Double Role of Diphenylpyridine Derivatives as Fluorescent Sensors for Monitoring Photopolymerization and the Determination of the Efficiencies of the Generation of Superacids by Cationic Photoinitiators

Monika Topa¹, Filip Petko², Mariusz Galek², and Joanna Ortyl^{1,2,*}

- ¹ Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland;
- ² Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland;
- * Correspondence: jortyl@pk.edu.pl (J.O.)

Synthesis - Chemicals and general synthetic procedures of 2,6-diphenylpyridine derivatives

All inorganic salts organic reagents, and solvents were analytically pure and used as received. Structure and purity of obtained products were confirmed by NMR and LC–MS analysis.

¹H NMR and ¹³C NMR spectra were recorded in DMSO–D₆ on Avance III HD 400 MHz (Bruker) spectrometer. Chemical shifts were reported in parts per million (δ) and referenced to residual protonated solvent peak (δ =2.50 ppm in ¹H NMR spectra and 39.52 ppm ¹³C NMR spectra).

LC-MS analyses were obtained on LCMS-2020 (Shimadzu) with ESI ionization method.

Synthesis of 2,6-diphenylpyridine derivatives

Example: PT-H

2,6-Dibromopyridine (0.85 mmol, 200 mg), Phenylboronic (2.13 mmol, 260 mg), Tetrakis(triphenylphosphine) Palladium (10 %mol, 98 mg) and K₂CO₃ (2.98 mmol, 412 mg) were dissolved in DMF (3.0 cm³) and H₂O (0.3 cm³) in pressure tube. Oxygen was removed with argon and mixture was heated for 4 hours in temperature 100°C. When reaction was finished, H₂O was added and product was extracted with EtOAc. Organic phase was washed with brine, dried over Na₂SO₄ and concentrated. Product was purified using flash chromatography followed by recrystallization from methanol.

2,6-diphenylpyridine, PT-H	Yield: 0.067 g (34%); ¹ H NMR (400 MHz, DMSO) δ 8.23 (d, 4H), 8.01 – 7.91 (m, 3H) 7.54 (t, 4H) 7.47 (t, 2H)
	¹³ C NMR (101 MHz, DMSO) δ 156.09, 139.14, 138.83, 129.63, 129.25, 127.08, 119.32. MS (ESI) m/z(%): 232.14 (100%, [M+H] ⁺); purity (LC): 99.4%.
2.6-bis(4-	Yield: 0.105 g (42%);
methoxyphenyl)pyridine,	¹ H NMR (400 MHz, DMSO) δ 8.16 (d, J = 8.5 Hz, 4H), 7.91 –
PT-OCH ₃	7.77 (m, 3H), 7.08 (d, J = 8.5 Hz, 4H), 3.84 (s, 6H).
	¹³ C NMR (101 MHz, DMSO) δ 160.63, 155.66, 138.50, 131.76, 128.38, 117.65, 114.58, 55.70. MS (ESI) m/z(%): 292.21 (100%, [M+H] ⁺); purity (LC): 100.0%.

2,6-bis(4-	Yield: 0.160 g (58%);
methylsulphanylphenyl)pyridine,	¹ H NMR (400 MHz, DMSO) δ 8.17 (d, J = 8.5 Hz, 4H), 7.97 –
PT-SCH ₃	7.87 (m, 3H), 7.41 (d, J = 8.5 Hz, 4H), 2.55 (s, 6H).
	¹³ C NMR (101 MHz, DMSO) & 155.49, 140.19, 138.77, 135.56,
S S	127.44, 126.31, 118.64, 14.90.
	MS (ESI) m/z(%): 324.18 (100%, [M+H] ⁺); purity (LC): 99.6%.
2,6-bis(p-tolyl)pyridine,	Yield: 0.139 g (63%);
РТ-СН3	¹ H NMR (400 MHz, DMSO) δ 8.11 (d, J = 8.1 Hz, 4H), 7.91
	(m, 6.6 Hz, 3H), 7.34 (d, J = 8.0 Hz, 4H), 2.39 (s, 6H).
	¹³ C NMR (101 MHz, DMSO) δ 155.97, 139.09, 138.63, 136.46,
	129.83, 126.94, 118.61, 21.34.
	MS (ESI) m/z(%): 260.18 (100%, [M+H] ⁺); purity (LC):
	100.0%.
	Vield: 0.059 g (26%):
2,6-bis(4-fluorophenyl)pyriaine,	1H NMR (400 MHz DMSO) $\delta 8 17$ (d I = 85 Hz 4H) 797 -
P1-F	7.87 (m 3H) 7.41 (d I = 8.5 Hz 4H) 2.55 (s 6H)
	^{13}C NMR (101 MH ₇ DMSO) δ 164 64 162 20 155 06 139 00
	135 53 129 28 119 09 116 21 116 00
	MS (FSI) $m/z(\%)$: 268.16 (100% [M+H]+): purity (I C):
	100.0%
2.6 his(1 guanonhanul)muriding	Viold: 0.151 α (62%):
PT_CN	¹ H NMR (400 MHz DMSO) δ 8.45 (d $I = 8.1$ Hz 4H) 8.17 -
11-CN	$11 \text{ (Wint (400 \text{ Wint2, Divise) (0.0.45 (d,) = 0.1112, 411), 0.17 = }$ 8 11 (m 3H) 7 91 (d $I = 8.2 \text{ Hz}$ /H)
NC A CN	^{13}C NMR (101 MHz DMSO) δ 154.43 142.90 139.54 133.29
	127.92, 121.43, 119.24, 112.22.
	MS (ESI) m/z(%): 282.18 (100%, [M+H] ⁺); purity (LC): 98.3%.
2,6-bis[4-	Yield: 0.192 g (61%);
(trifluoromethyl)phenyl]pyridine,	¹ H NMR (400 MHz, DMSO) δ 8.31 – 8.24 (m, 4H), 8.01 – 7.90
PT-CF ₃	(m, 3H), 7.36 (t, J = 8.9 Hz, 4H).
	¹³ C NMR (101 MHz, DMSO) δ 154.82, 142.68, 139.48, 130.04,
F ₃ C CF ₃	129.72, 127.93, 126.18, 123.39, 121.09.
N N	MS (ESI) m/z(%): 368.18 (100%, [M+H] ⁺); purity (LC): 95.3%.
$2chi_{a}/4$	V: ald: 0.105 ~ (229/).
	$\begin{array}{c} 1100 \text{ (i} 0.103 \text{ (j} 0.276); \\ 111 \text{ NMD} (400 \text{ MHz} - \text{DMCO}) & 0.40 (1 1 - 0.4 \text{ Hz} - 411) & 0.00 \\ \end{array}$
meinyisuipnonyipnenyi)pyriaine,	$^{-1}$ INIVIN (400 IVINZ, DIVISO) 0 8.49 (a, $j = 8.4$ HZ, 4H), 8.22 - 7.00 (m 7H) 2.20 (a 6H)
P1-502CH3	$1.77 (III, 7 \Pi)$, 0.00 (S, 0 Π). 13C NIMD (101 MILT DMCO) S 154 90, 142 40, 141 (7, 120 55
	¹⁰ NIVIK (101 VIIIZ, DIVISO) 0 154.80, 143.49, 141.67, 139.55,
	120.09, 128.18, 128.09, 121.00, 44.00.
	MS (ESI) m/z(%): 388.12 (100%, [M+H] ⁺); purity (LC): 93.8%.

Figure S1: ¹H NMR spectrum of 2,6-diphenylpyridine, *PT-H*.

Figure S2: ¹³C NMR spectrum of 2,6-diphenylpyridine, *PT-H*.

Figure S3: ¹H NMR spectrum of 2,6-bis(4-methoxyphenyl)pyridine *PT-OCH*₃.

Figure S4: ¹³C NMR spectrum of 2,6-bis(4-methoxyphenyl)pyridine *PT-OCH*₃.

Figure S5: ¹H NMR spectrum of 2,6-bis(4-methylsulphanylphenyl)pyridine *PT-SCH*₃.

Figure S7: ¹H NMR spectrum of 2,6-bis(p-tolyl)pyridine *PT-CH*₃.

Figure S9: ¹H NMR spectrum of 2,6-bis(4-fluorophenyl)pyridine *PT-F*.

Figure S10: ¹³C NMR spectrum of 2,6-bis(4-fluorophenyl)pyridine *PT-F*.

Figure S11: ¹H NMR spectrum of 2,6-bis(4-cyanophenyl)pyridine *PT-CN*.

Figure S12: ¹³C NMR spectrum of 2,6-bis(4-cyanophenyl)pyridine *PT-CN*.

Figure S13: ¹H NMR spectrum of 2,6-bis[4-(trifluoromethyl)phenyl]pyridine *PT-CF*₃.

Figure S14: ¹³C NMR spectrum of 2,6-bis[4-(trifluoromethyl)phenyl]pyridine PT-CF₃.

Figure S15: ¹H NMR spectrum of 2,6-bis(4-methylsulphonylphenyl)pyridine *PT-SO*₂*CH*₃.

Figure S16: ¹³C NMR spectrum of 2,6-bis(4-methylsulphonylphenyl)pyridine *PT-SO*₂*CH*₃.

Figure S17: Synthesized compounds in powder form under: (a) sun light; (b) UV 254 nm light.

Figure S18: Synthesized compounds dissolved in acetonitrile under: (a) sun light; (b) UV 365 nm light.

Figure S19: Photolysis of PT-OCH₃ (concentration: 6.87·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Figure S21: Photolysis of PT-CH₃ (concentration: 8.03·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Figure S23: Photolysis of PT-CN (concentration: 8.61·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Figure S20: Photolysis of PT-SCH³ (concentration: 6.38·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Figure S22: Photolysis of PT-F (concentration: 7.34·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Figure S24: Photolysis of PT-CF3 (concentration: 5.56·10⁻⁵ [mol/dm³]) in ACN under 300nm (26mW/cm²).

Photolysis of 2,6-diphenylpyridine derivatives under 320nm (1mW/cm²).

Figure S25: Photolysis of PT-OCH³ (concentration: 6.87·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S27: Photolysis of PT-CH₃ (concentration: 8.03·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S26: Photolysis of PT-SCH³ (concentration: 6.38·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S28: Photolysis of PT-F (concentration: 7.34·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S29: Photolysis of PT-CN (concentration: 8.61·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S30: Photolysis of PT-CF₃ (concentration: 5.56·10⁻⁵ [mol/dm³]) in ACN under 320nm (1mW/cm²).

Figure S32: Changes of fluorescence spectra of the PT-H sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm.

Figure S34: Changes of fluorescence spectra of the PT-SCH₃ sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm, (λ_1 , λ_2 are monitoring wavelengths).

Figure S33: Changes of fluorescence spectra of the PT-OCH³ sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm.

Figure S35: Changes of fluorescence spectra of the PT-CH₃ sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm.

Figure S36: Changes of fluorescence spectra of the PT-F sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm.

Figure S37: Changes of fluorescence spectra of the PT-CF₃ sensor during free-radical photopolymerization of TMPTA monomer under irradiation 320 nm.

Figure 39: Photolysis of HIP/PT-OCH₃ in molar ratio 2:1 in ACN upon exposure to LED 320 nm (1mW/cm²).

Figure 40: Photolysis of HIP/PT-OCH₃ in molar ratio 5.4:1 in ACN upon exposure to LED 320 nm (1mW/cm²).