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Abstract: In recent years, the generative adversarial network (GAN)-based image translation model
has achieved great success in image synthesis, image inpainting, image super-resolution, and other
tasks. However, the images generated by these models often have problems such as insufficient
details and low quality. Especially for the task of map generation, the generated electronic map cannot
achieve effects comparable to industrial production in terms of accuracy and aesthetics. This paper
proposes a model called Map Generative Adversarial Networks (MapGAN) for generating multitype
electronic maps accurately and quickly based on both remote sensing images and render matrices.
MapGAN improves the generator architecture of Pix2pixHD and adds a classifier to enhance the
model, enabling it to learn the characteristics and style differences of different types of maps. Using
the datasets of Google Maps, Baidu maps, and Map World maps, we compare MapGAN with some
recent image translation models in the fields of one-to-one map generation and one-to-many domain
map generation. The results show that the quality of the electronic maps generated by MapGAN is
optimal in terms of both intuitive vision and classic evaluation indicators.

Keywords: map generation; network tile map; deep generation model; image translation

1. Introduction

In modern society, the electronic map plays an important role in daily travel navigation, geographic
information query, and other services. However, there are still some blind spots in the coverage of
electronic maps (such as some remote areas), which to some extent, limits the service level of geographic
information data for users and the guidance level for socioeconomic and political purposes. At the
same time, the production of electronic maps generally requires vectorization of paper maps first
and then involves complex graphic editing manually by industry standards, which consumes a lot of
manpower and resources. Inspired by Liao Ke’s work [1], in view of electronic maps from satellite
remote sensing images and the powerful image generation capacity of deep generation models, if a
generative model can be trained to directly convert remote sensing images into corresponding electronic
maps, the production of electronic maps will be accurate and rapid, thereby further improving the
service level for society. In fact, many previous researchers have used generative models to solve
problems in the remote-sensing community. Ghamisi [2] used conditional generative adversarial
nets to generate a digital surface model (DSM) from a single optical image for scenarios in which the
elevation information was not available. Zhu [3] designed a 1D generative adversarial network (GAN)
and a 3D-GAN for classification of hyperspectral images and achieved competitive results compared
to the state-of-the-art methods.
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However, using deep generation models to translate remote sensing images to electronic maps
involves many difficulties. First, although the image generated by the existing deep generation model
obtains good results at a low frequency, the texture is unclear, and the gradient of adjacent pixels is
small at a high frequency. Second, electronic maps require continuous roads. However, in remote
sensing images, roads may be blocked by other features (such as woodlands and houses) and not
shown completely. Network models need to learn to ignore these obstructions and show the blocked
part of the road. Third, to produce a standard electronic map, the network model needs to render
different elements with correct colors and learn to align the boundaries of some color blocks for the
sake of visual aesthetics, which requires the model to have a higher semantic understanding of images.

Some former researchers have experimented with their proposed model on the translation task
using remote sensing images and Google maps. However, the purpose of the previous researchers’
map translation task was to prove the feasibility of their proposed model. As long as the generated
images were in the style of electronic maps, they were satisfactory because this proved that their model
had image translation capabilities, although the quality of generated maps was not high, and it was
easy to distinguish between the real electronic maps and the generated electronic maps. For example,
Pix2pix [4] established a general framework for image translation based on a CGAN [5]. However,
satisfactory results cannot be achieved in specific application scenarios, and the quality of the generated
electronic map is poor. A breakthrough of CycleGAN [6] is its ability to solve the problem of image
translation in cases where paired training datasets cannot be obtained. When it is applied in the map
translation scenario, it is also found that the resulting electronic map has many problems, such as
image blurring, unclear texture, and incorrect color rendering. In contrast to the former methods, our
method aims to generate multiple domains and more realistic electronic maps at the same time, rather
than simply prove the feasibility of the method.

This paper proposes a GAN-based generation model, Map Generative Adversarial Networks
(MapGAN), for generating multitype electronic maps from remote sensing images and rendering
matrices of special feature elements at the same time. MapGAN improves the generator of Pix2pixHD [7]
and adds a classifier to construct map classification loss so as to improve the model’s feature recognition
and multitype map generation capabilities. At the end of the study, we compared the electronic
maps generated by MapGAN to other models using the same dataset in the fields of one-to-one map
generation and one-to-many domain map generation. The experiments show that MapGAN can
correctly generate multiple types of maps, and the generated maps perform better in terms of human
vision and quality evaluation results, identify a large number of features correctly, and have better
color rendering effects in areas such as woodland and water.

2. The Relevant Concepts

2.1. Deep Generative Model

A deep generation model is a parametric generation model that uses deep neural network
technology to learn the probability distribution of given sample data to generate new data. The deep
neural network gives the generative model a stronger learning ability through the complex combination
of multilayer perceptrons. In particular, the introduction of convolution technology has greatly
improved the ability of the generative model in image processing and image generation. As the
predecessor of the deep generation model, the Restricted Boltzmann Machines (RBM) [8] has a
relatively simple model architecture consisting of only two layers of networks. Later, models such as
the Deep Boltzmann Machines (DBM) [9] and Deep Belief Networks (DBN) [10] emerged as extensions
of the RBM. DBNs have achieved great success in image classification and image feature compression.
However, it is difficult to calculate the partition function and the prior distribution of these models in
the training process, and it is difficult to deal with large data such as images. Variational Auto Encoding
(VAE) [11] is a well-known deep generation model developed in recent years after the DBN. It is a
differentiable generation model based on encoding and decoding architecture. The model architecture
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of the encoder and decoder is constructed by the convolutional neural network, which has strong
feature extraction and data generation capabilities. Unfortunately, the problem with VAE is that the
optimization purpose is to maximize the lower bound of the difference rather than the likelihood
function itself; therefore, the generated image is fuzzy and of low quality.

In 2014, Goodfellow [12] proposed a generative adversarial network (GAN) based on game theory.
Compared with the previous model, a GAN is the same as VAE in training and can be trained through
a differentiable network. A GAN can learn a loss function using a discriminator to optimize the
likelihood function itself directly, and there is no difficulty in implementing the partition function;
these advantages enable a GAN to generate high-quality data faster and more reliably than other
models. However, GANs also have problems such as unstable model training [13] and lack of diversity
in generated data. To this end, many researchers have proposed many GAN variants. Among them,
CGAN [5] generates data based on the modalities of the input data instead of noise and can control data
generation. Deep Convolutional Generative Adversarial Networks (DCGAN) [14] provides a basic
framework of a GAN by processing image data through a large number of experiments. StackGAN [15]
uses phased pyramid model architecture to achieve the generation of high-resolution bird images
from description text. Based on the Wasserstein Generative Adversarial Networks (WGAN) [16],
the WGAN with gradient penalty (WGAN-GP) [17] introduces constraints on the discriminator in the
form of regularization, which greatly improves the stability of training. In one study, Least Squares
Generative Adversarial Networks (LSGAN) [18] changed the original GAN’s objective function from
cross-entropy loss to least squares loss, which effectively improved the model’s training speed and
the quality of the generated images. In recent years, these generative models of the GAN series have
shown amazing results in the fields of image generation [19], text-to-image synthesis [20], image
translation [4], and image super-resolution [21].

2.2. Image Translation

Image translation refers to the processing of the images in domain A to output the corresponding
images in domain B. Many problems in the field of computer vision can be attributed to image
translation. For example, the problem of image super-resolution can be seen as the translation from
low-resolution images to high-resolution images, and image colorization can be seen as the translation
from single-channel grayscale images to multichannel color images. There are two ways to implement
image translation: supervised learning and unsupervised learning. Given two edge probability
distributions, there are infinite kinds of joint probability distributions that meet the requirements,
so the unsupervised image translation problem is relatively difficult to implement. Nevertheless, since
it is easier to find a single type of dataset in practice, the application of unsupervised image translation
models is more convenient.

Although convolutional neural networks have achieved amazing results in solving image
translation tasks of painted art, there are still problems such as the low quality of generated images and
complex loss function design. Until the emergence of GANs, a new method was sought for the task of
image translation. The GAN solved the problems of the convolutional neural network by training a
discriminator to learn the loss function automatically, and this generated higher quality images.

In recent years, many image translation models have been developed based on GANs. Based on
the CGAN, Pix2pix’s [4] generator generates data from the given image. This work is the basis of many
subsequent GAN-based image translation models. CycleGAN [6] consists of two generators and two
discriminators and adds a cycle constraint to the original GAN’s loss function, which solves the problem
of training image translation models without paired datasets. The VAE + GAN [22] model further
solves this problem by using shared latent space. Pix2pixHD [7] can generate high-resolution images
of 2048 * 1024 from semantic label maps using two generators: global generator network and local
enhancer network. TextureGAN [23] achieves fine-grained texture control in deep image synthesis by
introducing local texture loss and local content loss. However, the above models can transfer the styles
only between two domains at a time, which is inefficient in tasks that aim to generate multiple domain
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images. In StarGAN [24], however, a multidomain translation network was proposed using a single
generator, and this method is only applied when there is no feature mismatch between domains such
as face attribute modification. Later, Semantic Consistency and Identity Mapping Multi-Component
Generative Adversarial Network (SC-IMGAN) [25] also provided a multi-component one-to-many
translation model to address the Person re-identification (Re-ID) problem using semantic consistency
and identity mapping. Rahman [26] also successfully applied the image translation model to the
domain generalization task and achieved state-of-the-art performance.

Most image translation models are used to solve specific problems. For some universal translation
models, such as Pix2pix and CycleGAN, when applied to map generation tasks, the generated electronic
maps cannot accurately identify and render elements such as woodland, waters, and roads. At the
same time, there are problems such as blurred texture and low quality. In contrast, MapGAN builds the
model from the specific scene of the electronic map generation and uses some targeted optimization
measures to improve the accuracy and aesthetics of the generated maps.

3. Methodology

In this section, we first discuss the reason for and method of using auxiliary information called
render matrices to control color rendering in the task of generating electronic maps, then we describe
our proposed MapGAN, a framework to generate multitype electronic maps based on remote sensing
images and a render matrix.

3.1. Render Matrix

In each type of electronic map, different colors represent different types of features. Whether
the color rendering is correct is an important aspect for evaluation of the quality of the generated
electronic map. However, there are many difficulties for the model in learning how to correctly render
the generated electronic map, as shown below: (1) Standard color rendering of an electronic map
needs to refer to various aspects of the map’s attribute information. For example, the highway is
rendered as orange based on the geographic feature information extracted from the geographic entity
database. Unfortunately, such attribute information cannot be extracted from remote sensing images by
neural networks. (2) The model needs to consider aesthetics when rendering the generated electronic
map colors. For example, sometimes to improve the aesthetics of the map, the standard electronic
map production process renders green spaces into standard squares, although this may include some
nongreen space components, as shown in Figure 1.
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Figure 1. A pair of training data that render the green space as a square for aesthetic reasons.

To address this problem, we used auxiliary information called render matrices to control the
color rendering that needs to consider the properties of geographical entities and aesthetics. A render
matrix is a two-dimensional matrix with the same width and height as the remote sensing image
in the model input. Each render matrix contains the rendering information of a certain feature in
various electronic maps to be generated, and this information is encoded and stored in each matrix
element. The rendering information stored by the matrix elements is divided into three categories:
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Category 1 represents that the corresponding position in all types of generated electronic maps does
not need to render this type of feature. Category 2 represents that the corresponding position in a
certain type of electronic map needs to render this type of feature. Category 3 represents that the
corresponding position in several types of electronic maps needs to render this type of feature. For
example, when generating the two types of electronic maps, map A and map B, based on a remote
sensing image, the correct color rendering of high-speed roads needs to refer to the third-party road
network information, which cannot be directly obtained from the remote sensing image, so we used a
render matrix as auxiliary information in the model input. The specific coding and meaning of the
matrix element are shown in Figure 2.
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Figure 2. An example of using a rendering matrix of high-speed road features in a scenario where two
types of electronic maps, map A and map B, are generated. The left side of the equivalence symbol is
the render matrix, which uses different letters to encode the rendering information of the highways in
maps A and B. The right side of the equivalence symbol is the equivalent expression of the rendering
matrix, which reflects the rendering information of the highways in maps A and B obtained from the
rendering matrix.

3.2. Map Generation Adversarial Networks

Our goal was to train the generator G that learns the mapping from the remote sensing image
y and the rendering matrix R to various types of electronic maps S, where S = {S1, S2, . . . , Sn} is
used to denote the generated n-type electronic map collection. G simultaneously outputs multitype
electronic maps corresponding to y, and we used y, R, and one type of electronic map as inputs to the
discriminator to perform image reality discrimination. We also introduced a classifier to determine
whether the electronic map generated in S belongs to the correct category. That is, MapGAN evaluated
the generated electronic map from the reality and the correctness of the category, with the hope that
MapGAN could learn the correct meaning of each element in the rendering matrix and the differences
between different types of electronic maps. Supposing we use X = {X1, X2, . . . , Xn} to denote the n-type
target electronic map collection corresponding to S, the training process of our proposed approach is
illustrated in Figure 3.
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Figure 3. The overall architecture of Map Generative Adversarial Networks (MapGAN), consisting
of three modules: a discriminator, D, a generator, G, and a classifier, C. (a) We trained classifier C to
have map classification capabilities using n types of real electronic maps. (b) G outputs the generated n
type electronic maps based on remote sensing images and the render matrix, (c) D tries to distinguish
between real and generated maps corresponding to remote sensing images and the render matrix. (d) C
tries to judge the category of each generated map.

To help MapGAN to learn the meaning of the render matrix and the characteristics and differences
of different types of electronic maps more quickly and efficiently, we proposed the following loss terms
to form the final loss function of MapGAN:

Feature Render Loss. Note that we can use a binary graph Bi
j to indicate the render information

of a feature element i in a certain type of electronic map j, and a pixel with a value of 1 indicates that
the position is the corresponding feature. Hence, the render matrix can be seen as a combination of
several binary graphs. We can also obtain the binary graph Ri

j corresponding to Bi
j from the render

matrix. To further promote the model’s use of the render matrix to achieve the correct rendering
of corresponding features in different types of electronic maps, we adopted a feature render loss as
follows using a binary graph.

L f rl = λ1

∑
i

∑
j

1
ni

j

(∣∣∣∣∣∣∣∣Ri
j − Bi

j

∣∣∣∣∣∣∣∣) (1)

In Formula (1), Ri
j and Bi

j both represent the extracted binary graph of element i in the class j

electronic map but from the render matrix and generated electronic map of class j. ni
j represents the

sum of pixels in Ri
j, the pixel value of which is 1. λ1 is the weight of the loss term.

Map Classification Loss. The discriminator of the generated network can only guarantee the
reality of the generated image; that is, it can only ensure that the generated image is an electronic
map, but in the task of generating multiple types of electronic maps, the category accuracy of the
generated electronic map cannot be guaranteed. To address this problem, MapGAN judges the type of
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the generated map by adding a pretrained map classifier C. We constructed the cross entropy loss term
to help MapGAN generate multiple correct types of maps.

Lmcl = λ2

∑
s∈S,x∈X

C(x) log
C(x)
C(s)

(2)

In Formula (2), C(x) and C(s) represent the output of the classifier C with x and s as input,
respectively, both of which are n-dimensional probability distribution vectors, the same as S and X.
It should be noted that we used the output probability distribution of the target electronic map as
the real distribution corresponding to the generated electronic map because we believe that when
the training accuracy of the classifier C reaches the peak, compared with one-hot vectors, the output
probability of the target electronic map is more representative of the real probability distribution.

Adaptive Perceptual Loss. The map generation discussed in this paper can be seen as a special
style transfer. In this study, the content image was the remote sensing image, and the style image
was the electronic map. The purpose of map generation was to retain certain content of the remote
sensing image and convert it into the network electronic map style image. Gatys [27] designed the
loss function during the training of the style transfer model as two terms, one to measure the content
similarity between the input content image and the output composite image, and the other to measure
the style similarity between the input style image and the output composite image based on the Gram
matrix. We made the following improvements based on Gatys’ study: (1) We added a feature loss
term composed of the features extracted by the discriminator. Xian [23] used similar loss terms in their
work and proved that this can stabilize the training of the generator to output more realistic images.
(2) A priori test was used to select the network layer in the model proposed by Visual Geometry Group
(VGG-19) for feature loss establishment. The mathematical formula of the adaptive perceptual loss Lp

is as follows:
Lp = L f d + L f g + Ls (3)

In Formula (3), L f d, L f g, and Ls represent the feature loss of the discriminator, the feature loss of
the VGG-19 model, and the style loss of the VGG-19 model, respectively. The mathematical expression
of each loss term is as follows:

L f d = λ3

∑
s∈S,x∈X

∑
t

1
nt
(Dt(s, R, y) −Dt(x, R, y))2 (4)

L f g = λ4

∑
s∈S,x∈X

∑
t

1
nt
(Vt(s) −Vt(x))

2 (5)

Ls = λ5

∑
s∈S,x∈X

(Gram(s) −Gram(x))2 (6)

In Formulas (4), (5), and (6), λ3, λ4 and λ5 represent the weights of each loss term. nt represents
the total number of features in the t-th network layer, Dt(s, R, y) represents the features extracted by
the discriminator with the input of the generated electronic map s, render matrix R, and the remote
sensing image y at the t-th layer. V represents the VGG-19 model. The style loss term uses the Gram
matrix to express the image style, and the Gram matrix is defined as the sum of the inner products of
any two feature matrices in a specific network layer. The meanings of the remaining variables are the
same as the previous formulas.

Adaptive Adversarial Loss. Adversarial training is widely used in image translation models.
During the training process, the discriminator is used to automatically learn the loss function to guide
the generator to generate more realistic images. However, Mao [18] pointed out that there is a problem
with the original adversarial loss function of GAN: when the generated fake samples are far away
from the decision boundary, but still on the real sample side, using the original sigmoid cross-entropy
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loss function to update the generator causes the vanishing gradient problem. Therefore, we used the
proposed least squares loss function to solve the premature disappearance of the gradient and combined
the classic L1 loss function to further improve the stability of MapGAN training. The mathematical
formula of the adaptive adversarial loss function is as follows:

Ladv(D) = λ6

{1
2

Ey∼py(y)[(D(G(y, R), R, y))2] +
1
2

Ex∼px(x)[(D(x, R, y) − 1)2]
}

(7)

Ladv(G) = λ7L1 + λ6
1
2

Ey∼py(y)[(D(G(y, R), R, y) − 1)2] (8)

In Formulas (7) and (8), Ladv(D) and Ladv(G) represent the adaptive adversarial loss function of
the discriminator and generator, respectively, and λ6 and λ7 represent the weights of the corresponding
loss terms. The meanings of the remaining variables are the same as the previous formulas.

Full Objective. Combining the above four loss terms, the objective functions to optimize G and
D are written, respectively, as:

L(D) = minLadv(D)

L(G) = min
(
L f rl + Lmcl + Lp + Ladv(G)

) (9)

where the loss function of the discriminator only includes the corresponding adaptive adversarial loss
term and the loss function of the generator includes all the above loss terms.

3.3. Map Generation Adversarial Networks

Generator. The generator architecture of the MapGAN model is based on the network model
used in Pix2pixHD. It consists of three parts: the downsampling layer, the residual block [28], and the
upsampling layer, as shown in Figure 4 (where purple represents the downsampling layer, pink
represents the residual block, and cyan represents the upsampling layer). The improved aspects of
the generator include three aspects: (1) rather than 7 × 7 convolution kernels, the maximum kernel
size was set to 5 × 5. In practice, three 3 × 3 convolution kernels replaced one 7 × 7 convolution
kernel. The purpose is to enhance the model’s sensitivity to the details of each image patch and reduce
the training parameters by reducing the convolution kernel receptive field. (2) Six residual blocks
were added, with each block consisting of two convolutional layers. The added residual block can
improve the model performance by appropriately increasing the network depth without generating
any gradient propagation problem. (3) Two skip connections were added between the downsampling
layer and the upsampling layer to achieve cross-layer information transfer, effectively helping the
model to reuse the features extracted by the downsampling layer when constructing the electronic
map during the upsampling stage.

Discriminator. Adapted from Pix2pix [4], the discriminator of the MapGAN model uses the
receptive field at a size of 70 × 70 to judge image patches and outputs a matrix representing the
discrimination results of each image patch. We also added a convolutional layer to process the output
matrix to get the final true probability, instead of simply averaging it. The specific architecture diagram
is shown in Figure 5. In practice, the input of patchGAN contains not only the remote sensing image
and the electronic map but also all the render matrices in the generator input.

Classifier. In this study, we used the Xception model as our classifier, which is an improvement on
the Inception v3 model. It uses depthwise separable convolution to replace the replacement convolution
operation, thereby improving the model’s effect without increasing the network complexity.
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4. Results and Discussion

We first tested MapGAN in the one-to-one domain map generation scenario of generating Google
electronic maps from Google remote sensing images. In this section, we also show the empirical results
of MapGAN in the one-to-many domain map generation scenario that generates Baidu and Map
World electronic maps from Baidu remote sensing images at the same time. In both map generation
experiments, we conducted relevant ablation studies and compared results with the state-of-art model
in terms of visual and quantitative evaluation.

4.1. Baseline Models

As our baseline models, we used Pix2pix [4], a mode seeking generative adversarial network
(MSGAN) [29] and BicycleGAN for comparison with MapGAN in the one-to-one domain map
generation experiment and StarGAN in the one-to-many domain map generation experiment.

Pix2pix is a general-purpose image translation architecture based on conditional adversarial
networks that is trained by supervised learning. Since Pix2pix was proposed, a large number of
improved image translation models have been proposed, However, due to the versatility and canonicity
of Pix2pix, we still used it as a baseline model in this study.

An MSGAN, mode seeking generative adversarial network is equivalent to adding a mode seeking
regularization term based on the CGAN to improve the stability and diversity of model training.

BicycleGAN is a one-to-many domain image translation model. BicycleGAN’s innovation lies in
ensuring the bijective consistency between the latent code and the output mode, thus preventing the
problem of mode collapse and generating better results.

StarGAN is a novel model that can perform image-to-image translations for multiple domains
using only a single model. By using a domain label and mask vector, StarGAN allows simultaneous
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training of multiple datasets with different domains within a single network, which leads to StarGAN’s
superior quality of translated images compared to existing models.

4.2. Datasets

The Google Maps dataset was made from satellite and electronic map tiles from Google maps,
with image sizes of 600 × 600 pixels [4]. The training set and the test set contained 1096 and 1042 pairs
of remote sensing-electronic map images, respectively. We used this database in the one-to-one domain
map generation experiment.

The Baidu and Map World Maps dataset was made by downloading Baidu and Map World
electronic maps and remote sensing images of the corresponding areas using BIGE MAP software.
The size of each image was 256 × 256 pixels. The training set contained 1500 training samples, and the
test set contained 500 training samples. Each training sample contained a remote sensing image and a
Baidu and Map World electronic map of the same area. We used this database in the one-to-many
domain map generation experiment. Two sample examples are shown in Figure 6.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 20 

 

4.1. Baseline Models 

As our baseline models, we used Pix2pix [4], a mode seeking generative adversarial network 

(MSGAN) [29] and BicycleGAN for comparison with MapGAN in the one-to-one domain map 

generation experiment and StarGAN in the one-to-many domain map generation experiment. 

Pix2pix is a general-purpose image translation architecture based on conditional adversarial 

networks that is trained by supervised learning. Since Pix2pix was proposed, a large number of 

improved image translation models have been proposed, However, due to the versatility and 

canonicity of Pix2pix, we still used it as a baseline model in this study. 

An MSGAN, mode seeking generative adversarial network is equivalent to adding a mode 

seeking regularization term based on the CGAN to improve the stability and diversity of  

model training. 

BicycleGAN is a one-to-many domain image translation model. BicycleGAN's innovation lies in 

ensuring the bijective consistency between the latent code and the output mode, thus preventing the 

problem of mode collapse and generating better results. 

StarGAN is a novel model that can perform image-to-image translations for multiple domains 

using only a single model. By using a domain label and mask vector, StarGAN allows simultaneous 

training of multiple datasets with different domains within a single network, which leads to 

StarGAN’s superior quality of translated images compared to existing models. 

4.2. Datasets 

The Google Maps dataset was made from satellite and electronic map tiles from Google maps, 

with image sizes of 600 × 600 pixels [4]. The training set and the test set contained 1096 and 1042 

pairs of remote sensing-electronic map images, respectively. We used this database in the one-to-one 

domain map generation experiment. 

The Baidu and Map World Maps dataset was made by downloading Baidu and Map World 

electronic maps and remote sensing images of the corresponding areas using BIGE MAP software. 

The size of each image was 256 × 256 pixels. The training set contained 1500 training samples, and 

the test set contained 500 training samples. Each training sample contained a remote sensing image 

and a Baidu and Map World electronic map of the same area. We used this database in the 

one-to-many domain map generation experiment. Two sample examples are shown in Figure 6. 

 

Figure 6. Two training samples in the dataset we made for the one-to-many domain map generation 

task. Each training sample contains three images; from left to right are the remote sensing image, 

Baidu map, and Map World map. 

4.3. Evaluation Metrics  

Given the unimodal nature of the target translation function in the task of generating electronic 

maps, we mainly used the average pixel translation accuracy to evaluate the performance of the 

model in map translation tasks. For a single pixel, if the difference in pixel values is less than 16, the 

translation result of the pixel is correct; otherwise, the translation result of the pixel is incorrect. The 

percentage of correctly translated pixels in a remote sensing image is the accuracy of the model in a 

map translation task. To evaluate the image quality of model generation comprehensively, we used 

Kernel Maximum Mean Discrepancy (Kernel MMD), Fréchet Inception Distance (FID) [30], mode 

score, and inception score evaluation indicators, extracting the feature distribution of the target 

image and the generated image on the penultimate layer and mapping them into Gaussian random 

Figure 6. Two training samples in the dataset we made for the one-to-many domain map generation
task. Each training sample contains three images; from left to right are the remote sensing image, Baidu
map, and Map World map.

4.3. Evaluation Metrics

Given the unimodal nature of the target translation function in the task of generating electronic
maps, we mainly used the average pixel translation accuracy to evaluate the performance of the model
in map translation tasks. For a single pixel, if the difference in pixel values is less than 16, the translation
result of the pixel is correct; otherwise, the translation result of the pixel is incorrect. The percentage of
correctly translated pixels in a remote sensing image is the accuracy of the model in a map translation
task. To evaluate the image quality of model generation comprehensively, we used Kernel Maximum
Mean Discrepancy (Kernel MMD), Fréchet Inception Distance (FID) [30], mode score, and inception
score evaluation indicators, extracting the feature distribution of the target image and the generated
image on the penultimate layer and mapping them into Gaussian random variables. In practice, Kernel
MMD was calculated using the pretrained resnet34 model on the ImageNet dataset, and the remaining
indicators were calculated using the pretrained Inception v3 model on the ImageNet dataset. When
using the FID indicator, we used the simplified Frechet distance [31] between two distributions to
represent the degree of realism of the generated image.

4.4. Training Details

MapGAN used some of the model settings recommended by the DCGAN [14]. The output
layer of the generator used the tanh activation function, and the remaining layers used the Relu
activation function. MapGAN used the global average pooling layer instead of the full connection
layer and used the convolution technique instead of the max-pooling operation. The discriminator
used the LeakyReLu activation function with a slope of 0.2. During the model training phase, an Adam
optimizer [32] with momentum terms of 0.5 and 0.999 was selected to train a total of 200 epochs. The
learning rate was set at 0.002 for the first 100 epochs and decreased linearly to 0 for the last 100 epochs.
Training samples for each iteration were randomly obtained from the dataset. The dropout layer with
an activation probability of 0.5 was added to the hidden layer of the generator. At the same time,
several groups of experiments were set to determine the optimal weight range of each loss item. The
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third experiment of Section 4.3 shows part of the exploration process. The final weight of each loss term
is λ1 = λ2 = λ7 = 100, λ3= 10, λ4 = 0.1, λ5 = 1e + 5, and λ6 = 1. We also used data enhancement
techniques to improve the learning ability and robustness of the model, including image rotation and
cropping operations.

The experiment was carried out on a workstation with 1 NVIDIA M40 GPU, 4 Inter Xeon Platinum
8163@2.5ghz CPUs, and 30 GB of RAM. It took about three hours to train the model in our one-to-one
domain map generation task and five hours in the one-to-many domain map generation task.

4.5. One-to-One Domain Map Generation

In this experiment, since our goal was to generate only one kind of electronic map, the classifier
was not used in the training process, and we expressed each render matrix as a binary map. The features
represented in the binary map were water, woodland, and highway roads.

4.5.1. Feature Loss Term Construction Analysis

To construct the feature loss term more accurately, we explored and selected the reasonable feature
extraction network layer when constructing the L f g loss term. From a macro perspective, the shallow
network in VGG-19 extracted texture detail features. As the depth of the network grew, the features
extracted by the model became more high-level and abstract. From this, we could judge that a reasonable
feature comparison layer should be concentrated in the shallow layer. Therefore, we extracted the feature
matrices of Relu1_1 to Relu3_4 in the VGG-19 model of the target electronic map and remote sensing
images and calculated the L2 loss of the two feature matrices in each layer. The final calculation result
of each layer was the average result of 100 pairs of data samples tested in this layer. The experimental
results are shown in Table 1. The results show that the L2 loss value of the Relu1_1 layer was the
smallest. Therefore, the Relu1_1 layer was finally selected to calculate the L f g loss term.

Table 1. L2 loss value of feature matrix of remote sensing image and electronic map in VGG-19 part
network layer.

Relu1_1 Relu1_2 Relu2_1 Relu2_2 Relu3_1 Relu3_2 Relu3_3 Relu3_4

2.4823 4.9174 6.8040 14.8359 15.5887 18.1074 16.4904 37.4131

4.5.2. Weight Analysis of Loss Term

We explored the impact of different weight settings of loss terms on the accuracy of the model map
translation. For the convenience of description, the symbol λ17(λ17 = λ1 = λ7) was introduced. Under
the weight settings of 1, 10, and 100, the experiment tested the influence of λ3 and λ17 on the accuracy
of MapGAN map translation. The experimental results are shown in Figure 7. The results showed that
the larger the value of λ17 set in the range of 1 to 100, the better the model effect would be. Meanwhile,
when λ3 was in the order of 10, the model training effect would be better than the other two orders of
magnitude. Therefore, the parameters finally selected in this study were λ17 = 100, λ3 = 100.
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Figure 7. Test of the effect of different values of λ17 and λ3 on model performance.
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4.5.3. Control Analysis of Binary Graph Channel Influence on the Model

We investigated the influence of three binary graph channels in the model input on the color
rendering of the generated electronic map. The three binary graph channels were woodland area
binary graph, water land area binary graph, and highway area binary graph. In the formal training
of MapGAN, the binary graphs of three channels corresponded to the remote sensing images one by
one; however, this experiment broke this correspondence and used a random combination to construct
the model input to explore the influence of three binary graph channels on the color rendering of the
generated electronic map. The results are shown in Figure 8. The results showed that the woodlands,
water, and highways in the electronic map were essentially the same as the corresponding binary graph
in shape, size, and location and were drawn evenly. Each binary graph channel had complete control
over the generation of corresponding elements in the electronic map.Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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maps corresponding to different elements.

4.5.4. Qualitative Evaluation

We used the optimal MapGAN model developed by a large number of experiments to generate
tile maps in this experiment and compared the quality of generated maps with some recent image
translation models using the same test set. Figure 9 shows the comparison results. We observed that
our method provides a higher visual quality of map generation results on the test dataset compared to
the other models. The most obvious comparison is the rendering of feature colors, which is because
MapGAN refers to the render matrix rather than relying on the extracted unreliable features to identify
and render features. Although we did not take targeted optimization measures, MapGAN has an
advantage in the accuracy of generating roads for the identification of residential blocks. One possible
reason is that the model’s adaptive perceptual loss pays more attention to low-dimensional rather than
high-dimensional features.
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Figure 9. Comparison results of MapGAN and some other image translation models in the one-to-one
domain map generation experiment to generate Google maps. The images from left to right are remote
sensing images and the Google maps generated by MapGAN, Pix2pix, BicycleGAN, the MSGAN,
and MapGAN, the real Google maps.

4.5.5. Quantitative Evaluation

Table 2 shows the results of MapGAN and other image translation models in this one-to-one map
generation task over the entire test set under different evaluation indicators. Pix2pix has the worst
overall performance. The MSGAN only scores lower than BicycleGAN by 0.020 under the inception
score evaluation, and the rest of the scores are relatively high. MapGAN’s overall performance is
stronger than the MSGAN and performs relatively worse only under FID evaluation. We find that no
model can perform optimally under all indicators. If we sort the models according to their overall
performance, the result is MapGAN > MSGAN > BicycleGAN > Pix2pix, which is consistent with the
visual performance in Figure 9. Therefore, MapGAN performed best under both quality and numerical
evaluation in this experiment.

Table 2. Evaluation results of Google Maps generated by MapGAN and some other image translation
models in the one-to-one map generation experiment under five different indicators. The first column
in the table represents the image translation models used in the test, and the first row represents the
indicators used for evaluation.

Pixel-Level Translation Accuracy Kernel MMD Inception Score Mode Score FID

BicycleGAN 0.554 0.391 1.630 1.391 0.098
MSGAN 0.613 0.357 1.610 1.474 0.076
Pix2pix 0.538 0.427 1.413 1.233 0.105

MapGAN 0.761 0.283 1.672 1.509 0.081
MapGAN-Render

Matrix 0.682 0.325 1.644 1.452 0.084
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4.5.6. Ablation Study

To test the effect of the render matrix on the model generation effect, we removed the render
matrix from the model input and evaluated it again. Figure 10 shows the comparison results of the map
generated by the model after the removal of the render matrix. It shows that except for the features
represented by the render matrix that cannot be correctly color rendered, the effect of generating other
elements is not much different after the removal. The last row of Table 2 shows that the model without
the input of the render matrix is slightly worse than the MSGAN under mode score and FID evaluation,
but the comprehensive evaluation result is still optimal. This proves that our improvements in the
model architecture and loss function are effective, and the role of the render matrix is only used to
provide color rendering information when the corresponding features are generated.
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Figure 10. Comparison results of the map generated by MapGAN before and after the removal of the
render matrix in the one-to-one map generation experiment. The images from left to right are remote
sensing images, the Google maps generated by MapGAN without using render matrix, the Google
maps generated by MapGAN, and the real Google maps.

4.6. One-to-Many Domain Map Generation

In this experiment, we used the same parameter settings as in Section 4.5. The model input contained
three render matrices, and the corresponding features were water, woodland, and highway roads.
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4.6.1. Qualitative Evaluation

We compared the Baidu and Map World electronic maps generated by MapGAN and StarGAN.
Note that the reason why we chose the unsupervised StarGAN as the comparison model is because
almost all the one-to-many domain adversarial generation models are unsupervised types, and
StarGAN is the most suitable one. The results are shown in Figure 11. We can infer that both StarGAN
and MapGAN learned the expression characteristics of two types of maps and can map the elements
in remote sensing images into two different types of electronic map styles. However, the ability to
recognize features of StarGAN is relatively poor, which leads to the problem of blurred boundaries
in the generated electronic map. StarGAN learned the correct colors of woodlands and highways in
electronic maps but did not learn to normalize them, thereby affecting the continuity of roads and
aesthetics in electronic maps. In contrast, although MapGAN also has problems such as blurring of
generated residential blocks, it has better visual effects for map generation in general.
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Figure 11. Comparison results of the Baidu and Map World electronic maps generated by MapGAN
and StarGAN in the one-to-many map generation experiment. The images from left to right are remote
sensing images, the Baidu maps generated by MapGAN and StarGAN, the real Baidu maps, the Map
World maps generated by MapGAN and StarGAN, and the real Map World maps.

4.6.2. Quantitative Evaluation

Table 3 shows the evaluation results of the Baidu and Map World electronic maps generated
by MapGAN and StarGAN over the entire test set under the five types of evaluation indicators.
We separately judged the feature differences between the generated two types of electronic maps
and real maps. Note that MapGAN’s pixel-level translation accuracy is higher than the one-to-one
domain map generation task outlined in Section 4.5. We assume that this is because the map tiles in
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this experiment have a higher level of detail and there are no large numbers of scattered residential
areas and roads. The evaluation results of these two models on the Baidu map are better than the Map
World map, partly because the structure of the Baidu map is relatively simple. The evaluation results
also show that MapGAN’s evaluation results are far superior to StarGAN on each type of generated
electronic map.

Table 3. Evaluation results of the Baidu and Map World (MW) electronic maps generated by MapGAN
and StarGAN in the one-to-many map generation experiment under five different indicators. From top
to bottom are the evaluation results of the Baidu maps generated by MapGAN, the Map World maps
generated by MapGAN, the Baidu maps generated by StarGAN, and the Map World maps generated
by StarGAN.

Pixel-Level Translation Accuracy Kernel MMD Inception Score Mode Score FID

Baidu–MapGAN 0.861 0.270 2.142 2.214 0.034
MW–MapGAN 0.773 0.313 2.367 2.130 0.056
Baidu–StarGAN 0.566 0.489 1.211 0.955 0.099
MW–StarGAN 0.514 0.492 1.135 0.817 0.102

4.6.3. Ablation Study

We used a classifier to help the model generate multiple maps of the correct type when training
the model. To test the influence of the classifier on MapGAN, we removed it from the model and
trained it again. The model test results are shown in Figure 12. We find that the two maps generated
by the model belong to the same type and are the same. The specific generation type depends on
the model initialization method and the training sequence of the samples. This is because the model
now only needs to generate the electronic map to cheat the discriminator and does not need to satisfy
the diversity requirement. The results in the figure are derived from two separately trained models.
The type generated in the first line is the Baidu map, and the second line is the Map World map.Sensors 2020, 20, x FOR PEER REVIEW 18 of 20 
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to the difficulty of obtaining trainable datasets, this study only tested the model performance when 

generating two types of maps, and it was not known how many electronic maps a model could 

simultaneously generate at most. If an electronic map with many features needs to refer to 

third-party database information for color rendering, multiple render matrices need to be created, 

but considering that most of the elements of the render matrix in the model input are 0, there exists 

the problem of memory resource waste to some extent, which slows down the training speed of the 

model. In the next step, creating more trainable datasets to test our model and finding a new 

encoding method for the render matrix will be the direction and focus of research. 
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5. Conclusions

The research results in this paper mainly propose a MapGAN model that can generate kinds
of realistic electronic maps based on remote sensing images and render matrices at the same time.
The model uses render matrices to control the generation and color rendering of special feature
elements. We also used a classifier and map classification loss term to give the model the ability to
generate multiple types of maps. Experiments show that each type of electronic map generated by
MapGAN exceeds the existing image translation models under many evaluation indicators including
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pixel-level translation accuracy, Kernel MMD, FID, mode score, and inception score. However, due
to the difficulty of obtaining trainable datasets, this study only tested the model performance when
generating two types of maps, and it was not known how many electronic maps a model could
simultaneously generate at most. If an electronic map with many features needs to refer to third-party
database information for color rendering, multiple render matrices need to be created, but considering
that most of the elements of the render matrix in the model input are 0, there exists the problem of
memory resource waste to some extent, which slows down the training speed of the model. In the next
step, creating more trainable datasets to test our model and finding a new encoding method for the
render matrix will be the direction and focus of research.
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