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Abstract: Digital Inline Holography (DIH) is used in many fields of Three-Dimensional (3D) imaging
to locate micro or nano-particles in a volume and determine their size, shape or trajectories. A variety
of different wavefront reconstruction approaches have been developed for 3D profiling and tracking
to study particles’ morphology or visualize flow fields. The novel application of Holographic Particle
Counters (HPCs) requires observing particle densities in a given sampling volume which does not
strictly necessitate the reconstruction of particles. Such typically spherical objects yield circular
intereference patterns—also referred to as fringe patterns—at the hologram plane which can be
detected by simpler Two-Dimensional (2D) image processing means. The determination of particle
number concentrations (number of particles/unit volume [#/cm3]) may therefore be based on the
counting of fringe patterns at the hologram plane. In this work, we explain the nature of fringe
patterns and extract the most relevant features provided at the hologram plane. The features aid
the identification and selection of suitable pattern recognition techniques and its parameterization.
We then present three different techniques which are customized for the detection and counting of
fringe patterns and compare them in terms of detection performance and computational speed.

Keywords: holographic particle counter; circular Hough transform (CHT); blob detection;
deep convolutional neural network

1. Introduction

In the field of aerosol measurement, the determination of particle number concentrations is a
major topic. Optical Particle Counters (OPCs) represent the most widespread instruments for obtaining
Particle Number (PN), based on the optical detection of spatially separated particles. Recently, Ref. [1]
introduced a Holographic Particle Counter to image a certain sampling volume and count all present
particles at once. Because of the holographic approach, imaged particles are recognized as interference
patterns. In typical holographic particle imaging applications, 3D reconstruction algorithms are
used to reconstruct the particles in the sampled volume [2–6] for the detection, characterization and
visualization of the particles’ fields. OPCs primarily aim to count aerosol particles wherefore wavefront
reconstruction is not strictly necessary. The tracing of particles and the determination of their size is
mostly an ancillary indicator of proper device operation or maintenance need. Under these aspects,
the recognition of particles as valid interference patterns at the Two-Dimensional hologram plane is
sufficient and can be performed with common pattern recognition techniques.
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The herein presented work addresses the design, evaluation and comparison of different pattern
recognition techniques to detect and count particles. To validate the performance of the proposed
recognition techniques on real world measurement data, the Particle Imaging Unit (PIU) developed
in [1] is used, which is the primary application of the presented counting methods. It resolves particles
that are larger than roughly 3–4 µm which corresponds to pixel size of the imager. It is operated
in the same setup as outlined in their work where the imaging unit is set on top of a so called
Condensation Nucleus Magnifier (CNM) which grows particles to a homogeneous and predetermined
size of around dprt = 7µm by means of condensation (particles are condensed by a working
fluid—n-decane in this case—to form individual droplets). Subsequently, these droplets are imaged
in the PIU and yield the particles’ interference patterns. To validate the detection performance of the
presented pattern recognition methods, a referencing Condensation Particle Counter (CPC) (A CPC
is based on the same working principle but with a different optical counting approach.) is taken
for comparison. CPCs output particle counting rates in terms of particle number concentrations
in number o f particles/unit volume = [#/cm3]. Because the generation and supply of particles at an
unambiguous, continuous and reproducible rate is practically impossible, a comparison of number
concentrations is most reasonable. In Figure 1, the PIU is sketched on the right side and its working
principle shown on the left.
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Figure 1. (a) in-line holographic principle where a single particle creates a fringe pattern at the camera
plane (particles are single neclei in droplets); (b) schematic of the in-line holographic counting unit,
subsequently called Particle Imaging Unit (PIU) cf. [1].

Particles in the sampling cell of the PIU are illuminated by a reference plane wave, generated by
a low coherence diode laser. Each particle in the sampling channel acts as a single point-like object
which diffracts the incident plane wave to yield a spherical object wave. Both wave fronts propagate
along the z-axis and interfere in a distance zprt at the detection- or hologram plane.

2. Fringe Patterns and Its Features

When talking about point-like objects such as a particle in Figure 1, the interference pattern is
also referred to as a fringe pattern which is a set of radially symmetric rings or fringes. Constructive
and destructive interference lead to bright and dark fringes at the detection plane whereby the depth
information of the object is carried by the phase information of the pattern.
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2.1. Information Content of Fringe Patterns

The fringe pattern of one particle is described by the following function [3,7]:

Ψprt(x, y) = C1 + C2 · sin
(

π

λ · zprt
(x2 + y2)

)
(1)

where C1 is a constant bias summarizing the intensities of the reference wave and the object wave.
The change of constructive and destructive interference is given by a sine-function with amplitude C2.
The phase information yields the density of fringes—more precisely the spatial rate of change—which
linearly increases along the xy-plane from the center to the outside of the pattern. This spatial rate of
change is known as the fringe frequency [7] with:

ν =
1

2π

d
dx

(
π

λ · zprt
x2
)
=

x
λ · zprt

(2)

where x is the spatial coordinate, λ the wavelength of illumination and zprt the position of the
particle along the illumination path. That key characteristic of the spatial frequency increase is also
known in digital image processing to test filter approaches [8] and will be made use of later in this
report. The radii of fringes and, thus, the extent of a fringe pattern at the detection plane depends on
zprt: particles in a larger distance zprt yield large fringe patterns and close particles lead to smallers.
The range of possible z-distances is determined by the depth of the sampling volume (here the sampling
channel depth zch of the PIU in Figure 1) and are a reason for a certain size distribution of fringe
patterns at the detection plane, depicted in Figure 2a. On the right side, the normalized intensity
histogram is illustrated. The question to address is now what are the smallest and largest possible
sizes of patterns which need to be detected.
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Figure 2. (a) example of a typical detection plane at low particle number concentration with overlapping
fringe patterns and patterns of different extent as a result of the zprt-location in the sampling channel;
(b) the normalized intensity histogram.

2.2. Features to Extract

The formation of fringe patterns can be described by the Angular Spectrum Method (ASM) as
in [9]. A fringe pattern, however, also largely complies with a sinusoidal Fresnel Zone Plate (FZP) [7]
which is primarily used to focus light, based on diffraction. The spacing of zones is such that light
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transmitted by the transparent zones constructively interferes at a desired focus. Holograms follow the
same principle, i.e., its interference rings are caused by a common focus point—the particle. The idea
here is to make use of the analogy to zone plates to easily estimate the extent of fringe patterns.
As the focal length f in Figure 3 corresponds to the distance zprt from the particle to the detection
plane, each zone n may be interpreted as a fringe of radius [10]:

Rn '
√

n · λ · zprt (3)

with λ the wavelength of the illumination light. At the detection plane, constructive interferences
appear as bright fringes and correlate to zones of even multiples of n in a zone plate.

zprt=f

Rn

drn

drn+1

Δdr

Figure 3. Fresnel Zone Plate (FZP) to estimate the radius Rn of fringes and the size of fringe patterns;
∆dr is the distance between two successive zone centers of the same parity (even or odd) and may be
interpreted as the smallest detail to preserve when lowpass filtering fringe patterns; drn is the width of
nth zone.

The smallest circle radius Rmin to be expected with the utilized sampling cell is therefore estimated
by calculating Equation (3) for the first even zone n = 2 and at the smallest possible distance z0

(see Figure 1 right). Conversely, the largest circle radius Rmax is obtained with the largest resolvable
zone nmax at the furthermost possible particle location zprt = z0 + zch, where zch in this case is
the sampling channel depth of the PIU and, thus, the furthermost boundary. With that given Depth
of Field (DoF) in a range of {z0, . . . , z0 + zch}, the smallest circle radius to recognize is found with
Rmin = 19 pxl and the largest with Rmax = 70 pxl, where the outermost meaningful fringe is considered
with n = 10. One practicable goal is now to recognize patterns which consist of a set of concentric
circles of radii in the range of R = 19 . . . 70 pxl.

Another beneficial circumstance provided by the given DoF is that center zones are predominately
dark blobs as apparent from Figure 2. Instead of detecting circles as fringes, center zones may be
targeted as well for the recognition of fringe patterns.

2.3. Intensity Dependence of Fringe Patterns

The intensity of diffracted waves is magnitudes lower than the direct beam, which lead to fringe
patterns of a fairly low contrast. Besides the illumination intensity incident onto particles, the contrast
is additionally affected by a variety of influences, such as the particle size and diffraction properties
of particles and multiple scattering as a function of particle concentrations [1,11]. As a consequence,
a wide span of contrast adds additional difficulty to the feature extraction and its parameterization of
optimal sensitivity.
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3. Methods

3.1. Customized Hough Transform

The Hough Transform (HT) is a very well known feature extraction technique in digital image
processing for detecting arbitrary geometrical shapes such as straight lines, circles or ellipses [12].
It makes use of a parameter space—the so-called Accumulator or Hough Space—where a voting
procedure is carried out over a set of parameterized image objects; here circles with a certain range
of radii. Object edge points, which ultimately form the object’s shape, are transformed into that
parameter space using its respective mathematical representation. The resulting accumulated feature
candidates allow for easier grouping and are therefore robust in the presence of noise, occlusions and
varying illuminations.

3.1.1. Working Principle

The implemented customized HT is based on the work of Atherton and Kerbyson [13,14] where
the edge filtered image is convolved with a complex filter operator:

OPCA(x, y) =

{
ej·ϕxy iff R2

min < x2 + y2 < R2
max

0 otherwise

that forms a Phase Coded Annulus. In this manner, the range of scanned circle radii between Rmin and
Rmax is phase-coded (from 0 to 2π) into a complex accumulator space with the phase coding across the
annulus following a log coding:

ϕxy = 2π

 log
[√

(x2 + y2)
]
− logRmin

logRmax − logRmin

 (4)

In parameter space, constructive accumulation now occurs only at bins where the transformed
candidates intersect with the same phase—the bin which corresponds to the circle’s center. Centers are
then estimated by detecting such bins as peaks and determining its centroids using geometric moments
(see also Section 3.2.3). The sensitivity of that peak detection is in the range of SHT = {0..1} and leads
to fewer detected circles at lower sensitivity levels.

The radii are estimated by simply decoding the phase information from the estimated
center location.

3.1.2. Image Preprocessing

In order to enhance the Signal to Noise Ratio (SNR), and thus improve fringe visibility of the
patterns prior to the edge filtering, a Gaussian smoothing kernel is taken. Since higher order fringes are
not mandatory for the recognition of valid patterns, the filter size of the lowpass kernel and ultimately
its standard deviation σlp is configured to filter the unwanted outermost fringes. The cutoff frequency
of the filter is determined by making use of one of the most common and heuristic measures when
dealing with Gaussian distributions, known as the 3-sigma rule [15]. The smallest feature in an image
unaffected by filtering has to fit within the 3σ or 99% confidence interval. In terms of a fringe pattern,
the distance between fringes of the same parity (even to even or odd to odd) may be interpreted as the
smallest detail to preserve. This distance ∆dr in Figure 3 can be estimated as the total width of two
successive zones (opposite parity) by making again use of the FZP from [16]:

∆dr '
n+1

∑
m=n

drm =
n+1

∑
m=n

√
m · λ · zprt

2m
(5)
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with

drn =
Rn

2n
(6)

Considering that the 99% confidence interval of a Gaussian filter kernel is its total width with
6σlp + 1, the filter size of a Gaussian lowpass filter can be calculated by:

σlp =
∆dr− 1

6
(7)

3.1.3. Parameterization

From Equation (3), it is clear that the radii Rn of fringes are only dependent on their respective
fringe index n within the pattern and the distance zprt from the particle (the wavelength λ is constant).
The range of possible distances zprt is bounded by the sampling channel. Taking into account that
the innermost fringe is principally sufficient for pattern recognition, the range of radii to search may
be truncated which greatly speeds up the HT. In this work, a single-step approach is chosen where
only the innermost fringe at n = 2 is searched with R2 = 22 . . . 33 pxl. Due to the geometries of the
given sampling cell the innermost fringe may span a range of R2 = 23 . . . 32 pxl. A margin of ±1pxl is
added. Analyses showed that especially at high particle densities the overlap of fringe patterns is too
strong to identify higher order fringes. Moreover, its intensities tend to be too low to be detected. Thus,
the Gaussian filter is set to a cutoff of σlp = 2.62 to retain an approximate level of detail of ∆dr ≈ 17pxl.
The sensitivity is set to SHT = 0.93 and was heuristically determined.

3.2. Blob Detection

Blob detection is a subcategory of image matching techniques, aiming to detect regions of
common properties such as a homogeneous brightness or grayscale that thereby distinguish them
from background regions [15,17–19]. Blob detectors can be based on image gradients (contrast),
eigenvalues or templates [19]. Since the mathematical representation of fringe patterns is known,
template matching [20] is a suitable approach.

3.2.1. Blob Extraction Using Template Matching

An artificially generated fringe pattern is of course a viable template to use. However, since
patterns start to overlap strongly at higher particle number concentrations, a mask that emphasizes
the sole center zone is more meaningful. A multi-step template matching is performed using circular
masks of steadily increasing radii Rm:

gTM
m (x, y) =

{
1 iff (x− x̄)2 + (y− ȳ)2 <= R2

m

0 otherwise

with (x̄, ȳ) the circle center and m the current step. The templates equal non-normalized disk-like box
filter kernels that gradually lowpass-filter background noise with increasing radius of the masks and
thereby emphasize regions that match it.

3.2.2. Blob Segmentation

To segment blobs, global thresholding is necessary to find the optimal threshold in the histogram.
Although Otsu’s method is one of the most widespread thresholding techniques due to its good
performance and yet simplicity, it faces clustering problems with unimodal histograms. Small object
areas compared to background areas are the cause for unimodality as reported in [21,22]. Unimodality
however is the major case in our presented work and thus disqualifies methods of that kind of
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clustering thresholding. Instead, with the maximum entropy thresholding [23,24], an entropy-based
thresholding method is utilized that interprets the maximum entropy as indicative of maximum
information transfer.

It is based on the probability distribution function of gray-level histograms. Assuming two
distributions where one belongs to the class of blobs (dark pixels) and the other to the class of
background (bright pixels), then the optimum threshold kopt of inter-class entropy is found at:

kopt = argmax
L1≤k<L2

[Hdrk(k) + Hbr(k)] (8)

where Hdrk is the entropy of dark pixels, based on the probability Pdrk that pixels are assigned to the
class of dark pixels, and Hbr the entropy of bright pixels with its probability Pbr, respectively. A lower
limit L1 and an upper limit L2 confine the threshold kopt to a certain gray-level range for later discussed
reasons. The standard setting is L1 = 0 and L2 = L, where L is the number of gray-levels. With a set of
k = {0, 1, 2, . . . , L− 1} of L gray-levels, the entropies of both classes are calculated as follows [23]:

Hdrk(k) = −
k

∑
l=0

Pdrk(l) · log[Pdrk(l)] and Hbr(k) = −
L

∑
l=k+1

Pbr(l) · log[Pbr(l)] (9)

3.2.3. Blob Labeling and Counting

After thresholding, blobs remain as regions of connected pixels in the binary image and are
typically detected by connected components labeling [25]. All connected or neighboring pixels
corresponding to a separate region are assigned the same labels. The total number of different labels
equals the number of detected blobs and, in the ideal case, also equals the total number of fringe
patterns. In fact, fringe patterns may strongly overlap and yield merged blobs though. In order to
discover such scenarios, blob features are meaningful to assess using different descriptors.

Regional descriptors are very often used in combination with connected components labeling and
are based on mathematical moments of the form [20]:

mpq = ∑
(x,y)∈R

xpyq · I(x, y) (10)

where (p, q) are the indices of the moment and (x, y) the pixels of the region R in gray-scale
images I(x, y). The sum p + q of the indices corresponds to the order of the moment mpq. For binary
images, as given after thresholding, the term I(x, y) equals 1.

Moments carry physical interpretations of shapes such as the mass (area), center of mass or gravity
(centroid), eccentricity or orientation of the region. Therein, the order of the moment determines the
property. The most common are the zeroth order moment m00 as the area A and the first order moment
as the centroid with x̄ = m10/m00 and ȳ = m01/m00. The centroid is also a common feature to locate
or tag regions at its center point. In the given problem statement, it is of particular significance because
the centroid of fringes represents the actual location in the xy- plane (see in Figure 1). In conjunction
with the perimeter P (a boundary descriptor), the circularity is another meaningful descriptor [8]:

circularity =
4πA

P2 (11)

It is a measure independent of size, orientation, and translation, and is 1 for a circle. Merged
blobs form elongated or asymmetric shapes that deviate strongly from the ideal circularity of 1 and
therefore indicate multiple fringe patterns. In this work, it is used as a correction means which adds an
additional count to regions where the circularity is beneath a threshold of circularity ≤ 0.95.
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3.3. Deep Convolutional Neural Network (DCNN)

Convolutional neural networks have made some great advances in visual recognition
tasks, e.g., [26]. While convolutional neural networks have been used for a long time [27], their success
was limited due to the size of available training sets and the size of available networks. A breakthrough
has been achieved by Krizhevsky et al. [28] who were able to supervise a training of a large network
with eight layers and millions of parameters on the ImageNet dataset with 1 million training images.
Since then, even larger and deeper networks have been trained [29].

3.3.1. Working Principle

The network architecture is depicted in Figure 4 and is based on the principle of a U-Net
structure [30]. In total, the network has 23 convolutional layers. It comprises a contracting information
path (left path) and an expansive path (right path). The contracting path follows the architecture
of a convolutional network and includes the successive application of two 3 × 3 convolutions,
each followed by a Rectified Linear Unit (ReLu) for activation and a 2 × 2 max pooling operation for
downsampling. At each downsampling step, the number of feature channels is doubled. Every step
in the expansive path consists of an upsampling of the feature map followed by a 2 × 2 convolution,
a concatenation with a correspondingly cropped feature map from the contracting path, and two
3 × 3 convolutions, followed by a ReLu. Cropping is required due to the loss of boarder pixels at
every convolution.

Figure 4. U-Net architecture example for 32 × 32 pixels in the lowest resolution. Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
The xy-size is provided at the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations.

3.3.2. Training

Input images and its corresponding segmentation maps are used to train the network with the
stochastic gradient descent implementation of [31]. Due to the unpadded convolutions, the output
image is smaller than the input by a constant border width. To minimize overhead and make maximum
use of the Graphics Processing Unit (GPU) memory, large inputs are favored over a large batch
size. Hence, the batch is reduced to a single image. Accordingly, a high momentum (0.99) is used,
such that a large number of the previously seen training samples determine the update in the current
optimization step.
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3.3.3. Data Processing and Evaluation

Data augmentation is the main process to teach the network the desired invariance and robustness
characteristics in case only a few training samples are available. In case of fringe patterns, shift
and rotation invariance are needed as well as robustness to deformations and gray value variations.
The data set is provided by the EM segmentation challenge [32] that was started at ISBI 2012 and
is still open for new contributions. The training data are a set of 30 frames (512 × 512 pixels) from
the challenge. Each image within this data set is delivered with a corresponding fully annotated
ground truth segmentation map for cells (white) and other structures within this challenge (black).
In a second step, artificial data generated with the Aerosol Particle Model (APM) from Brunnhofer and
Bergmann [9] was trained. The network is finally trained on real world measurement samples aside
from simulated data sets.

An evaluation of the U-Net segmentation can be conducted by looking at the model accuracy and
model loss for the training and validation set at hand (a data set as e.g., in Figure 2a).

4. Results

In the following section, the results of the customized HT, blob detection and the DCNN are
compared in terms of detection performance and computational speed and which method is most
suitable for the application in Holographic Particle Counters. For that purpose, an imaged hologram
of a real measurement sample is taken as an example image where the density of fringe patterns is
moderately high. Subsequently, a selected section of that image is used to first assess the HT and blob
detection on an empirical basis. It contains strongly overlapping but also clearly separated fringe
patterns and poses certain complexities to both methods. The neural network needs to be assessed
with multiple validation images instead.

The second part outlines a qualitative comparison of all methods based on a real measured
data set.

4.1. Customized HT

The aforementioned image section in Figure 5b shows mutliple overlaps of several fringe patterns
in the lower right corner and a very strong merge in the lower left part. The dense group of
patterns in the right corner is almost entirely detected except for one missing hit (tagged in orange).
The preprocessed image (Figure 5a) reveals that all innermost fringes are resolved very sharply and
suggests that the sensitivity SHT of the HT should be refined to recognize the missing hit as well.
However, a higher sensitivity was identified to lead to an increase in false-positive hits and was hence
deliberately avoided.

dense group

strong 
overlaps

(a) (b)

Figure 5. Detection result of the customized HT (selected image section) (a) Gaussian filtered fringe
patterns (σlp = 2.62) where all detected fringes are highlighted with circles; (b) the original fringe
patterns. Its determined centroids equal the actual position of the particles in the xy- plane. There is
one missing hit (orange).
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Strong overlaps in the lower left corner are reliably separated. While a distinction of the left
two patterns can be validated through visual inspections and experiences, the right group is strongly
bundled and requires backpropagation means to verify the particles in the reconstructed 3D-volume
Not elaborated in this work, but the actual count of particles in this particular bundle is 4 indeed.

4.2. Blob Detection

The majority of the center spots in fringe patterns is dark. These dark centers equal multi-scale
blobs that are extracted by the multi-step template matching approach. Since the filter kernels of the
templates are non-normalized, a bias in pixel intensities is introduced during filtering. With respect to
the image histogram, it narrows the mainlobe of Gaussian intensity distribution due to lowpass-filtering
and shifts it to brighter intensity values as a consequence of the bias (compare the histograms of
Figure 2b with Figure 6a).

The final histogram is right-sided with a mainlobe relating to the background and a certain
side-distribution to its left which contains the information of the darker center blobs (and fringes of
odd parity).

(a) (b)

dense group

strong 
overlaps

Figure 6. Detection result of blob detection (selected image section). (a) histogram and the optimal
threshold kopt of the whole image, obtained by maximum entropy thresholding. Equation (8) needs to
be confined to a lower threshold limit set to L1 = 0.5 and an upper limit of L2 = 0.84 which is the peak
of the mainlobe; (b) fringe patterns overlaid with the corresponding blobs that result from a threshold
at kopt = 0.74. Four hits are missing (orange).

With maximum entropy thresholding, the optimal intensity threshold kopt is found where
the best contrast is obtained in terms of maximum information transfer. Its indicative measure
is the maximum sum entropy Hmax = max[Hbr(k) + Hdrk(k)]. Figure 6a shows the determination of
the sum entropy with the entropy Hbr of bright pixels and the entropy Hdrk of dark pixels plotted
separately. In this particular example image, the correct optimum threshold is located close to the
left of the mainlobe at kopt = 0.74. However, the algorithm would actually fail to find that threshold
because the background entropy Hbr gains a peak at lower pixel intensities (at k = 0.37) and the actual
maximum sum entropy would be erroneously reached at that particular threshold value. To avoid
such misinterpretations, the thresholding limits L1 and L2 in Equation (8) are introduced. The upper
limit L2 equals the histogram bin of the mainlobe peak and is determined for each sample image
individually. Evident from the given fringe pattern properties, the intensity of blobs will not exceed
background levels and is therefore always located left of the mainlobe. L1 is a rather empirical value
and is set to 0.5 as a threshold for right-sided histograms.
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The unwanted peak in the background entropy Hbr is a system artefact introduced by the imaging
process of particles and can have different reasons. Some were identified as being caused by: (i) higher
background flicker as a consequence of high particle densities. A rising number of particles means
an increase of speckle noise in the sampling cell due to multiple scattering; (ii) fluctuations in the
background that may come from vibrations during the imaging process or instabilities of the light
source; or (iii) an inhomogeneous exposure of the camera with a tendency to poorer illumination at the
detectors corners—cf. [1].

Figure 6b depicts the same image section of fringe patterns like before but overlaid with the
resulting blobs after thresholding. Blue crosses are the centroids of each fringe pattern and correlate to
the xy-position of its respective particle unless the shape of the blob deviates too much from an ideal
circle of 1. In such cases, the assumption is made that at least two fringe patterns are overlapping and
a correction in the count of detected particles is made by +1 for each affected blob. A second cross
nearby the actual blob centroid marks the correction made. Of course, the actual particle position does
not relate to the determined centroids any more. Orange crosses annotate valid fringe patterns which
the algorithm does not recognize. These are missing hits.

4.3. DCNN

The detection performance of the DCNN is evaluated in terms of accuracy and precision.
A computer with an Intel Xeon W-2145 (Skylake-W) 8-Core CPU and a GPU (NVIDIA GeForce
RTX2080 TI) was used. Regarding the training dataset, around 6000 artificially generated holograms
have been modelled with the APM and following 64 images were selected as a validation dataset.
In these datasets, the number of particles steadily increases from 0 to greater than 200 particles.
The number of epochs for the training was 50 and the training time was approximately 4.5 h.

Table 1 shows the accuracy and precision values of the selected samples. In this selection, particles
are ranging from 53 to 180. The accuracy is calculated by the number of True Positives + True Negatives
divided by the total number of predictions. The formula for precision is the number of True Positives
divided by True Positives + False Positives. If no detection of a False Positives takes place, the precision
is 1.0.

Table 1. Accuracy and precision of the DCNN.

Number of Particles Precision Accuracy

53 0.55 0.98
88 0.45 0.91
103 0.36 0.87
155 0.35 0.74
180 0.25 0.69

4.4. Comparison of Detection Performance

A quantification of detection performance on real world measurement data is difficult
considering that the generation of particles and its supply to the measurement instrument
at an unambiguous, steady and reproducable rate is practically impossible. Under these
aspects, the actual particle count in the imaged sampling volume of the PIU is in fact
unknown and badly verifiable. Therefore, a comparison of particle number concentration CN
in number o f particles/unit volume = [#/cm3] is most reasonable wherefore the counting results
obtained by the three detection methods need to be converted according to [1]:

CN =
N(τ)

Q · τs︸ ︷︷ ︸
reference CPC

=
N(V)

Vs︸ ︷︷ ︸
PIU

(12)
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The conversion for the PIU is the measured particle count N(V) over the known sampling
volume Vs of the PIU. In contrast to that, the reference CPC operates at a known flow rate Q and
counts the particles N(τ) in a certain sampling interval τs [33].

In Figure 7, the counting results of the customized HT (top left), the blob detection (top right)
and the DCNN (bottom) are compared in terms of the aforementioned particle number concentration.
The concentration was ramped from 0 to 2030 #/cm3 which, with respect to image processing, means
an average count of roughly 0 to 488 fringe patterns per image. The course of the ideal correlation
is drawn as a black reference line. Three frames per measurement point were acquired because
the sampling interval of both, the PIU and the reference CPC match best—cf. [1]. The measurement
curve is fitted with a polynomial regression function of 3rd order to emphasize the course of
detection points.

(a)

(1)

(2)

(3)

(b)

(4)

(c)

Figure 7. Comparison of the monitored particle number concentration to the counting rates obtained
by the PIU. (a) customized HT; (b) blob detection with maximum entropy thresholding; (c) DCNN
based on a U-Net.

All three counting methods provide good linearity as long as fringe patterns are spatially well
separated (CN < 500 #/cm3). With increasing particle densities, the likelhood of partially overlapping
fringe pattern rises and the detection performance of the DCNN significantly drops. The customized
HT and the blob detection can handle particle number concentrations up to approximately
C = 1250 #/cm3 (or 300 particles per frame) before a regression is noticeable. This implies that
partial overlaps are separable very well with these methods (see also in Figures 5 and 6). At even
higher counting rates, however, the linear correlation is distorted because of the rising occurence of
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coinciding particles which is a well known limitation when optically detecting particles [1]. Fringe
patterns do not only partially overlap any more but start to superimpose to a mutual pattern of fringes
at which neither algorithm is capable of resolving this complex formed patterns (a separation task like
this now requires backpropagation algorithms).

Higher error bars in all methods are mostly related to fluctuations of particle rates during
the measurement.

4.4.1. Details on Customized HT

From Figure 7, the conclusion can be drawn that the counting performance of the customized HT
and the blob detection is very similar in terms of counting rates. The customized HT is more robust
against noise and intensity fluctuations in images and therefore less erroneous though. The detectability
of fringes at even strong overlaps is very high as was found out in Figure 5. Images without particles
are unproblematic and make this method a good candidate for “zero-particle” monitoring.

4.4.2. Details on Blob Detection

Figure 6 illustrates that strong overlaps of fringe patterns lead to merged blobs. This problem
is counteracted with the implemented corrective measure where non-circular blobs are treated as
multiple occurances. Such blobs are double counted which acts to some extent as a coincidence
correction. As a result, the blob detection even gains a slight advantage over the HT at higher particle
densities (3) in Figure 7b.

However, annotations (1) and (2) reveal the weaknesses. They indicate sample points where only
single measurement frames are distorted by high background fluctuations. As a consequence, the
recognition of patterns in these frames fails and yields mainly False Positives, as evident from the
concerned measurement frames in Figure 8. Since blob detection is based on histogram thresholding,
a misinterpreted threshold leads to incorrect detection hits. The fluctuations add low pixel intensity
shares to the histogram which are confused with dark areas of fringe patterns. In the case of
zero-particle frames, the impact of a misinterpreted threshold is vast. Because the histogram is
divided into foreground and background pixels, zero-particle images are more difficult to classify and
prone to misclassifications.

customized HT
Blob Detection

(1) (2)
customized HT
Blob Detection

Figure 8. Zoomed segments of measurement samples from Figure 7b that suffer strong background
fluctuations: (1) zero-particle frame; (2) particle number concentration of CN = 194 #/cm3; while
the customized HT outputs correct hits (only True Positives), the blob detection in both scenarios fails
(also False Positives) because of a misinterpreted intensity threshold in the histogram.

4.4.3. Details on DCNN

At low particle concentrations (<500 #/cm3), the detection performance of the U-Net is
comparable with the other methods. The U-Net is capable of classifying zero-particle images
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as well as images with higher background fluctuations and is as powerful as the HT. The high
accuracy at low particle numbers from Table 1 also confirms these good detection rates. At higher
concentrations though, Figure 7c with annotation (4) and Table 1 illustrate the strong decrease in
detectability. The reason is that, as the number of particle increases, fringe patterns start to overlap
for which the network is insufficiently trained. Although the training dataset contained numerous
occurrences of fringe pattern overlaps, the network was trained specifically for individual occurrences.
Since the accuracy of a DCNN depends on training, an enhanced set of training data would improve
the detection performance at least to a limited extent. Due to the lack of real measurement samples
and its ground truth data, primarily only modelled holograms could be used. Thus, the training relies
on the degree of reality in the Aerosol Particle Model which provided the training data.

Another reason is in the loss of border pixels in every convolution step. Fringe patterns located
at the border of images are therefore likely to be missed. Especially at higher particle concentrations,
the probability of more particles passing at the edge of the detector increases, degrading the detection
performance additionally.

4.5. Comparison of Computational Speed

The comparison of computational speed is also based on the dataset of the ramped particle
number concentration, also used in Section 4.4. The processing time of all three presented counting
methods is examined on every sample point of the measurement curve. These sample points of CN are
directly proportional to the counting rate of particles N as given in Equation (12). Figure 9 compares
the computational speed of the methods as a function of particle number concentration. It has to be
mentioned that both the blob detection and the customized HT are MatLab based algorithms which
are executed on CPU without GPU support. The U-Net, on the other hand, is a Python script running
on a GPU which is optimized for Artificial Intelligence (AI) applications.
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Figure 9. Comparison of computational speed.

The blob detection and the U-Net are nearly constant over all measurement samples. With an
average processing time of roughly 0.45 ms, the blob detection is the fastest method and was selected
as the benchmark to which the other algorithms are normalized for comparison. The U-Net is slightly
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slower, with an average processing time of 0.68 ms or, in terms of computational speed, takes a factor
of 1.56 longer in calculation than blob detection.

The customized HT takes at least six times longer and exhibits a strong dependence on the particle
rate. There, the number of particles may be interpreted as the number of cycles the algorithm has to
iterate to obtain its counting result. It is reasoned in the single transformation of every fringe pattern
occurence into Hough space. On closer inspection, the blob detection behaves similarly due to the
segmentation and labeling of the growing number of blobs. The impact is at a very small and narrow
scale though. Hence, the dependence on the number of particles is negligible.

The U-Net utilizes linear and invariable convolution, pooling and sampling operators and
therefore operates at a steady speed.

5. Conclusions

The novel application of holography in Optical Particle Counters does not nesseccarily require
wavefront reconstruction to reconstruct the particles in the sampled volume. Instead of such
typical 3D- backpropagation algorithms, common pattern recognition techniques are sufficient to
detect and count interference patterns as valid particles at the Two-Dimensional hologram plane.
With a Hough Transform, a variant of blob detection and a Deep Convolutional Neural Network,
three different pattern recognition techniques were customized, validated, and compared in terms of
detection performance of fringe patterns and computational speed. While model data generated from
a holographic Aerosol Particle Model aided the design of the methods, the validation and comparison
were based on real measurement samples conducted with the Particle Imaging Unit from [1].

All three methods show basic suitability as counting methods, though with different limitations
and drawbacks. At higher particle number concentrations, the rising probability of particle coincidence,
as a well known limitation for OPCs, inevitably reduces the detection performance of all methods.
Since it takes into account a sort of coincidence correction, blob detection turns out to be the best method
with respect to counting rates. The superior computational speed with constant processing times (even
without GPU support) enables a Real-Time (RT) application and makes it the best candidate for particle
counters. The customized HT is more robust against noise and intensity fluctuations in images and
shows slightly better precision at the detection of fringe patterns. However, the longer processing times,
which vary as a function of particle rate, disqualify it for practical use. A solution based on a DCNN
only works satisfactorily at low particle rates because only a few overlaps of fringe patterns occur.
Its accuracy and detection performance may be increased by training with greater datasets and real
measurement samples. Although this is a topic for further investigations, similarly high counting rates
are difficult to achieve due to the high amount of different overlapping possibilities of fringe patterns.
The requirement of a GPU is additionally disadvantageous over CPU-executable RT applications.

The herein provided set of measurement samples spans a range of roughly 0–490 particle
counts per measurement frame. Because of coincidence, the used PIU is limited to particle
number concentrations of roughly CN = 2000 #/cm3. Further investigations could therefore focus
on a redesigned sampling cell to provide a larger detection area for better particle distribution, or
smaller fringe patterns at the hologram plane. Both measures would reduce the degree of pattern
overlaps and increase the detection performance of all presented methods, or enhance the limit of
detectable particles. The latter raises additional research questions with regard to the resolving
capabilities of the methods.
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Abbreviations

The following abbreviations are used in this manuscript:

CPC Condensation Particle Counter
PC Particle Counter
HPC Holographic Particle Counter
HPCs Holographic Particle Counters
CNM Condensation Nucleus Magnifier
OPCs Optical Particle Counters
PN Particle Number
HPIV Holography Particle Image Velocimetry
HT Hough Transform
CHT Circular Hough Transform
PIU Particle Imaging Unit
APM Aerosol Particle Model
ASM Angular Spectrum Method
FZP Fresnel Zone Plate
FZPs Fresnel Zone Plates
DIH Digital Inline Holography
3D Three-Dimensional
2D Two-Dimensional
SNR Signal to Noise Ratio
DNN Deep Neural Network
DCNN Deep Convolutional Neural Network
LoG Laplacian of Gaussian
DoF Depth of Field
ReLu Rectified Linear Unit
AI Artificial Intelligence
RT Real-Time
GPU Graphics Processing Unit
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