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Abstract: In this paper, we propose a methodology to use the received signal strength indicator
(RSSI) available by the protocol stack of an installed Wireless Sensor Network (WSN) at
an electric-power-system environment (EPS) as a tool for obtaining the characteristic of its
communication channel. Thereby, it is possible to optimize the settings and configuration of the
network after its deployment, which is usually run empirically without any previous knowledge of
the channel. A study case of a hydroelectric power plant is presented, where measurements recorded
over a two-month period were analyzed and treated to obtain the large-scale characteristics of the
radiofrequency channel at 2.4 GHz. In addition, we showed that instantaneous RSSI data can also
be used to detect specific issues in the network, such as repetitive patterns in the transmitted power
level of the nodes, and information about its environment, such as the presence of external sources of
electromagnetic interference. As a result, we demonstrate the practical use of the RSSI long-term data
generated by the WSN for its own performance optimization and the detection of particular events in
an EPS or any similar industrial environment.

Keywords: IIoT; WSN; RSSI; power plants; RF channel model; EMI

1. Introduction

We are currently living in the era of Industrial Internet of Things (IIoT), in which several disruptive
technologies have converged to change the way modern companies manage their manufacturing
and industrial processes [1]. For example, the energy sector is embracing this new technological
trend aiming at increasing production efficiency, reducing emissions, and improving employee safety
and supply chain traceability [2–4]. In this context, Wireless Sensor Networks (WSN) have been
progressively used in industrial environments as a result of the IIoT trend, which has helped to bring
down old paradigms in which wireless communication was perceived as less reliable and unsafe [5–10].
For instance, WSNs have already been explored in power plants for different applications [11–14].

A WSN deployed in an industrial environment must assure an acceptable degree of reliability and
security, thus, robust network design is required. This means that it is important to acquire a minimum
knowledge of the communication channel, which certainly entails a characterization task. Traditional
methods, in which the propagation channel is evaluated through point-to-point communication links
prior to the network installation, are frequently not executed in complex Electric Power System
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(EPS) environments since it usually demands specific laboratory equipment and, more critically,
the measurements are performed non-simultaneously over the expected communication area in
the EPS facility and over limited time periods for each point, given the hardware and the several
measurement steps required [15,16]. Wireless modules working in pairs have also been used for
characterization purposes in power generation and distribution environments; however, this method
presents the same related issues of limited time periods and measurement data [5,17].

Similar to other EPS environments, power plants are complex facilities that present strict
regulations for safety, making the wireless channel analysis difficult with the conventional
point-to-point methods. Therefore, it is often the case that the radio nodes of the WSN are initially
located near the spots where specific equipment needs to be monitored, and then the number of routers
and their hardware settings are adjusted following a trial-and-error procedure until a stable topology
is achieved. This recurrent procedure may not yield an optimum result from the standpoint of the
number of nodes, redundancy, power consumption, etc.

Only a few communication channel studies have been conducted aiming at the specific scenario of
power plants using traditional methods [11,17,18]. In Reference [11], measurements were conducted in
an indoor environment at a nuclear power plant for path-loss and fading characterization. These tests
were focused on IEEE 802.11 compliant equipment and were performed with a radiofrequency (RF)
transmitter and a spectrum analyzer operating at the 910 MHz and 2.4 GHz ISM frequency bands.
Only the path loss coefficient obtained from measurements was reported by the authors: n = 1.86.
The study reported in Reference [18] presented measurement results on the noise and interference
levels in the communication channel between 500 MHz and 5.8 GHz for the purpose of verifying the
WSN performance on a fossil fuel power plant. A broadband signal recorder-and-generator was used
to record the signals in the time domain and a spectrum analyzer for the information in the frequency
domain. The authors did not present the path-loss coefficient or shadowing results since they focused
on the identification of noise or interference in the channel. No communication signals were detected
on the ISM bands, but the results showed that the noise floor ranged from −79 dBm to −85 dBm
and an intermittent interference was detected that increased the noise floor by 43 dBm in all bands.
The interference source was not identified. In Reference [17], channel measurements and channel
modeling for a medium-scale coal-fired power plant with a maximum power output of 175 MW were
presented. For the test procedure, wireless modules operating in the 2.4 GHz band complying with
the IEEE 802.15.4 standard were used. These modules were systematically changed in position after
registering the Received Signal Strength Indicator (RSSI) and Packet Error Rate (PER), which were then
used to estimate the channel characteristics. Unique path-loss, shadowing, and fading characteristics
compared to other indoor scenarios were found. Path-loss coefficients estimated were n = 1.51
and 3.66, for line-of-sight (LOS) and non-LOS (NLOS) environments, respectively. The shadowing
related lead to a standard deviation of 5.45 dB, following a log-normal distribution. The RSSI and PER
measurements also showed that noise related to the operation of the power plant equipment did not
significantly affect the quality of the communication.

As an alternative to the cited studies in which the propagation channel in a power plant was
characterized through conventional methods, the authors have proposed in Reference [19] to use the
RSSI data reported by the protocol stack level of the nodes from a deployed WSN for the channel
characterization. In this way, the inherent information from the network can be used to understand
the instantaneous and average large-scale characteristics of the communication channel and its change
over time. The use of the RSSI data registered by the WSN nodes can then be used as a characterization
method, and consequently, as a tool for improving the settings of the installed network.
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The authors presented in Reference [19] the path-loss coefficient and shadowing deviation results
extracted from the measurements registered in a power plant during a few days. In this paper,
we present new results from data recorded over a two-month period. Through the analysis of this
higher amount of data, long-term mean values are obtained and used as a basis for comparing the
channel behavior to events related to operations on the power plant that occurred on particular days.
Complementary to this, we discuss how the recorded data can reveal issues about the functioning of
specific nodes. For example, through a cross-correlation analysis of the measured RSSI data of each
bidirectional link, it is possible to estimate the rate of increase on the transmission power of each node,
which is directly related to the quality of the links. Finally, we also demonstrate that the high-level
RSSI values registered during recordings, which are treated as undesired information when modeling
the channel, can be co-related to the electromagnetic interference (EMI) sources present in the power
plant. Therefore, the possibility to use the WSN as a tool for detection and understanding these sources
is raised.

As a result, the main contribution of this work is the proposal of a methodology to obtain the
long-term channel propagation characteristics using the RSSI data reported in a deployed WSN.
This method may be a way of overcoming the lack of measurements campaigns before the WSN
installation in EPS environments or other similar industrial environments involving large complex
facilities and rigid safety regulations in which traditional point-to-point methods are difficult to
perform. Through the knowledge of the channel, improvements in the network can be planned and
executed in the medium-to-long term, such as redefining the default transmission power level of the
nodes or adding extra routing nodes. Complementary to this, this work also shows additional useful
information that can be extracted from the long-term registered data regarding the behavior of the
network, hardware issues in the nodes, and EMI sources.

The rest of the paper is organized as follows. The network deployment, measurement environment,
and the explanation of the channel characterization methodology is presented in Section 2. A discussion
about the network behavior from a qualitative analysis of the RSSI data is done in Section 3. Moreover,
the results obtained from the power plant measurement during a two-month period following the
procedure described in Section 2 is presented. In Section 4, two complementary examples of the use of
the RSSI data regarding the nodes transmission power and the EMI sources are presented and discussed.
Finally, the conclusions and future work are left for Section 5.

2. Measurement Environment and Methodology

2.1. Measurement Setup and WSN Deployment

For this work, we were provided with data from a WSN already installed at the hydroelectric
plant Cachoeira Dourada (MG, Brazil). The position of the node radios in the power plant is sketched
in Figure 1. In addition, a description of their roles and location is given in Table 1. Only three
of the radios were used to gather information from sensors, the others were used for network
routing. The radios were deployed in a 92 m× 78 m area and distributed among three main locations:
the barrage, the central building, and where the step-up transformers and high-voltage cables are
present. Radios R1, R4, and R5 were placed at the top of the barrage, which is about 22 m high.
Radios RC, R3, and R6 were installed inside the central building, which is about 12 m high, being radios
R3 and R4 about 20 and 30 m below RC, respectively. Finally, radio R2 was installed next to one of
the transformers, about 4 m above ground level. The exact distance between the radios is specified in
Table 2. Due to the heterogeneous environment of the facility, both LOS and NLOS conditions existed
between the radios.
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Figure 1. Wireless Sensor Network (WSN) installed in a hydroelectric power plant.

Table 1. Description of the nodes in the WSN.

Radio Function Location

RC Coordinator Office room at the central building
R1 Relay Barrage
R2 Transformer temperature monitor Transformer
R3 Relay Central building
R4 Relay Barrage
R5 Barrage water-level monitor Barrage
R6 Well water-level monitor Central building

Table 2. Distance (in meters) between the radios installed in the power plant.

RC R1 R2 R3 R4 R5 R6

RC - 63.8 62.3 28.9 32.9 104 29.6
R1 63.8 - 48.7 51.6 33.7 44.1 53.6
R2 62.3 48.7 - 33.5 58.9 77.9 35.7
R3 28.9 51.6 33.5 - 40.2 90.1 5.1
R4 32.9 33.7 58.9 40.2 - 74.9 43.1
R5 104 44.1 77.9 90.1 74.9 - 90.8
R6 29.6 53.6 35.7 5.1 43.1 90.8 -

The radios operated in the 2.4 GHz band under the Zigbee 3.0 protocol and in a mesh configuration.
The theoretical receiver sensitivity of each node was −95 dBm. In addition, the default transmitter
output power level reaching the radio omnidirectional (monopole) antenna was set to 11 dBm; however,
this power could automatically increase at discrete-value power steps if link quality needed to be
guaranteed or improved. Either batteries supported by solar panels or the mains were used as power
supplies. More details on the radio modules hardware can be found in Reference [19]. The nodes
were configured to operate only in the Zigbee channel 15 (2425 MHz). All the radios were set as
routers (relays), so each one was able to establish different routes to communicate up to the coordinator.
The coordinator uploaded the radios data to a local database.

2.2. Channel Characterization Methodology

The procedure to extract the channel parameters from the recorded data can be divided into four
steps, as depicted in the flux diagram in Figure 2. First, a pre-selection of the nodes is necessary based
on the knowledge of their locations. As the registered RSSI raw data from all the radios is available at
the local database, only the nodes that are suitable for the channel characterization according to the
type of communication link (indoor/outdoor and LOS/NLOS) need to be taken into account.
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After this, the collected raw data should be treated before the calculation of the large-scale
parameters of the communication channel. A first issue to be addressed is related to the noisy
environment regarding industrial locations, such as power plants. Due to the presence of high-power
equipment, EMI may be generated which can lead to misreadings in the RSSI values, generally
registered as abrupt peaks resembling spikes. Those spikes should be filtered out as they are not
related to changes in the communication channel. A second issue is related to the transmission
power of each node. Since the radios are able to automatically increase their transmission power
to improve their link quality, these increments are registered by other radios as transitory pulses
in the RSSI. These pulses need to be removed, otherwise, this could lead to miscalculation of the
path-loss coefficient.

The next step, previous to the channel parameters calculation, concerns the discard of unreliable
data. This is necessary due to eventual hardware issues or non-stable communication between nodes.
For example, an excessive asymmetry level can be noticed in any of the radios registered RSSI data,
indicating an issue on what should have been a bidirectional symmetric link. Naturally, if a calibration
procedure of the WSN radios is done previous to its installation, the asymmetry information may be
corrected in this step. In addition to this, unstable connections are noticed when the corresponding
RSSI registered data is very low or even sporadic compared to the rest of the stable links. Based on the
RSSI registered values by each radio pairs, and on the periodicity of these data, some measurements
can be considered as outliers, and the information of the corresponding nodes should be discarded.

Figure 2. Channel modeling methodology. RSSI = received signal strength indicator; LOS = line-of-sight;
NLOS = non-line-of-sight.

Finally, the data can be used for the extraction of the parameters of the channel model.
First, the instantaneous RSSI data for each node, which was measured and recorded at specific
time intervals, is averaged over convenient measurement periods according to the time window for
which the parameters are to be used. For example, an hour basis average may be useful to keep a
record of the channel behavior during a day. After this, these values are used to obtain the large-scale
communication channel parameters, which includes the path-loss coefficient and the shadowing
deviation. The choice of the channel model may be any that better suits the industrial environment.
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For the purpose of this work, a single-slope log-distance model was used due to its simplicity and
versatility [19,20]. This model and the procedure for obtaining its parameters are briefly described next.

2.3. Large-Scale Channel Parameters

The path loss (PL), which estimates the power attenuation with the distance (d), is described by

PL[dB] = PL[d0] + 10n log(d/d0), (1)

where n is the path-loss coefficient, which depends on the propagation environment, and d0 is a
reference distance close to the transmitter. The path-loss measurement (PLm) was calculated from the
difference between the known transmitted power at each radio and the averaged RSSI, as

PLm(d)[dB] = Ptx − RSSI. (2)

A fitting curve was then obtained from the measured path-loss data to identify the path-loss
coefficient (n) in Equation (1). The fitting was done using a linear least-squares regression to find the
coefficients, P1 and P2, that fit the data to PL f it(d), using

PL f it(d) = P1 log(d) + P2. (3)

In addition to the path-loss coefficient, shadowing deviation was also calculated from the
measurement data. Shadowing accounts for the difference in path-loss values between two objects in
different locations and at the same distance to a common transmitter. This difference arises due to the
presence of obstacles along each of its corresponding propagation paths. Commonly, the shadowing is
modeled by a random variable with Gaussian distribution with a zero mean and a standard deviation
obtained from the shadowing samples (X). Since the random deviation of the measured path-loss,
PLm, occurs around a mean value and the fitted path-loss, PL f it, is essentially the mean path-loss over
distance, the shadowing samples can be calculated using [21]

X = PLm(d)− PL f it(d). (4)

Finally, normality tests were applied to these results to verify the statistical distribution of the
samples [22].

3. Analysis and Results from the Collected Data

3.1. Qualitative Analysis of the Network Behavior

The instantaneous RSSI data recorded from each of the radios is plotted as a function of time in
Figure 3. For each graph in this figure, the nodes listed in the legend to the right correspond to the
transmitters and the name at the top center of each graph corresponds to the receiver node. This data
corresponds to one week, which was particularly chosen as an illustrative example due to some specific
events that occurred during that period. In general, we can observe spikes in the RSSI values in almost
all radios. As briefly discussed in Reference [19], an RSSI of −9 dBm corresponds to the maximum
value of power that can be registered by node radios. In this case, they also represented an abandoned
communication between two neighbor radios. Furthermore, the spikes below −9 dBm were attributed
to EMI, which is further discussed in Section 4.

It can be seen that the coordinator radio RC perceives only two radios, R1 and R4, with some
spikes in both cases. Radio R1 perceives radios R2, R3, R4, and R5, where the first is reported mostly
with spikes. Some spikes were also reported for the remaining radios, however, in less amount.
Radio R2 perceives only R1 and R4, however, intermittently, and radio R3 perceives radios R1, R4,
and R6, with spikes only present in the latter. Radio R4 perceives all radios in the network, and registers
several spikes from them, mostly from R2. A closer inspection revealed that a stable RSSI was only



Sensors 2020, 20, 3076 7 of 15

reported from the coordinator radio. Radio R5 perceives radios R1 and R4. Finally, R6 perceives radios
R3 and R4, with spikes showing in the former. A representative diagram of the network topology
based on a usual mesh behavior based on the RSSI measurements is shown in Figure 4a. Here, the fact
that radio R4 is a critical router through which the other radios reach the coordinator is better observed.

Figure 3. Instantaneous RSSI from the neighbors reported by each radio in a week period.
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(a) Typical. (b) Changes around day 6.

Figure 4. The topology of the mesh network extracted from RSSI measurements shown in Figure 3.

From the instantaneous RSSI, it can also be noticed, that around day no. 6, there was an event
which caused considerable variations on the recorded RSSI in comparison to the rest of the days.
For example, it made the coordinator radio to perceive in some moments radios R3 and R6. The event
also caused radio R1 to perceive radio R6, and to stop noticing radio R3. In addition, it made radio R3
to perceive a higher RSSI from radio R4, to perceive radio R6 with many spikes and to lose detection of
radio R1. Moreover, radio R4 perceived radios R3 and R6 with higher and lower intensity, respectively,
but the rest remained normal. Radio R6 perceived radios R3 and R4 with lower intensities and it
started perceiving radio R1. The only radio that did not record any particular variation was radio R5.
These changes are represented in Figure 4b.

After analyzing the observed changes in RSSI recordings of radios R1, R3, R4, and R6 during
this day (i.e., higher RSSI between radios R3 and R6 and lower RSSI between radios R3 and R4, R3,
and R1, and R4 and R6), it could be inferred that there was a change in the communication channel
surrounding radios R3 and R6. This could have been caused by a particular change on the physical
setting inside or close to the central building over the referred period. For instance, we knew that
there is a large moving crane inside the main building of the power plant which is used to move
machinery, including the power plant turbines, for maintenance. However, we did not have access to
the chronology of these events to associate it with the observed events.

Additional facts about the network behavior can be better visualized by plotting the reciprocal
RSSI measurement of a radio, that is, how a particular radio is perceived by its neighbors. This is
shown in Figure 5a. In this figure, the nodes listed in the legend correspond to the receivers and the
name at the top center of each graph refers to the transmitter. By comparing this to Figure 3, it is easier
to observe the symmetry of the RSSI level recorded by each pair of radios. Regarding this symmetry,
some offsets in all radios were observed. This was expected since the absolute values of the RSSI
registered at each radio module were not calibrated to correct for intrinsic errors related to the received
power meter circuitry.

Particularly, radio R1 presented the largest offsets among all radios, registering a value 4 dB lower,
in average, than the perceived by its neighbors.

In the same plots, temporary power increments that appeared as pulses in the RSSI can be
observed, for example, from the neighbors of radio R4. These pulses represented a fixed increment on
the transmission power level of the nodes during a certain period of time. They did not correspond to
a change of the communication channel as the changes in the RSSI level were perceived by all of the
neighbors, indeed. A closer inspection in the RSSI data recorded by the rest of the radios revealed the
presence of similar power pulses, over shorter periods though.

A visualization of the averaged RSSI data over time also helped in the analysis regarding the
unstable links and some of the events registered on specific days. Figure 5b shows the 24-hour average
RSSI reciprocal values over a month period. Almost all radios presented a relatively stable value over
this period, except for measurements from radio R2, in which the amount of valid registered data was
very low compared to the rest of the radios.
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(a) Instantaneous RSSI registered over one week. (b) 24 h-average RSSI registered over one month.

Figure 5. RSSI data corresponding to each radio as seen by its neighbors.

3.2. Estimation of the Large-Scale Parameters of the Communication Channel

3.2.1. Raw Data Treatment and Nodes Selection

In this work, only NLOS indoor-outdoor data was used for the characterization of the channel,
since they were more significant in number and future expansions of the network would likely include
more radios working in this condition. The RSSI spikes in the recordings were filtered out; that is,
all values above a specific threshold (15 dB above the RSSI mean of that day) were discarded since they
were not attributed to changes in the channel as explained in Section 2.

Some outliers were also evidenced from measurements. For example, the RSSI values registered
between radios R2 and R3, which were only recorded a very few times during one day in the first week.
Therefore, they were excluded to prevent altering the results. This issue could be critical if a small
number of available radios in the network is deployed, as was in the case for the studied power plant.
In this situation, considering radios R2 and R3 could lead to an error of more than 100% in the path-loss
coefficient value. Finally, as evidenced in the instantaneous RSSI plot, radio R1 presented considerably
asymmetry compared to the rest of the radios, so its corresponding measurements were discarded.

After treating the data and removing the outliers, the average of the RSSI data was taken on a
24-h basis.



Sensors 2020, 20, 3076 10 of 15

3.2.2. Path Loss and Shadowing Results

The path loss between nodes, the path-loss coefficient, and shadowing factor were calculated
following the procedure described in Section 2.3. Figure 6 shows the path loss measurements
and the best linear regression based in these measurements for a period of one month divided
in weeks. The measurements data for each week were obtained from the mean result of daily
averages. Every measurement point in the plot is identified with its corresponding node name
and, for each distance, there are at least two nodes data per period representing a reciprocal radio pair
measurement. The residual difference between them are attributed to the RSSI calibration offsets and
to some amount of error during the process of removal of the RSSI spikes and pulses. In this figure,
the measurements regarding radio R1 and its pairs were included to show the high asymmetry level
mentioned earlier. We decided to discard the RSSI recordings from R1 (but not its reciprocal) for the
channel characterization.

From the linear regression fitting of the measured data, the path-loss coefficient and shadowing
deviation were estimated. The path-loss coefficient per-day evolution over a two-month period is
shown in Figure 7. A rising trend in the path-loss coefficient was observed for the second month.
However, the correlation of this increase with the events in the power plant cannot be confirmed due to
non-accessible sensible/confidential information regarding the operation of the power plant, like the
activation of specific machinery, or any spatial change nearby the radios, like the movement of vehicles
or bulky machinery, or either the weather conditions over those days.

Figure 6. Path loss measurements points over distance of the radio pairs and linear regression fittings
during different weeks over the first month of measurements.

1 5 10 15 20 25 30 1 5 10 15 20 25 30

Day

0

1

2

3

4

5

6

7

8

9

10

P
L

 c
o
ef

fi
ci

en
t 1

st
 month 2

nd 
month

Figure 7. Daily variation of the path-loss coefficient (n) over two months of measurements.

A summary of the results is presented in Table 3. The mean value of the path-loss coefficient
during the two-month period resulted in n ≈ 4.6. Deviations from this value showed in the daily
variation of the path loss in Figure 7 reveals the impact of environmental conditions and power-plant
dynamics over time.
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Table 3. Path loss and shadowing deviation results obtained from the RSSI data.

Month 1 Month 2

Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4

n 4.06 3.09 3.11 2.91 5.1 5.9 6.03 7.03
σ[dB] 4.79 5.28 4.22 2.92 4.33 3.85 4.56 5.2

4. Additional Uses of the Long-Term RSSI Data

Besides the propagation channel obtained by using the averaged value of the pre-processed
RSSI data over time, some other useful information can be extracted from monitoring the changes of
the RSSI values over time. For example, since a big amount of data is collected, mean values of the
channel parameters that characterize the default conditions of the plant can be defined and, eventually,
gradually updated, so deviations from these values could be continuously monitored.

Furthermore, the RSSI instantaneous data can also provide practical information from the network
and the measurement environment. Two examples are shown next, one regarding the estimation of the
network link efficiency from the rate of change of the transmitted power level of the radios, and the
other concerning the detection of sources of EMI.

4.1. Detection of Transitory Variations Rate in the Transmission Power Level of the Radios

Since there is a relation between the rise in the transmission power level—characterized by the
occurrence of pulses in the measured RSSI—and the link quality, the rate of occurrence of these pulses
can serve as a metric for identifying possible improvements on the network configuration. For example,
the fact that radio R4 is a critical router in the network - requiring it to always communicate successfully
with the coordinator—could be related to the large time periods in which its transmission power level
was raised, as discussed in Section 3.

Through correlation analysis, the rate of occurrence of pulses can be inferred, and, if this rate is
above an specific threshold, it can be an indicator of a repeated difficulty for a radio node to establish a
connection up to the coordinator. This diagnostic can be used to decide if, for example, an extra node is
required in the network, or if the default transmitted power of a particular node should be increased.

To obtain the rate of occurrence of pulses, we performed the cross-correlation between the
RSSI raw data recordings (only spikes filtered) of what radio RX sees of radio RY and vice-versa.
The obtained cross-correlation coefficient (CC) at zero lag was low if a radio was constantly changing
its transmission power level. When this coefficient was high, the opposite behavior could be inferred
for the transmission power level.

The averaged zero-lag cross-correlation coefficients for each radio RX and its neighbors were
obtained from the following procedure: Spikes from the RSSI raw data of each radio over a month
period were removed. Then, this data was interpolated with one-minute steps, resulting in N-length
vector of RSSI data for each radio. After this, the data was normalized by its average value (rssi).
Next, the zero-lag cross-correlation coefficient for each radio pair, RX-RY, was calculated from:

CCx,y =
N

∑
i=1

rssix(i)rssiy(i). (5)

Finally, the averaged results for each radio was obtained from:

CCx =
∑nx

i=1 CCx,i

nx
, (6)

where nx is the number of the detected neighbors of radio RX.
The resulting CCx for each radio is presented in Table 4. As noticed, all radios presented a relatively

low value except the coordinator. This was expected since it was observed in Figures 3 and 5a that
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those radios changed the transmitting power over time. Radio R4, which was one of the radios which
varied its transmitting power during the largest periods, obtained an average CC of 0.3, which can be
considered low for this test in comparison to 0.74 obtained for the coordinator. To determine if the rate
of transitory pulses is significant, an adequate threshold value can be chosen.

Table 4. Averaged cross-correlation coefficients obtained for all radios, as described by Equation (6).

Radios RC R1 R2 R3 R4 R5 R6

CC 0.74 0.4 0.24 0.25 0.3 0.09 0.43

4.2. EMI Detection

From the examination of the recorded RSSI of each radio done in Section 3, it was already
highlighted the fact that many of the recordings presented sudden changes that resembled spikes in
the received power. It was raised the hypothesis that there was a connection between the spikes and
some source of EMI.

To support this hypothesis, we performed tests to a network installed in an indoor non-industrial
environment [19]. In these tests, a software-defined radio platform was used to generate high-power
radiofrequency continuous wave pulses in the network environment acting as radiofrequency blockers.
From the RSSI recorded in some of the radios, we observed similar spikes than those reported in the
power plant. We then reinforced the idea that those spikes could be related to some source of EMI
with enough spectral energy within the working frequency band of the network. We also verified that
those blockers would only make communication between radios to drop if they were enabled for a
long time (>10 s).

To identify the EMI connection with the RSSI spikes reported by the nodes installed in the power
plant, a secondary information source was used. It was known that possible sources of EMI at the power
plant were the step-up transformers and the high-voltage cables that emerge from the transformers
installed at each of the turbines [23]. These transformers were located at one side of the central building,
opposite to the barrage, where the radio R2 was installed. As described in Table 1, this radio included
a temperature sensor that monitored the oil reservoir of one of the transformers in the plant. When the
transformer is turned on, the oil temperature rises. Thus, the temperature registered by radio R2’s
temperature sensor is an indirect indicator of when this transformer was operative.

Recalling the instantaneous RSSI shown in Figure 3, radio R4 recorded predominantly spikes,
except from the coordinator. We hypothesized that the spikes were direct related to the EM radiation
from transformers and its high-voltage cables. To confirm this, we plotted the RSSI recorded by radio
R4 from each of its neighbors that presented spikes together with the temperature curve from the sensor
connected to radio R2. An example of this is shown in Figure 8 for the R4 neighbor radio R6 during
one of the recorded months. The temperature curve shows explicitly the temperature measurement
recordings including a linear interpolation. The periods in which no temperature measurements
were recorded are attributed to failures in the radio hardware due to battery issues. Nonetheless,
a correspondence between the periods in which the transformer was active and the registered RSSI
spikes are observed. Similar behavior was observed for the rest of the R4 neighbor radios.

This relation was further studied by cross-correlating the transformer temperature response with
the envelope of the RSSI data including the recorded spikes. An example of the RSSI envelope obtained
for radio R6 was included in Figure 8. The envelope was extracted by using a spline interpolation over
a local maxima separated by a window size with a specific minimum number of samples. A similar
procedure to the one described in Section 4.1 was performed to calculate the CC between the RSSI
envelope and the transformer temperature response, although, this time, for several time-lag values.
In all cases, a CC maximum value was observed at around a 10-minute lag approximately, which means
that the temperature curve is delayed from the RSSI envelope. This delay value was expected due to
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the transformer oil reservoir thermal inertia. Similar results were obtained from the other neighbors of
radio R4 except for the coordinator, which did not present spikes.

These results indicated that there might be a measurable relationship between the RSSI collected
by the radios and the interference from high-voltage sources. Fortunately, these interferences did not
show evidence of being capable of dropping a communication link between the radios, which was in
accordance with the tests performed at the WSN installed at the indoor non-industrial environment,
and was also expected from the results presented in related studies [11,17]. Since the radios were able
to register these events through the RSSI spikes, we raise the possibility of using the RSSI information
as a technique for detecting EMI. In other words, the WSN could serve as an EMI sensor. If the
data from all radios is used, it may also be possible to geolocalize the sources of interference [24,25].
This could be useful in industrial scenarios in which there is no previous knowledge of the sources
of interference.

Figure 8. Curves showing the relation between the temperature response of one of the transformers
(black line for interpolation and crosses for measurements) in the plant registered by radio R2 and the
envelope (blue line) of the instantaneous RSSI of radio R6 registered by radio R4 (pink line).

5. Conclusions and Future Work

Knowing the recent adoption of emerging technologies by the industrial sector, this work focused
on the specific issue of the deployment of WSNs in electrical-power-system environments. It is often
the case that the nodes of the network are installed and their settings, such as the number of nodes and
location, are optimized empirically. This common procedure is preferred since a proper characterization
of the propagation channel usually demands a considerable measurement effort, hindered by the
complex structure and the strict safety regulations of power plants. Based on this, we have proposed
a methodology to use the network as a tool for characterizing the propagation channel by using the
available data of the protocol stack. We presented the study case of a hydroelectric power plant,
in which the RSSI recorded by all the nodes of the network was used to obtain the mean path-loss
coefficient and the shadowing statistics during a two-month period. A careful treatment of the data
was performed after the visual inspection of time-domain RSSI information and the understanding
of the mesh network behavior. As a result, we were able to record and analyze the evolution of the
channel characteristics over this period and to detect possible issues in the network. The channel
parameters and other information obtained can be used for the optimization of the WSN or a future
expansion of the network deployed. In addition to this, some examples of the correlation results of the
instantaneous recorded data were presented. This included the detection of some critical nodes where
transmitted power was momentarily increased to ensure a reliable communication link. Moreover,
it was shown that the spikes observed in the RSSI data presented a correlation with the operating
regime of a step-up transformer. Thus, we also raised the possibility of using the WSN as a tool
for EMI detection. In future developments, the results of the communication channel characteristics
can be cross-correlated with other information of the power plant, such as the generated power rate
or with the weather conditions. It is also worth noting that the proposed method can be applied
to other channel propagation models than the single-slope log-distance model used in this work.
Finally, automation of the data processing and big data techniques can be applied to manage larger
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quantities of information from the network considering, for example, a bigger WSN and recordings
from larger periods of time.
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