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Abstract: Micro-Doppler generated by the micromotion of a target contaminates the inverse synthetic
aperture radar (ISAR) image heavily. To acquire a clear ISAR image, removing the Micro-Doppler is an
indispensable task. By exploiting the sparsity of the ISAR image and the low-rank of Micro-Doppler
signal in the Range-Doppler (RD) domain, a novel Micro-Doppler removal method based on the
robust principal component analysis (RPCA) framework is proposed. We formulate the model of
sparse ISAR imaging for micromotion target in the framework of RPCA. Then, the imaging problem
is decomposed into iterations between the sub-problem of sparse imaging and Micro-Doppler
extraction. The alternative direction method of multipliers (ADMM) approach is utilized to seek
for the solution of each sub-problem. Furthermore, to improve the computational efficiency and
numerical robustness in the Micro-Doppler extraction, an SVD-free method is presented to further
lessen the calculative burden. Experimental results with simulated data validate the effectiveness of
the proposed method.

Keywords: ADMM; ISAR; micro-Doppler; RPCA.

1. Introduction

Inverse synthetic aperture radar (ISAR) can provide two-dimensional (2D) high-resolution images
of non-corporative moving targets, and it plays an important role in military and civil applications
such as automatic target recognition (ATR) and target classification [1–3]. The conventional ISAR
imaging system achieves high range resolution by emitting wideband waveforms, while the high
cross-range resolution is acquired by a large aspect angle variation of the target with respect to the
line of sight (LOS) [1]. Motions between radar and target include translational motion along LOS
and rotation around the equivalent imaging center. As the translation brings about range profile
misalignment and phase defocusing leading to failing in imaging, the processing of translation
compensation must be performed in advance to preserve the effective rotational motion of the target
before azimuth compression for ISAR imaging. Supposing the translation compensation has been
effectively accomplished, satisfactory focused imagery with higher cross-range resolution can be
achieved by using range-doppler algorithm (RDA) under the assumption of uniform rotation in longer
correlation processing time (CPI) [4]. However, the assumption may hardly be satisfied with some
practical applications. When the radar works in multi-function mode, the echo data collected from
short CPI or discontinuously sparse aperture (SA) is often limited or incomplete. In these cases,
RDA and the methods based on modern spectrum estimation [5,6] fail to provide clear images of
the target because of the high-level sidelobes resulting from zero padding, data interpolation and/or
model mismatch.
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To overcome the drawbacks of these methods, compressive sensing (CS) [7–9] technique has been
introduced in high-resolution ISAR imaging, and plenty of works were reported recently [10,11] where
the basic idea behind these works is to formulate ISAR imaging as a sparse signal recovery problem.
The CS theory states that a signal having a sparse representation can be recovered exactly from a small
set of linear, non-adaptive measurements. For the ISAR image, the dominant scattering centers of a
target occupy only a few cells in the imaging plane, which exhibits a sparse feature that paves the way
to apply CS to achieve high-resolution ISAR imagery.

It is often that the target or some structures on it are vibrating or rotating aside from
the bulk motion. These vibrations or rotations are referred to as micromotion dynamics [12].
Additionally, the micromotion dynamics also exist in nonrigid targets, such as the rotating
propeller of a fixed-wing aircraft, the rotating rotor blades of a helicopter, a rotating antenna, etc.
Target micromotion introduces additional time-varying frequency modulations on the radar echo
and generates sidebands about the Doppler frequency induced by the main body, which is known as
the Micro-Doppler effect [12,13] (also called the Micro-Doppler interference or micromotion signal or
Micro-Doppler signal). In such a situation, the ISAR image of the main body is usually contaminated,
particularly when the Micro-Doppler interference is emphatic. Consequently, Micro-Doppler extraction
and separation must be properly conducted in ISAR imaging for the target with micromotion parts
to acquire a clear image of the main body, and there has been increasing attention in this study in
recent years.

For micromotion scatterer with a large rotating radius, it generates a Micro-Doppler signal, which
exhibits sinusoidal modulation in the spectrogram [14,15] after range compression, whereas the doppler
signal from the main body scatterer shows the shape of straight lines. Based on the difference of shape in
the spectrogram, some approaches have been proposed to eliminate the Micro-Doppler signal. In [13],
Li and Ling proposed an adaptive chirplet decomposition algorithm to extract the Micro-Doppler signal
by chirp-rate thresholding with high computation burden. Zhang et al. extracted the Micro-Doppler
signal by using the Hough transform in the spectrogram, which its performance heavily depends
on the quality of the ISAR image [16]. In [17], a spectrogram cancellation method was employed to
implement the separation of the Micro-Doppler signal from the main body signal under the assumption
that the amplitude of the main body signal is invariable, however, this assumption is not always met
in practice leading to its performance degeneration. In [14], a method based on sparse representation
using multiple sparse Bayesian learning (MSBL) was introduced to preserve the main body signal
whereas the micromotion scatterer signal was suppressed. In [15], the joint sparsity feature of the main
body signal in the spectrogram was exploited, and the markov chain Monte Carlo (MCMC) sampling
in the Bayesian inference was utilized to capture this feature. In this way, the main body spectrogram
was estimated from the approximate posterior, and a clear image of the main body can be realized
by cross-range compression without the interference of the Micro-Doppler signal. However, MCMC
sampling suffers from a heavy computational burden.

For a micromotion scatterer with a small rotating radius which is less than half of the range
resolution, the Micro-Doppler signal has the same straight-line shape as the main body signal in the
spectrogram. Therefore, the methods mentioned above become invalid in this circumstance. Some
methods based on sparse time-frequency representation (STFR) have been developed to address
the problem of the Micro-Doppler signal removal in this situation. L.Stankovic et al. proposed a
method based on L-statistics which performs the short-time Fourier transform (STFT) to the echo
in the contaminated range cell and applies L-statistics estimation to the STFT entries to remove the
micromotion signal [18]. However, the main drawback is that it may bring about a high sidelobe
level in the imaging result. In [19], a method based on histogram analysis was proposed to remove
the Micro-Doppler signal. In [20], the joint sparsity of frequency representation of the main body
signal was exploited and a novel method under the sparse representation framework was developed
to preserve the components of the main body signal whereas the interference of the micromotion
counterparts in time-frequency domain was eliminated. Besides these efforts, another line of works



Sensors 2020, 20, 2989 3 of 18

based on the empirical mode decomposition (EMD) and its variants concentrate on the problem of
Micro-Doppler separation, but these methods lack theoretical analysis [21–24].

Low-rank matrix recovery (LRMC) theory [25,26], is a new signal processing method which is
proposed in the framework of CS theory. LRMC has attracted a lot of attention over the past few years
and has been explored for a wide range of applications, such as medical imaging [27], hyper-spectral
imaging (HIS) [28], synthetic aperture imaging (SAR) [29], and digital image processing, etc. The basic
idea behind this theory is to recover a matrix that is the sum of a low-rank matrix L and and a sparse
matrix S from a small set of linear measurements of the form Y = A(L + S), where A involves a linear
operator. This model subsumes three important classes of signal recovery problems: CS, affine rank
minimization, and RPCA. The availability of RPCA has been examined, and a variety of convex
relaxation methods have been proposed to solve this problem.

In this paper, we establish a new optimization problem for ISAR imaging for a target with
micromotion parts, especially for rotating parts, under the framework of RPCA theory. This work
is inspired by the inherent outstanding performance of PRCA theory. To be specific, we combine
the sparsity of ISAR image and the low-rank property of the matrix associated with Micro-Doppler
interference in the range-doppler (RD) domain, which will be investigated and verified by using
singular value decomposition singular-value decomposition (SVD) [30] method in the following section.
The presented problem involves two tasks, one is ISAR imaging of the main body and the other is
Micro-Doppler signal separation. To figure out the multitask problem, we adopt the idea of a traditional
alternate minimum (AM) algorithm, which solves the two subproblems alternately, to develop an
efficient numerical algorithm. In this way, the solution to the original problem is decomposed into two
individual subproblem. To be specific, in the stage of ISAR imaging, the signal components associated
with the micromotion scatterers are taken away from the sampled echo data. Meanwhile, the signal
components related to the main body are subtracted from the sampled echo data in the stage of
Micro-Doppler signal separation as well. We argue that these manipulations may promote the sparsity
of ISAR image and enhance the low-rank trait of the matrix associated with Micro-Doppler signal,
respectively, in the process of iteration. Each relevant subproblem is solved under the ADMM [31,32],
framework. Furthermore, an SVD-free algorithm, which only twice matrix inversion operations are
needed whereas SVD computation is no longer required, is developed to cope with the subproblem
associated with the stage of Micro-Doppler signal separation. Compared with the SVD-aided method
which requires time-consuming SVD computation, this approach has the superiority in promoting
computational efficiency because it avoids SVD computation. Owing to the sparsity of ISAR images
incorporated with the low-rank character of Micro-Doppler signal matrix, the interference of the
micromotion counterparts is eliminated to the utmost extent, and the clear ISAR image of the target
main body is yielded.

The rest of this paper is organized as follows. Section 2 introduces the signal mode of ISAR
imaging for micromotion targets and presents the formulated optimization problem for it. Section 3
provides two proposed Algorithms. Section 4 evaluates the effectiveness of the proposed methods by
experiments on simulated data. Finally, conclusions are drawn in Section 5.

2. Signal Model and Problem Formulation

Without loss of generality, we focus on the imaging model of micromotion target on the 2D
imaging plane, the subsequent discussions are based on the following assumptions.

1. Point-scattering model can be satisfied, i.e., the radar echo is assumed to be a sum of
dominant scatterers.

2. The radar echo satisfies the stop–go assumption, i.e., the target is assumed to be static during
one pulse duration.

3. The 2-D imaging plane is unchanged in CPI.
4. The translational motion is compensated completely, thus, the target is equivalent to rotate

around the image center, which indicates that the target can be stated as a turntable model.
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5. The change of aspect angle of the target is so small that the instantaneous range can be
approximated by its first-order Taylor expansion.

6. The range migration among the scatterers is so small that it can be ignored in CPI.

2.1. Signal Model

Figure 1 shows the ISAR imaging geometry for micromotion target. XOY is the imaging plane,
scatterer from main body P(xQ, yQ) rotates uniformly around imaging center O with the radius RQ,
angular velocity ω0 and the initial angle θ0. Scatterer from rotating part Q(xP, yP) rotates around O′

with radius rP, angular frequency ωP and the initial angle θP. The dotted lines show the change of
imaging geometry after a small angle rotation of the main body.
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Figure 1. The inverse synthetic aperture radar (ISAR) imaging geometry for a micromotion target.

To obtain high range-resolution, ISAR imaging system usually transmits linear
frequency-modulated (LFM) waveform. After the preprocessing of demodulation and range
compression, the radar echo of a scatterer can be represented as

s (tm, tr) = σ · sinc
(

B
(
tr −

2R∆(tm)

c
))

· exp
(
− j

4π fc

c
R∆(tm)

)
,

(1)

where B, fc and c denote the bandwidth, carrier frequency, and light speed, respectively, tm and
tr denote the slow and fast time, respectively, σ and R∆(tm) represent the reflection coefficient and
instantaneous range between the scatterer and the radar at the slow time tm. sinc(x) = sin(πx)/(πx).
From Figure 1, we find that the distance between main body scatterer Q and reference point O satisfies

R∆Q(tm) = RQ sin(ω0tm + θ0) (2)

Following the fact that the change of the aspect angle of main body covering in short CPI is small,
the instantaneous range R∆Q(tm) can be approximated by its first-order Taylor expansion as

R∆Q(tm) = RQ + xQ sin(ω0tm) + yQ cos(ω0tm)

= RQ + xQω0tm + yQ (3)
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According to (3) and ignoring the initial phase θQ, the Doppler frequency of the scatterer Q from
main body can be given by

fdQ ≈
2ω0

λ
xQ (4)

where λ = c/ fc, (4) suggests the scatterer from main body possesses constant Doppler information
approximately.

It can be seen from Figure 1 that rP � R0 and RP � R0, then the distance between micromotion
scatterer P and reference point O satisfies

R∆P(tm) = RP sin(ω0tm + θ0) + rP sin(ωPtm + θP) (5)

According to (5) and ignoring the initial phase θP, the Doppler frequency of the scatterer P can be
described as

fdP ≈
2ω0

λ
xP +

2ωP
λ

rP cos(ωPtm) (6)

Therefore, the Micro-Doppler of a rotating scatterer is depicted as a sinusoidal FM signal. It is
worthwhile to note that, fdP, which is defined as Micro-Doppler signal, will introduce sideband
interference around the main body doppler in RD plane and degrade the quality of main body
ISAR image.

Based on the assumption that slant-range migration through resolution cells (MTRC) from main
body scatter is so small that it can be neglected, therefore, after range alignment, according to (1), (3)
and (5), the radar echoes reflected from the target can be represented as

s(tm, tr) =
NQ

∑
Q=1

σQ

· sinc
(

B
(
tr −

2yQ

c
))
· exp

(
−j

4π fc

c
xQω0tm

)
+

NP

∑
P=1

σP · sinc
(

B
(
tr −

2yP
c
− rP sin(ωPtm + θP)

))
× exp

(
−j

4π fc

c
(

xPω0tm + rP sin(ωPtm + θP)
))

+ χ(tm, tr)

(7)

where σQ and σP denote the signal amplitudes from the Q-th main body and P-th rotating scatterer,
respectively, NQ and NP denote the number of scatterers from main body and rotating parts,
respectively. χ(tm, tr) is gaussian noise.

For analysis simplicity, we rewrite (7) as (8) in the following

s(tm, tr) =
NQ

∑
Q=1

σ
′
Q · exp

(
−j

4π fc

c
xQω0tm

)

+
NP

∑
P=1

σ
′
P · exp

(
− j

4π fc

c
(
xPω0tm

+rP sin(ωPtm + θP)
))

+ χ(tm, tr), (8)

where σ
′
Q defined as σ

′
Q = σQ · sinc

(
B
(
tr −

2yQ
c
))

, and σ
′
P defined as

σ
′
P = σP · sinc

(
B
(
tr − 2yP

c − rP sin(ωPtm + θP)
))

are equivalent magnitudes from main body and
rotating parts signals, respectively.
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We can find that σ
′
Q is slow time invariant, while σ

′
P can be depicted as a sinusoid in tm-tr domain.

The discrete form corresponding to (8) can be stated as

s(m, n) =
NQ

∑
Q=1

σ
′
Q(m, n) · exp

(
−j

4π fcxqω0

c · PRF
m
)

+
NP

∑
P=1

σ
′
P(m, n) · exp

(
− j

4π fc

c

(
xPω0

PRF
m

+ rP sin
( xPωP

PRF
m + θP

)))
+ χ(m, n)

(9)

where PRF is pulse repetition frequency of the radar system, m = 0, 1, · · · , M− 1 and n = 0, 1, · · · , N− 1
denote the indices of the slow and fast time, respectively. M and N are the number of range and
doppler cells of the full aperture data. χ(m, n) is the discrete form of Gaussian noise.

According to (9), the mathematical model for sparse aperture ISAR (SA-ISAR) imaging can
therefore be given as the following linear equation:

S = F(X + D) + N (10)

where S ∈ CL×N , F ∈ CL×K, X ∈ CK×N , D ∈ CK×N and N ∈ CL×N denote the range compressed radar
echo with SA, the partial Fourier matrix, the unknown pure ISAR image, the adverse Micro-Doppler
interference corresponding to the second term in (9), and the complex Gaussian noise, respectively.
L and K are the number of pulses and the reconstructed doppler frequency cells, respectively. The
(l, k)-th element of F is exp(−j2π lk

N ). Our aim is to recover X from the observed data S.

2.2. Preliminary

In this subsection, we investigate the property of Micro-Doppler effect in RD domain and reveal
the fact that D has a low-rank feature. It is known that the truncated singular value decomposition
(TSVD) technique offers the rank-r approximation of a given matrix by using the r-dominated
singular values. Herein, we analyze the low-rank property of D by using TSVD and the details
are given below. By applying SVD to a given matrix D, we have D = UΛVH, where (·)H denotes
conjugate transposition operator, U ∈ CK×K and V ∈ CN×N are orthogonal matrices, Λ ∈ RK×N

is is a diagonal matrix with singular values of D. comprising non-negative singular values of D
in decreasing order. Then, the approximated matrix of D, denoted as Dr = UrΛrVr

H, where
Ur = U(:, 1 : r), Vr = V(:, 1 : r) and Λr ∈ Rr×r is a diagonal matrix with its diagonal elements
are the r largest singular values of D. To quantitatively evaluate the difference between D and Dr,
Root Mean Square Error (RMSE), which is defined as RMSE = ‖D−Dr‖F/‖D‖F, is introduced, ‖ · ‖F
denotes Frobenius norm. In this simulation, the number of rotating scatterers, the fast and slow time
samples were set as 2, 128 and 128, respectively, the received data S were generated according to (9),
the normalized singular values of it are shown in Figure 2. We can see that the distribution of the
singular values decays fast. The RMSE of D and Dr is shown in Figure 3, we can see that, D can be
well approximated by a matrix Dr, meanwhile, when the top 40 largest singular values are employed
to compute Dr, the reconstruction error is very small indicating that Dr is capable of capturing the
most energy of D. As mentioned above, we argue that both Figures 2 and 3 shed light on the low-rank
of D. It is pointed out that the prior knowledge about the Micro-Doppler signal is the basis of our
approaches proposed in this paper.
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Figure 2. Singular value distribution of simulated ISAR data.
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Figure 3. Root Mean Square Error (RMSE) values between the rank-r approximated matrix Dr and the
original matrix D with respect to different values of r.

2.3. Proposed Optimization Problem

To reconstruct the ISAR image from SA sampled data, prior knowledge about the ISAR image
and Micro-Doppler interference are utilized to formulate the ISAR imaging problem in this subsection.

Recalling (10), to restore the ISAR image from the down-sampled echo data with Micro-Doppler
interference, we propose the following optimization problem based on RPCA theory:

(X∗, D∗) = argmin
X,D

rank(D) + λ· ‖ X ‖0

s.t. S = F(X + D)
(P0)

where ‖ X ‖0 denotes `0 norm. rank denotes rank function and λ > 0 is is a regularization parameter.
Unfortunately, P0 is a NP-hard problem due to the existences of rank(·) function and ‖ · ‖0 norm.

Many efforts have been made to resolve this problem, we relax P0 by substituting rank(D) and ‖ X ‖0

as ‖ D ‖∗ and ‖ X ‖1 to interpret our work in the rest of this paper. Thus, we have

(X∗, D∗) = argmin
X,D

‖ D ‖∗ +λ· ‖ X ‖1

s.t. S = F(X + D)
(P1)

where ‖ · ‖∗ denotes convex nuclear norm, which is defined as ‖ X ‖∗= trace(
√

XHX), herein
trace denotes matrix trace. ‖ · ‖1 denotes the convex `1 norm. Wright et al. [26] proved that the
convex relaxation formation P1 can exactly recover the low-rank and sparse matrices under some
mild conditions.
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3. Proposed Algorithms

In this subsection, we design two efficient numerical algorithms to seek a solution for the
problem P1.

3.1. Algorithm 1

Inspired by the ideal of the AM method, we decompose P1 into two subproblems described
as follows

X(k+1) = argmin
X

‖ X ‖1 (11)

s.t. FX = SX , wherein SX = S− FD(k)

D(k+1) = argmin
D

‖ D ‖∗ (12)

s.t. FD = SD , wherein SD = S− FX(k+1)

It is worthwhile to point out that, as shown in (11) and (12), for the (k+1)-th iteration, we subtract
the last estimated D(k) from S in updating X(k+1), meanwhile, the updated X(k+1) is subtracted from
S in updating D(k+1). In this way, the sparsity of X will be promoted and the low-rank of D will be
boosted in the current iterative process.

The problem of (11) and (12) can be expressed in the unconstrainted forms as following:

X(k+1) = argmin
X

λx ‖ X ‖1 +0.5 ‖ SX − FX ‖2
F, (13)

wherein SX = S− FD(k)

D(k+1) = argmin
D

λd ‖ D ‖∗ +0.5 ‖ SD − FD ‖2
F, (14)

wherein SD = S− FX(k+1)

where λx and λd are regularization parameters.

Remark 1. The regularization parameter plays an important role in indicating a tradeoff between the data
fitting error and the sparsity of the solution. The regularization parameter selection is still an open problem,
in [33], the authors presented a two-stage approach to select the regularization parameter which is not discussed
further herein for brevity. We apply this method to select the regularization parameter in this paper.

1. solution for (13)

To solve the optimization problem (13), the ADMM method is employed, and the main procedures
are derived in the following. For the sake of simplicity, the superscripts (k) and (k+1) are omitted.

To apply the ADMM method, introducing an auxiliary variable X̃ ∈ CK×N and the Lagrange
multiplier dX ∈ CK×N is required. Then we split the variable X as X = X̃, having the augmented
Lagrangian function as

J = max
dX

min
X,X̃

λx ‖ X̃ ‖1 +0.5 ‖ SX − FX ‖2
F

+0.5β ‖ X− X̃ + dX/β ‖2
F (15)

where β > 0 is a step size.
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For the problem (15), we alternately solve the following subproblems as

X := argmin
X

1
2
‖ SX − FX ‖2

F

+
β

2
‖ X− X̃ + dX/β ‖2

F (16)

X̃ := argmin
X̃

λx ‖ X̃ ‖1 +
β

2
‖ X− X̃ + dX/β ‖2

F (17)

dX := dX + β(X− X̃) (18)

Problem (16) involves a quadratic cost and leads to a closed-form solution, which can be obtained
by setting the first-order derivative of its objective function with respect to X as zero. We obtain

X :=
(

FHF + βI
)−1
×
(

FHSX + βX̃ + dX
)

(19)

Problem (17) has a closed solution involving `1 norm shrink operator [31]:

X̃ := shrink (X + dX/β, λx/β) (20)

where shrink(x, ζ) = sign(x). ∗max (|x| − ζ).
2. solution for (14)

For the problem (14), the splitting variable D = D̃ ∈ CK×N and the Lagrange multiplier
dD ∈ CK×N are required. Then we have the augmented Lagrangian function as:

J = max
dD

min
D,D̃

λd ‖ D̃ ‖∗ +0.5 ‖ SD − FD ‖2
F

+ 0.5τ ‖ D− D̃ + dD/τ ‖2
F

(21)

where τ > 0 is a stepsize.

For problem (21), we alternately solve the following subproblems:

D := argmin
D

1
2
‖ SD − FD ‖2

F

+
τ

2
‖ D− D̃ + dD/τ ‖2

F (22)

D̃ := argmin
D̃

λd ‖ D̃ ‖∗ +
τ

2
‖ D− D̃ + dD/τ ‖2

F (23)

dD := dD + τ(D− D̃) (24)

Problem (22) has a closed solution, which is represented as

D :=
(

FHF + τI
)−1
×
(

FHSD + τD̃ + dD
)

(25)

The problem (23) involves a nuclear norm minimization problem, which can be solved by SVT
computation in [30]:

D̃ := svt (D + dD/τ, λd/τ) (26)

where svt(X, ζ) = U · diag ([max(ζ, 0)]) ·VH, wherein X = U · diag(ζ) ·VH is the SVD of X.

The whole algorithm is summarized in Algorithm 1 (Micro-doppler Extraction based on RPCA).
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Algorithm 1 ME-RPCA.

1: Input: S, F, λx, λd, β, τ.
2: Initialization: X(0) = FHS, X̃(0) = dX(0) = 0K×N , D(0) = D̃(0), k = 0.

% outer iteration
3: while not converged do

4: SX = S− FD(k) % inner 1 iteration
5: while not converged do

6: update X(k+1) using (19);
7: update X̃(k+1) using (20);
8: update dX(k+1) using (18);
9: end while

10: SD = S− FX(k+1) % inner 2 iteration
11: while not converged do
12: update D(k+1) using (25);
13: update D̃(k+1) using (26);
14: update dD(k+1) using (24);
15: end while
16: k = k+1.
17: end while
18: Output: X.

3.2. Algorithm 2

From (26), it can be seen that, to solve the subproblem (14), a SVD computation is required for
the svt operator in each iteration. However, it is time and memory-consuming to perform SVD on a
large-scale matrix. To address this issue, N. Srebro has demonstrated that the following relationship
holds true [34]:

‖ D ‖∗= min
U,V

1
2
(
‖ U ‖2

F + ‖ V ‖2
F
)

s.t. D = UVH
(27)

where U ∈ CK×d, V ∈ NK×d, and usually d ≤ min(K, N). With this proxy, we replace ‖ D ‖∗ with (27)
in (14), having

D, U, V = argmin
D,U,V

0.5λd
(
‖ U ‖2

F + ‖ V ‖2
F
)

+ 0.5 ‖ SD − FD ‖2
F

s.t. D = UVH

(28)

3. solution for (28).

The augmented Lagrangian form of (28), after simple mathematic manipulation, is

J = argmin
D,U,V

λd

(
‖ U ‖2

F + ‖ V ‖2
F

)
+ ‖ SD − FD ‖2

F

+ γ ‖ D−UVH + D̃/γ ‖2
F

(29)

where D̃ denotes Lagrange multiplier, γ > 0 is the stepsize.

According to (29), the resulting ADMM steps are expressed as follows:

D := argmin
D

‖ SD − FD ‖2
F

+γ ‖ D−UVH + D̃/γ ‖2
F (30)

U := argmin
U

λd ‖ U ‖2
F +γ ‖ D−UVH + D̃/γ ‖2

F (31)
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V := argmin
V

λd ‖ V ‖2
F +γ ‖ D−UVH + D̃/γ ‖2

F (32)

D̃ := D̃ + τ1(D−UVH) (33)

where τ1 > 0 is a stepsize.

Obviously, all of the problems associated with (30), (31) and (32) are least squares problems, so
that their optimal solutions can be obtained by setting the first-order derivative of corresponding
objective functions with respect to the target variables. After some manipulations we have

D :=
(

FHF + γI
)−1 (

FHSD + γUVH − D̃
)

(34)

U := (D̃ + γD)V
(

λdI + γVVH
)−1

(35)

V := (D̃ + γD)
HU
(

λdI + γUHU
)−1

(36)

The whole algorithm is summarized in Algorithm 2 (Micro-doppler Extraction based on Low
Complexity RPCA).

Algorithm 2 ME-LCRPCA.

1: Input: S, F, λx, λd, γ, τ1, d.
2: Initialization: X(0) = FHS, X̃(0) = dX(0) = 0K×N , D(0) = D̃(0), U(0) = rand(K, d), V(0) =

rand(K, d), where rand denotes random number, k = 0.

% outer iteration
3: while not converged do

4: SX = S− FD(k) % inner 1 iteration
5: while not converged do

6: update X(k+1) using (19);
7: update X̃(k+1) using (20);
8: update dX(k+1) using (18);
9: end while

10: SD = S− FX(k+1) % inner 2 iteration

11: while not converged do

12: update D(k+1) using (34);
13: update U(k+1) using (35);
14: update V(k+1) using (36);
15: update D̃(k+1) using (33);
16: end while
17: k = k+1.
18: end while
19: Output: X.

Remark 2. We have carried out many experiments and the simulation results show that the proposed
Algorithm 2 converges and can achieve satisfying performance when d is selected as 2–8.

3.3. Convergence Analysis

We examined the convergence behavior and computational complexity of our proposed methods.
It has been proved that the ADMM approach endows outstanding performance for solving convex
problems with linear equation constraints, and the converge is guaranteed under mild conditions.
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From the previous analysis, our proposed algorithms are formulated within the AM framework in
which the ADMM approach is incorporated to solve the two relevant convex subproblems, so the
convergence of our algorithms is guaranteed.

We compare their computation complexity. For Algorithm 1, a SVD calculating is required to
update D̃ in (26), which occupies the largest complexity cost, o (min(K, N)× K× N). For Algorithm 2,
calculating (35) and (36) is needed to update D, which involves twice matrix inversion, having a time
cost 2× o(d3). Recalling that d herein is a very small number, so that the costs of calculating (35) and
(36) are extremely low. We make a statement with confidence that the Algorithm 2 is superior to
Algorithm 1 when considering the computation cost.

4. Experiments

In this section, several experiments based on simulated data were carried out to demonstrate the
effectiveness of the proposed algorithms. Moreover, all the experiments are coded by Matlab (version
2014a) and run on a PC with Intel(R) Core (TM) 3.1GHz i7 CPU and 8.0 GB RAM. In addition, for
both Algorithms 1 and 2, they stop when the outer iteration, inner 1 iteration, and inner 2 iterations
satisfy the following criterions ‖ Xk+1 − Xk ‖2

F / ‖ Xk ‖2
F< 10−4, ‖ Xk+1 − Xk ‖2

F / ‖ Xk ‖2
F< 10−4 and

‖ Dk+1 −Dk ‖2
F / ‖ Dk ‖2

F< 10−4, respectively, and the maximum iteration number of outer, inner 1
and 2 iterations are set as 160, 5 and 5, respectively.

The target main body embraces five scatterers, and besides those, it has two rotating scatterers.
The translational motion is assumed to be compensated completely, and only the rotational motion
of the main body with a rate of 0.02 rad/s is preserved. The two rotating scatterers rotate around
the origin with a radius of 6 and 4 m, and with rotating frequencies of 10 and 5 Hz, respectively.
It is assumed that the radar system uses X-band, and the center frequency, bandwidth, PRF, and
pulse width are 20 GHz, 0.3 GHz, 100 Hz, and 100 µs, respectively. The full data are composed
of 128 azimuth samples, and each of them contains 128 fast time samples. Figure 4a shows the
scatterer model of the target, Figure 4b shows the high-resolution range profile (HRRP) sequence of
the full data after pulse compression, and Figure 4c gives the imaging result of RDA with the full data
which were used as a reference for performance comparisons. Besides, to quantitatively evaluate the
performance of the proposed algorithms, the entropy of the recovered image p, which is defined as
entropy = −∑i p(i) log p(i), is adopted.
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Figure 4. (a) The scatterer model of the target; (b) The high-resolution range profile (HRRP) sequence
of the full data after pulse compression; (c) Imaging result of range-doppler algorithm (RDA) with the
full data.

In the first experiment, we examined the performance of the proposed algorithms with different
sampling schemes, namely continuously and randomly sampling schemes. The parameters for this
experiment were set as: the complex Gaussian noise was added to each pulse to simulate the noise

environment with signal-to-noise ratio (SNR) (, which is defined as SNR(dB) = 10log10

( Psignal
Pnoise

)
,

where Psignal and Pnoise are power of signal and noise, respectively,) equal to 10 dB, the number of
pulses was set to 64. The imaging results were shown in Figure 5. The first column of the figures
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was generated by selecting the first 64 pulses of the full data, and the second column of figures
was generated by randomly selecting 64 pulses from the full data. Meanwhile, the first and second
rows present the images obtained by Algorithms 1 and 2, respectively. It can be seen that the two
methods can achieve rather similar clear images confirming that both of them are capable of removing
Micro-Doppler interference excellently. The entropies of the imaging results corresponding to Figure 5
and CPU running times are listed in Table 1. We can see that the computation efficiency of Algorithm 2
is more efficient than Algorithm 1, which demonstrates the conclusion mentioned in the previous
section in terms of quantitative analysis.
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Figure 5. ISAR images obtained by the two proposed algorithms under different sampling schemes.
Column 1: continuously sampling. Column 2: random sampling. Row 1: Algorithm 1. Row 2:
Algorithm 2.

Table 1. Entropies of the reconstructed images and CPU times of the proposed algorithms.

Algorithm 1 Algorithm 2

Continuously
sampling

Entropy 1.61 1.61
CPU time 7.1 s 4.6 s

Randomly
sampling

Entropy 1.61 1.61
CPU time 7.3 s 4.7 s

Next, we testify the performance of the algorithms in terms of different pulse numbers. It is
well-known that the performance of CS relies on the measurement number, i.e., the pulse number
in our case. To investigate the role of the pulse number, the parameters for this experiment were set
as follows. The complex Gaussian noise was added to each pulse to simulate the noise environment
with SNR = 10 dB, and a continuously sampling scheme was employed to select pulses from the
full data. In this simulation, we only show the imaging results obtained by the Algorithm 2, and the
results acquired by the Algorithm 1 are almost the same. The ISAR imaging results obtained with a
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different number of pulses were shown in Figure 6, in which the first, second, third and fourth rows
present the results from 64, 32, 16, 8 sampled pulses, respectively. It can be seen that the Algorithm 2
can achieve satisfying imaging results even in the case of 12.5% sampling ratio. In other words, it is
more tolerant of data deficiency with a small amount of sampled data. Additionally, the entropies of
the figures in Figure 6 were given in Table 2.
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Figure 6. ISAR images obtained by Algorithm 2 using different number of pulses. (a–d) corresponding
to results from 64, 32, 16, 8 sampled pulses, respectively.

Table 2. Entropies of the imaging results.

Figure 6a Figure 6b Figure 6c Figure 6d

Entropy 1.61 1.60 1.53 3.97
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Figure 7. ISAR imaging results obtained under different SNRs. (a–f) corresponding to the results under
10, 5, 0, −5, −10 and −15 dB, respectively.

We now testify the performance of the methods in terms of different SNRs. To demonstrate the
robustness with respect to noise, the parameters for this experiment were set as follows. The complex
Gaussian noise was added to each pulse to simulate the noise environment, 64 pulses continuously
sampled from the full data were employed. In this simulation, we only show the imaging results
obtained by Algorithm 2, and the results acquired by Algorithm 1 are almost the same. The ISAR
imaging results under different noise conditions are shown in Figure 7, in which Figure 7a–f present
the results with 10, 5, 0, −5, −10 and −15 dB, respectively. The entropies of the imaging results are
given in Table 3. It can be seen that Algorithm 2 can achieve satisfying imaging results under low SNR
conditions even at −10 dB.

Table 3. Entropies of the imaging results.

Figure 7a Figure 7b Figure 7c Figure 7d Figure 7e Figure 7f

Entropy 1.61 1.65 1.60 1.67 1.59 7.81

In the last experiment, we compare the performance of the proposed algorithms with the
previous methods reported in [14,15], which have shown certain excellent performance in removing
the Micro-Doppler effect. The parameters for this experiment were set as: the complex Gaussian
noise was added to each pulse to simulate the noise environment with SNR = 10 dB, 64 pulses
continuously sampled from the full data were employed. The imaging results are shown in Figure 8,
in which Figure 8a–d present the results from Algorithm 1, Algorithm 2, methods proposed in [14,15],
respectively. In addition, the entropies of the imaging results are given in Table 4.

It can be seen from Figure 8 and Table 4 that our proposed algorithms achieve the minimum
entropies, suggesting the performance advantages over the methods proposed in [14,15]. As a matter of
fact, although the MSBL method in [14] suppresses the Micro-Doppler signal to some degree, there are
residuals leading to image blur. The shortcoming of the method in [15] is that its performance is
susceptible to noise, furthermore, it suffers from heavy computing load due to its complicated Monte
Carlo sampling process.
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Figure 8. ISAR imaging results obtained by different methods. (a–d) corresponding to the imaging
results by Algorithm 1, Algorithm 2, methods proposed in [14,15], respectively.

Table 4. Entropies of the imaging results and CPU time of methods.

Figure 8a Figure 8b Figure 8c Figure 8d
Entropy 1.61 1.67 3.78 1.96

CPU time 4.5 s 7.2 s 3.1 s 27.8 s

5. Conclusions

Under the framework of RPCA, two ISAR imaging algorithms for micromotion targets with
rotating parts were proposed in this paper. Robust imaging performance can be achieved by the
proposed algorithms, even in the low SNR case with grossly inadequate measurements. Furthermore,
by resorting to the proxy of the nuclear norm, the proposed SVD-free algorithm avoids computing SVD
of the given matrix which improves the computing efficiency. However, there are some limitations
in them, if the radius of the rotating part is smaller than half of the range resolution, and/or the
rigid body part undergoes maneuvering flying, etc. Additionally, if the radar system suffers from
non-Gaussian noise, such as speckle and impulse noise, the performance of our methods would incline
to degenerate. In the future, we will further validate the effectiveness of the proposed algorithms by
real measured data.
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