoft, RabbitMQ, HDFS, HTTP,
MongoDB, Neo4j, Cassandra.

The programming flow of data is such that the data from the first node are fetched from the
sensing devices encoded in a simple JSON format using Kafka Connect API before being transmitted to
other nodes, as illustrated in Figure 8 above. The messages represented in the JSON-LD are transmitted
to the next layer node-red-contrib-Kafka-node [60]. The Apache Kafka broker in the cluster hosts some
topics for aggregating similar data attributes. This layer is highly scalable using a publish-subscribe
event bus which ensures that heterogeneous data streams are captured with minimal loss.

Figure 8. Node-Kafka-broker data pipeline programming flow [60].
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4.2.3. Stream Data Processing Engine and Service Layer

The goal of the stream data processing layer is the stream processing of the transformed stream
data collected by the Kafka broker. The stream of data flowing through several Kafka topics in Kafka
broker is processed using Kafka stream APIs to detect events in the time-series data streams (Figure 7).
This layer further consists of the predictive data analytics model, represented using EPL—in the form
of Kafka CEP operators—used to transform the model into a logical structure that can be implemented
by the Kafka stream API.

Predictive Data Analytics

This is the data and processing analytics components of the stream data processing and service
layer—used to perform several analytics functionalities. The streaming dataset is queried with SQL-like
operators based on the appropriate model to gain predictive insights.

Kafka CEP Operators

A stream processing engine utilises the use the CEP operators to identify meaningful patterns,
relationships and gain predictive insights from streams of an unbounded dataset. Kafka streaming
processing engine primitive operators such as Filter (), Map (), FlatMap (), Aggregation (), Projection (),
Negation () are used for various combinations and permutations of parameters of the streaming
data [44]. These operations are invoked on the Kafka topics in the cluster(s) using KSQL. Once a
pattern(s) is/are identified and extracted, the KSQL will encapsulate it into a composite (derived) event
to be published into an output Kafka topic saved in the cluster or the form of a message to a secondary
index by the event publishers.

4.2.4. Data Broker Layer (Sink)

Kafka Sink Connector streams the data out of Kafka clusters to other secondary indexes such
as Elasticsearch or Cassandra using Kafka Source Single Message Transform to make lightweight
modifications to Kafka messages before writing the output to an external repository. The stream
processed outputs are delivered from the Kafka topics to the secondary indexes for visual representation
and analysis with Kibana [61] or offline batch analysis with Hadoop. In the context of this research,
the output data will be consumed and used by policymakers as a critical output of the middleware.
The relevant examples of Kafka Sink Connectors APIs are Kafka Connect Neo4j, and Kafka Connect
HDFS, Kafka Connect HTTP, Kafka Connect for MQTT-JSON.

4.2.5. Event Hub

The output from the stream processing engine is stored in the respective output topics and can be
further saved to a data sink. The data sink in the event hub acts as a buffer to save the output topic
data from the streaming engine. The output topic data can be saved to secondary indexes such as
MongoDB [62], Cassandra [63], NoSQL databases for an offline longer time series analysis or immediate
visual analysis using AKKA [64], KIBANA [61] or Apache Zeppelin [65] to gain further insights.

5. Use Case

This section presents the implementation of the ESTemd framework for real-time analysis
of environmental management and monitoring data. This use case scenario is based on the
application of the stream processing engine towards real-time prediction or forecasting of drought from
heterogeneous data sources using EDI model. In order to tackle environmental issues, very different
types of models need to be combined, represented in EP language before implementation. The data
sources for this implementation are derived from heterogeneous sources.
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5.1. Experimental Setup

All experiments described in the following sections have been performed using hardware
provided by the Unit for Research and Informatics for Drought in Africa (URIDA), Centre of
Sustainable Smart Cities (CSSC), Central University of Technology, Free State, South Africa. The entire
stream processing cluster and infrastructure could be deployed in some cases as docker containers
and managed by kebenetics in cloud infrastructure such as AWS, Virtual Machine (VM). The cloud
services such as AWS provides computing resources to run instances types with combination of
CPU, memory, and disk options for appropriate performance. Also, bare-metal computer or local
servers could be utilised depending on the requirement and scale of the ecosystem. In this research,
for implementation, a single node cluster was created on a physical machine—Apple Macbook Pro
with Intel Core i7 3.1GHz Quad-Core processor running macOS Mojave; the VM is running Ubuntu
Linux with Intel Core-based processor as a base machine of the distributed middleware module.

The infrastructure is composed of two clusters: (1) a cluster running on a local machine with
a Quad-core Intel CPU and 16GB RAM hosts the ZooKeeper, an instance of Kafka broker, an active
controller and Kafka broker; (2) Kafka client hosting the Kafka streaming engine API and the KSQL for
persistent querying of the streams in real-time, both clusters monitored and managed through the
Confluent streaming platform. The strings of commands below are used for starting an instance of
Confluent streaming platform through the terminal.

Commands for starting the cluster through a Terminal

Open Terminal (Ctrl+Alt+T)
cd user/location/Confluent/confluent-5.2.1/bin/confluent
user/location/Confluent/confluent-5.2.1/bin/confluent Start
Zookeeper, Kafka, Schema-registry, Kafka-rest, Kafka Connect, Ksql-server UP
Control-center UP

The Confluent Platform is started through the Terminal by invoking the bash file to launch an
array of services such as zookeeper, Kafka, schema-registry, Kafka-rest, Kafka connect, KSQL-server
and the control-center services all in a sequence. Figure 9 below depicts starting the Kafka broker
through the Command Line Interface (CLI) on the local server. By executing the configuration files,
the Confluent streaming platform is started. The platform control center interface can be accessed on
the localhost server through a web browser by going to http://localhost:9021/. After the execution
is completed, the four main API—producer API, consumer API, Connector API and Streams API
are used to interact with the Kafka broker through the control center. The platform control center
interface provides an integrated approach to monitor the health of the clusters, brokers, topics, measure
the system load, performance operations and even aggregated statistics at a broker or topic level.
Confluent Platform provides a broker-centric view of the clusters, used to perform end-to-end stream
monitoring, configure the data pipeline using Kafka Connect and query the data streams, also with
the ability to inspect streams, measure latency and throughput. Furthermore, from the experiment,
we study the performance of our solution in terms of latency and execution response time. This is
an essential factor in evaluating the effectiveness of the proposed solution.

http://localhost:9021/
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Figure 9. Starting Confluent Platform in the Terminal.

5.2. Data Sources

To implement the proposed model for this research, two datasets have been used. Sensor data
from a WSN and the dataset from a weather station at a constant stipulated interval are fed into the
system for drought prediction using the EDI model. Each reading entry is in the form of a key-value
pair containing the information and the time when data was collected for the stream processing.

5.3. Predictive Model Logic—Effective Drought Indices (EDI)

EDI has been identified as a good index for determining and monitoring of meteorological
drought and categorizes the severity of a drought event on a scale [66]. The analysis of the streaming
data will be based on the EDI model. The EDI model is represented in the form of a logic using
the EP language. The datasets would be processed and analysed based on the EDI for determining
and profiling droughts in real-time on a daily using the Kafka streaming engine. The EDI formula set,
where precipitation is recorded, is presented below:

EPn =
i

∑
n−1

[
(∑n

m−1 Pm)

n

]
(1)

where, EPn represents the valid accumulations of precipitation of each day, accumulated for n days,
and Pm is the precipitation for m days, m = n. In Equation (1), if m/n = 365, then, EP becomes the
valid accumulation of precipitation for 365 days divided by 365.

DEPn = EPn − MEPn (2)

DEPn in Equation (3) represents a deviation of EPn from the mean of EPn (MEP)—typically 30-year
average of the EP.
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EDIn = DEPn/SD(DEPn) (3)

EDIn in Equation (3) represents the Effective Drought Index, calculated by dividing the DEP
by the standard deviation of DEP-SD (DEPn) for the specified period. In order to detect the onset
of drought based on the EDI prediction model, analysis and manipulation were performed on the
datasets using Kafka operators—Filter (), Map (), FlatMap (), Aggregation (), Sum (), Average () used
to represent the EDI model in KSQL [22]. The data streams in the Kafka topics are queried in real-time
using the EDI model in KSQL. The dataset containing the historical precipitation values will be read
from a file to a Kafka topic. The output of the persistent query is committed to the output Kafka topic in
the form of drought index value belonging to one of the four category of the EDI.

The drought levels are categorised into four classes in EDI (Table 2) [66,67]. After computation
using Equations (1)–(3), the output value of the EDI which ranges from negative to positive determines
the category of the drought, which indicates the intensity of the drought, giving a clear definition
of the onset, end and duration of the drought. For example, a value of −1.05 indicates near-normal
drought. The interpretation and classification of the drought based on the output values of the EDI
calculation are published by the event hub.

Table 2. EDI classification table [66,67].

Drought Classes Criterion

Extreme Drought EDI ≤ 2.0

Severe drought −2.0 ≤ EDI ≤ −1.5

Moderate drought −1.5 ≤ EDI ≤ −1.0

Near normal drought −1.0 ≤ EDI ≤ 1.0

5.4. Methods

To achieve a fully streaming processing architecture for the heterogeneous data using Confluent.
The platform provides the ability to configure, monitor and manage the data pipelines of producers
using a variety of several connectors APIs for different native clients and processes the input streams
in real-time using Confluent KSQL (Figure 10). The time-series environmental monitoring data
from deployed sensors and datasets are ingested by the broker and saved to designated Kafka topics.
Several producers can write messages records to the same topic. In this instance, the messages to be
processed are read from the appropriate Kafka topic and executed based on the numerical computational
model with the output record saved to the output Kafka topic. The output messages are consumed
from the designated output topic by several consumers in the form of custom applications or target
systems. In the same way, multiple consumers forming the consumer group will subscribe to the
output topic with each consumer in the group consuming the output messages from a different subset
of the partitions of the same topic as part of a multi-tenant solution.

Unique topics are created for each type of input data streams in the application. This allows
the grouping of a particular type of sensor data in the same topic, and consumers can retrieve the
right data through the sensor group. After starting Confluent, the streaming platform interface can be
accessed through the localhost server on port 9021 (Figure 11). The dashboard provides an integrated
approach to monitor the health of the clusters, brokers, topics, measure the system load, performance
operations and even aggregated statistics at a broker or topic level. Confluent Platform provides
a broker-centric view of the clusters, used to perform end-to-end stream monitoring, to configure
the data pipeline using Kafka Connect and to query the data streams, also with the ability to inspect
streams, measure latency and throughput.
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Figure 10. The Confluent Enterprise Streaming Framework [16].

Figure 11. The Confluent platform interface.

5.4.1. Configuring Unified Data Pipelines Using Kafka Connect

The Confluent Platform ensures the integration of all services and managing of the data connectors
to connect data emanating from heterogeneous producers in one place. However, data can be pushed
to the Kafka broker or pulled from it through the use of either traditional producer and consumer clients
or using the Connect APIs. The advantage of using client’s APIs in production environment allows
a custom application to be developed to directly push and pull data from the broker. On the other hand,
Connect APIs are used for external datastore and provides features for parallelization, offset storage,
support for different data types and REST APIs management. For this implementation, the integration
of heterogeneous data sources is made possible through Kafka Connectors; it provides meaningful data
abstractions to pull or push data to Kafka brokers [68]. Kafka connectors are forward and backward
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compatible with vast data representation formats such as XML, JSON, AVRO etc. The configuration
of the Kafka connector is through the Kafka Connect management console (Figure 12). There are
two major types of Kafka connectors—the Kafka Source Connector for connecting to the producers
and the Kafka Sink Connector for connecting to the secondary data storage indexes [69]. In the Kafka
Connect management console, the connector class, key converter class, value converter class are
defined for the data formats for the Kafka Source Connector and the Kafka Sink Connector to achieve
common serialization format and ecosystem compatibility. This will specify the Kafka messages and
convert it based on the key-value pairs using key.converter and value.converter configuration settings.
The entire data pipeline in the middleware infrastructure is represented in JSON. Hence, for JSON,
the key.converter will be represented as “key.converter”: “org.apache.kafka.connect.json.JsonConverter”.
If we want Kafka to include the schema we insert “key.converter.schemas.enable=true”. The same will be
applicable for the value.converter. To ensure high availability for an increased number of tasks, two or
more instances are defined and running.

Figure 12. Configuration of Kafka Connect APIs in Confluent platform.

5.4.2. Producers Messages

In this research, five unique topics are created to cater for and categorise the messages—temperature
readings, humidity readings, atmospheric pressure readings, precipitation readings and the soil
moisture readings from the producers. Table 3 below shows the type of readings and the respective
topics created. New topics (Figure 13) were further created to store the output of the processed streams.

Table 3. Categorisation of the Sensors Readings to Kafka Topics.

Type of Readings Kafka Topic

Temperature TemperatureSensors

Humidity HumiditySensors

Precipitation PrecipitationSensors

Atmospheric Pressure AtmosPressureSensors

Soil Moisture SoilMoistureSensors
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The manipulation of the Kafka topics messages using CEP operators based on the EDI model
formula will yield new processed messages/data saved in the output topics. Furthermore, performing
the average operator (Avg ()) on the existing input topics will create five (5) new additional
output topics namely: Avg_Temperature; Avg_Humidity; Avg_AtmosPressure; Avg_SoilMoisture;
Avg_PrecipitationSensors. Additionally, a further six (6) Kafka topics will be created to store the
output of the EDI computations, namely: DEP, Standard deviation of DEP, EP, Mean of Effective
Precipitation (MEP), Sum of Precipitation (Sum_Precipitation) and EDI. Lastly, a new topic that stores
the historical precipitation data from the file—“HistoricalPrecipitation” will be created for calculating
the MEP. Therefore, there are 17 Kafka topics in our broker, all created with the same number of
partitions and replication factors across the cluster for high availability. Figures 13 and 14 show
the creation of the topics in the Confluent platform and KSQL code of how it was created in the
terminal respectively.

Figure 13. Topics created in the Kafka broker through the Confluent platform.

Figure 14. Creating topic in the Kafka broker through the terminal.

5.4.3. Workflows

The data streams generated by the producers are passed on to the Kafka topics in the Kafka broker
for stream processing. The Kafka cluster is composed of two (2) nodes having similar settings running
Intel-based processors. The Kafka broker runs operators and user-defined functions inside the JVM.
The EDI computational process performed on the data streams using KSQL will generate new outputs
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that will be committed to the appropriate topics in the broker. KSQL performs persistent line queries,
filtering and aggregation of data records based on the numerical computational model.

5.4.4. Persistent Querying/Analysis of the Data Streams Using KSQL

Each record or message from a producer is typically represented as a key-value pair, and the
streams of record are processed and analysed in real-time with the smallest amount of latency through
the help of Kafka-SQL (KSQL). KSQL Server consists of the KSQL engine and the REST API. KSQL
Server routines communicate with the Kafka cluster through the KSQL UI (Figure 15). The data analysis
with stateful processing, aggregation and windowing operation for time-series analysis are executed.

Figure 15. KSQL cluster interfacing with the Kafka broker [16].

KSQL consumes the data streams stored in Kafka topics—TemperatureSensors, HumiditySensors,
AtmosPressureSensors and SoilMoistureSensors; which are mostly structured data set in JSON but
could be in a format like AVRO or delimited formats (CSV) by using the appropriate Kafka Connect
API for the data pipeline. Queries are performed through the use of KSQL cluster connected to the
Kafka broker. KSQL persistently queries the infinite input streams through the appropriate topics to
execute the EDI model logic (Equations (1)–(3)) transformed into the querying algorithm. The querying
algorithm is programmed using the KSQL editor console (Figure 16) for the persistent querying of
the topics.
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Figure 16. KSQL editor in the Confluent Platform.

Algorithm 1: KSQL Querying Algorithm
The querying algorithm is a logic generated from the EDI model Formula (1)–(3):

Generate KSQL (DStream)

STEP (1) FOR historical precipitation dataset
IF dataset is Filesystem WHERE file format is. xslv
READ file (.csv)
CREATE Table “HistoricalPrecipitation”
SAVE file (.csv) to Table “HistoricalPrecipitation”

(2) FOR Sum_Precipitation = SUM (PrecipitationSensors)
CREATE Table “Sum_Precipitation”
SAVE “Sum_Precipitation” to Table “Sum_Precipitation”

(3) FOR EP = (Sum_Precipitation)/(Time Frame)
CREATE Table “EP”
SAVE “EP” values to Table “EP”

(4) FOR MEP = Mean (HistoricalPrecipitation)
CREATE Table “MEP”
SAVE “MEP” values to Table “MEP”

(5) FOR DEP = EP - MEP
CREATE Table “DEP”
SAVE “DEP” values to Table “DEP”

(6) FOR SD(DEP) = Standard deviation (DEP)
CREATE Table “SD(DEP)”
SAVE “SD(DEP)” values to Table “SD(DEP)”

(7) FOR EDI = DEP/(SD(DEP))
CREATE Table “EDI”
SAVE “EDI” values to Table “EDI”

(8) RETURN persistent KSQL query

6. Result and Discussion

6.1. Output Data and Visualisation

The results of the numerical models executed persistently in the KSQL are committed to the output
topic—EDI (Figure 17). The output streams are available through the designated topic and saved the
event hub for storage to ensure further availability or visualisation of the data through appropriate
plugins. The storage and big data visualisation of the output data streams are outside the scope of this
paper. The output value at the time of execution indicates an average EDI value of 0.8545, which signify
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a near normal drought based on the input values. Further outputs are interpreted by an expert for
use by the policy makers for their decision making process. However, to ensure availability of output
data streams, distributed database systems provide better performance and offers compatibility across
platforms are recommended. Apache Cassandra is a typical example of a highly scalable open-source
distributed NoSQL database system that can be used to save the output data streams.

Figure 17. The output stream from the EDI topic in the KSQL editor.

6.2. Scalability Of Kafka Cluster

The result of the performance evaluation of the distributed middleware infrastructure is presented
in this section; this determines the real-time effectiveness of the infrastructure. All applications need
monitoring. The 99.9 percentile measurement is a total metric that gives a view into the overall
performance of requests to the Kafka broker. The performance evaluation compares the time it takes
the Kafka cluster to execute the EPL-based numerical model in the two nodes in the clusters. A critical
metric is the request-latency, which provides the average amount of time a produce request sent to
the brokers takes to execute. This measurement is the average amount of time in milliseconds. A rise
in the request latency value means that produce requests are getting slower, which could be due
to networking issues, latency, or broker configuration depending on the implementation platform.
However, latency values in milliseconds are within the acceptable limit. In Figure 18, we measure the
brokers request latency values (Figure 18a,b), response send, response queue, request local and the
total request queue values (Figure 18c,d) of executing the numerical model algorithm. By observing
the figure, we notice that our proposed solution through the adoption of Apache Kafka provides a high
throughput and decreases the processing time for the input data streams. An average response time
for 3 ms (Figure 18c) and request latency below 70 ms (Figure 18a) was received for Broker 0. On the
other hand, Broker 1 has a median request latency value of 502 ms (Figure 18b), response queue and
send value of 7 ms (Figure 18d), all within acceptable values in milliseconds. Our approach enjoys
lower runtime considering the heterogeneity of the input data sources. The reason is that, although our
solution consists of many phases, adopting a unified data pipeline across the implementation phases
reduces the processing time. This is particularly useful in application areas that requires on the spot
processing and analysis of huge heterogeneous dataset.
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(a) Request latency measurement for Broker 0 (b) Request latency measurement for Broker 1

(c) Response send and queue values of Broker 0 (d) Response time of send and queue values of Broker 1.

Figure 18. Performance evaluation simulation results of brokers in the cluster.

7. Conclusions

In this study, we presented the application of a distributed stream processing framework for the
real-time big data analysis of heterogeneous environmental management and monitoring data using
Apache Kafka in Confluent platform. We demonstrate the suitability and applicability of applying big
data techniques for processing and analysis of environmental data from heterogeneous systems in
real-time, contrary to widely adopted ETL techniques. In particular, we considered the possibility of
integrating dataset from legacy systems, external databases with stream processing engine in a unified
manner, due to the crucial nature of historical data in environmental modelling. Hence, we introduce
the ESTemd framework, which is able to hide the underlying complexities of heterogeneous systems
through the use of a unified data pipeline for seamless integration and execution. The application
of the framework will improve real-time analytics of environmental data. Furthermore, we have
demonstrated the ease of use of this framework to implement a numerical model in the environmental
management and monitoring domain. Also, the implementation of the presented ESTemnd framework
in a development environment helped to understand how similar implementation should be structured.

Among the future research directions, we would like to investigate the integration of semantic
representation layer within the system for more accurate and improved real-time data analytics,
also the visualisation of the output data streams using Apache Kibana [61] or Apache Zeppelin [65]
with implementation using a complex computational model. We believe that with the open-source
availability of the underlying technologies and the extensibility of the ESTemd framework, researchers
will be able to extend this framework for the development of real-time stream processing applications
in other fields.
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