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Abstract: Automatic detection of intact tomatoes on plants is highly expected for low-cost and optimal
management in tomato farming. Mature tomato detection has been wildly studied, while immature
tomato detection, especially when occluded with leaves, is difficult to perform using traditional
image analysis, which is more important for long-term yield prediction. Therefore, tomato detection
that can generalize well in real tomato cultivation scenes and is robust to issues such as fruit
occlusion and variable lighting conditions is highly desired. In this study, we build a tomato
detection model to automatically detect intact green tomatoes regardless of occlusions or fruit
growth stage using deep learning approaches. The tomato detection model used faster region-based
convolutional neural network (R-CNN) with Resnet-101 and transfer learned from the Common
Objects in Context (COCO) dataset. The detection on test dataset achieved high average precision of
87.83% (intersection over union ≥ 0.5) and showed a high accuracy of tomato counting (R2 = 0.87).
In addition, all the detected boxes were merged into one image to compile the tomato location map
and estimate their size along one row in the greenhouse. By tomato detection, counting, location and
size estimation, this method shows great potential for ripeness and yield prediction.

Keywords: precision horticulture; deep learning; image analysis; robotic harvesting

1. Introduction

Tomatoes are the second most important horticultural crop [1] in terms of yield, with total
production of more than 180 million tonnes across the world (FAO STAT 2017 [2]). The cultivation of
tomatoes is one of the most profitable agricultural businesses because tomatoes are self-compatible and
have a short life cycle [3]. For high yield and good quality, the crop needs precision management of
water throughout the growing period [4], as well as fertilizer and pest control [5]. For example, due to
the nonuniform flowering and ripening stages, precise irrigation is needed to ripen immature plants
and avoid damage to mature plants [4]. In addition, depending on the ultimate use of the tomatoes,
they may be harvested at different stages of ripeness. Tomatoes with “mature green” (medium green to
light green) and dim pink colour are shipped, those with reddish-pink colour are sold locally, and those
with dark red colour are processed [6]. Thus, optimal tomato cultivation requires tomato-on-plant
detection to provide the fruit location and ripening status on spatial variation on which to base
agronomic decisions [7]. To inform harvest resourcing and management, and marketing, tomato
yield prediction requires dynastically and precise monitoring of tomato number, size, and ripening
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status [8–10]. The combination of computer vision and the Internet of Things (IoT) makes it possible to
accurately monitor the growth of greenhouse crops [11]. In addition, as the agricultural population
decreases and ages, robots are being considered as replacements for humans to undertake manual and
tedious tasks such as harvesting. Harvesting robots perform harvesting actions after collecting and
analysing the information from their surroundings [12]. Hence, robot-assisted tomato harvesting also
requires the detection of the target fruit.

Thus, whether for tomato growth monitoring, yield prediction, or for robotic harvesting, tomato
fruit detection is a crucial step. In regard to immature on-plant tomato detection in images, there are
two main challenges. One is the similarity in colour of an immature tomato to the leaf and vine.
For green tomatoes, the aiming pixels cannot be easily segmented using the threshold method or using
the calculation of the RGB components [13]. To solve this problem, machine learning was used to mine
colour features to help pixel-based classification. By applying a decision tree segmentation model on
15 transformed colour features, immature tomatoes were successfully separated from leaves, stems,
and backgrounds [14]. However, it needed blob-based segmentation to further reduce misclassifications
due to similar colour. Another method is the use of multispectral sensors to evaluate differences in
reflectance to separate fruit from background. For immature green citrus detection, through combining
colour and thermal images, an increase in recall from 78.1% to 90.4% and an increase in precision
from 86.6% to 95.5% were found [15]. In addition, by using imagery fused with colour (RGB) and
near-infrared (NIR), the F1 scores were increased [16]. Nonetheless, a multispectral camera is costly
compared with an RGB camera and is less applicable in large-scale farms.

The other challenge for tomato on plant detection is occlusion issue, i.e., tomatoes overlap or are
occluded by foliage and vines. X-means clustering algorithm was thus used to detect the position of
each tomato in a multi-fruit blob [14]. However, the algorithm depends on the overexposed region
of the tomato surface, which is inconspicuous under natural illumination conditions. Some other
researchers attempted to detect citrus on trees by valid contour selection and occlusion recovery [17],
but this method requires a relatively long fruit contour length, which is not suitable for highly occluded
situations. Then sliding window was used to detect individual tomatoes by extracting the Haar-like
features in the sub-window and classifying tomato pixels with the AdaBoost classifier [18], but testing
needs to be done to determine the optimal sub-window size and sliding step. Therefore, researchers
tried building a region of interest pyramid to adapt to different tomato sizes and then detected tomatoes
using histograms of oriented gradients and a pretrained support vector machine (SVM) classifier [19].
Nonetheless, for overlapping or occluded areas, the miss rate was as high as 16%.

To overcome these challenges, deep learning techniques are a good choice even when using RGB
cameras. Deep learning can perform classification and make predictions particularly well, being flexible
and adaptable for a wide variety of highly complex challenges, such as varying illumination and
depth, overlapping, and occlusion. Rahnemoonfar and Sheppard [20] presented a simulation-based
deep learning method for fruit counting using a modified version of the Inception-ResNet architecture.
Chen et al. [21] used another neural network and linear regression to estimate and sum the number
of fruits in blobs detected by a fully convolutional network. Other approaches employ the faster
region-based convolutional neural network (R-CNN) model not only to count fruits and vegetables but
also to locate their position in the image by means of bounding boxes, which is important for automatic
harvesting. Moreover, most of the research works that have incorporated popular deep learning
architectures took advantage of transfer learning [22], as sometimes it is not possible to train a network
from scratch due to a small training dataset or a complex multitask network. Sa et al. [16] deployed
DeepFruits using faster R-CNN with VGG-16 through transfer learning. Bargoti and Underwood [23]
also used faster R-CNN with VGG-16 and found that compared to transferring weights between
orchards, data augmentation yields significant performance gains. However, previous research relating
fruit location achieved high accuracy with a relatively low intersection over union (IoU) threshold
compared with the common threshold (IoU ≥ 0.5) in object detection, which increased the error in
estimation fruit location and fruit size [16,23]. In order to improve the detection accuracy, the deep
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residual learning was one option, as it solved the “vanish gradient” problem and obtained a 28%
relative improvement on the Common Objects in Context (COCO) object detection dataset [24] by
reformulating the layers as learning residual functions with reference to the layer inputs. Based on
that, some improved deep learning frameworks combined with residual networks appeared, such as
Inception-Resnet-v2, which was designed to reap all the benefits of the residual approach while
retaining inception architecture’s computational efficiency [25]. Therefore, combining faster R-CNN
with deep residual networks, e.g., Resnet 50 [24] and Resnet 101 [24], and Inception-Resnet-v2 [25]
may achieve high detection accuracy with less detection error.

Tomato-on-plant detection is expected for precision cultivation and for robotic harvesting.
However, immature tomatoes that are highly occluded on plants are difficult to detect and locate using
traditional image analysis methods, especially under natural illumination conditions. In this paper,
we attempted to trained a faster R-CNN model combined with deep residual learning in real tomato
cultivation scenes to (1) accurately detect all the visible tomatoes in photo regardless of fruit occlusion
and lighting conditions, (2) count the tomato load, and (3) compile a tomato location map and estimate
the tomato size along one row in a greenhouse for further yield prediction and robot harvesting.

2. Materials and Methods

2.1. Image Acquisition and Labelling

The photos were collected in two places, the Seki farm and U-Tokyo farm, by a Canon 60D
(Canon Inc., Tokyo, Japan) with a Tamron SP10-24 mm lens (Tamron Co., Ltd., Saitama, Japan). The Seki
farm is located in Kiyose City, Tokyo, Japan. The photos from the Seki farm were taken on 19 May 2015
and 22 January 2016. There were nine rows of tomato growing on shelves in a greenhouse, and each
row had two sides. On each side, photos were taken 0.75 m away from the shelf (Figure 1), and the
overlap ratio between two adjacent photos was approximately 0.55. The dimensions of the photos
taken on 19 May 2015 were 3456 × 5184 pixels and were vertical in direction, and those on 22 January
2016 were 5184 × 3456 pixels and were horizontal in direction. The Tanashi greenhouse is located at
the U-Tokyo farm, Nishi-Tokyo City, Tokyo, Japan. The tomatoes were planted in pots in a greenhouse.
The dimensions of all the photos were 5184 × 3456 pixels, and all the photos were taken on 21 January
2016, including 30 photos in the daytime and 32 photos at night. After the photos were collected,
they were segmented into three datasets—training, validation, and testing datasets. See details of the
dataset in Table 1.Sensors 2020, 20, x FOR PEER REVIEW 4 of 18 
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Table 1. Details of the dataset.

Location Date Time Photo Number Photo Size (pixels)

Seki farm
19 May 2015 Day 229 3456 × 5184

22 January 2016 349
5184 × 3456Tanashi green house 21 January 2016 Day 30

Night 32

Tomato labelling was implemented through a web-based interactive labelling tool (http:
//fieldphenomics.com/) developed by the U-Tokyo International Phenomics Research Laboratory.
In each photo, all the visible tomatoes were labelled by a bounding box, which were required to be
tight enough to cover the object, mainly in the range of 20–70 boxes per image. After that, we checked
the image annotation three times by different people. Notably, for the highly occluded tomatoes,
the bounding boxes were drawn by the supposed shape depending on the visible part (Figure S1).
In total, 640 photos with 28,835 tomatoes were manually labelled.

2.2. Data Pre-Processing

2.2.1. Training and Validation Datasets

The images in the training and validation datasets (Table 2) were used for training the model
and accuracy evaluation, respectively. The images were pre-processed by the following four steps:
(1) resize the image to 0.5 of its original size; (2) Crop the image into four subimages, considering
several factors such as detection accuracy, GPU memory, and convenience of processing; (3) rotate the
vertical subimages (864 × 1296 pixels) to horizontal (1296 × 864 pixels) to keep the size of the arrays
the same on the two dimensions; and (4) rename the subimages as a digital sequence for processing
in TensorFlow.

Table 2. Details of the training and evaluation datasets.

Dataset Location Date Time Photo Number Subimage Number Image Size (pixels)

Train dataset
Seki farm

19 May 2015 Day
452 1779

864 × 1296
22 January 2016

1296 × 864
Tanashi green house 21 January 2016 Day

Night

Evaluation dataset
Seki farm 22 January 2016 Day

129 511Tanashi green house 21 January 2016 Day
Night

2.2.2. Test Dataset

One row of the photos was used as test dataset (Table 3) to test the performance of the model
in tomato localization. The images were pre-processed using the following five steps: (1) stitch the
adjacent photos into six large images using Image Composite Editor (Microsoft Corporation, Redmond,
Washington, USA); (2) pad the image on the left and right sides; (3) resize the image to 0.5 of its original
size; (4) crop the image by a fixed size of 1296 × 864 pixels, as shown in Figure 2; and (5) rename the
subimages as digital sequences for processing in TensorFlow.
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Table 3. Details of the test dataset.

Dataset Location Date Time Photo Number Subimage Number Image Nize (pixels)

Test dataset Seki farm 22 January 2016 Day 59 135 1296 × 864

2.3. Tomato Detection Model Generation

2.3.1. Train Multiple Tomato Detection Models and Select the Model with the Highest Accuracy

We chose faster R-CNN as the tomato detection architecture because of its high precision and
speed [26]. Faster R-CNN works as follows: (1) run the image through a CNN to obtain a feature map;
(2) run the activation map through a separate network, called the region proposal network (RPN),
that outputs boxes/regions; and (3) for the boxes/regions from RPN, use several fully connected layers
to output class and bounding box coordinates [26].

The tomato detection model was built on a TensorFlow object detection API (https://github.com/

tensorflow/models/tree/master/research/object_detection, Google Inc., Santa Clara, CA, USA) on one
workstation with a NVIDIA Tesla P40 graphics card (22919 MB RAM, NVIDIA Corporation, Santa Clara,
CA, USA) and Intel®Xeon®CPU E5-2640 v4 (Intel Corporation, Santa Clara, CA, USA), with 503.8 GB
RAM, running a 64-bit Ubuntu 16.04 LTS operation system (Canonical Ltd., London, UK).

The faster R-CNN models were pretrained on the COCO dataset with Resnet-50 [24],
Resnet-101 [24], and Inception-Resnet-v2 [25] convolutional neural network models, respectively.
Because all of these models have shown high accuracy and speed on the COCO dataset, we wanted to
investigate their performance on our dataset. With 1779 subimages as training data, 511 subimages
as validation data, a learning rate of 0.00003, and random horizontal flip as the data augmentation
method, these three models were trained by transfer learning and obtained an average precision (AP)
of intersection of union (IoU) ≥ 0.5 in 100 epochs on the validation dataset. Other hyperparameters
used the default settings in the faster R-CNN configure file. By comparing the AP, we selected the
model with the highest accuracy as tomato detection model.

2.3.2. Detect Tomatoes Using the Selected Model on the Test Dataset

The hyperparameters such as learning rate has been fine tuned to increase the accuracy of
the validation data. To test whether the model overfit, the model was applied to the test dataset.
The detection was performed by the following five steps: (1) export the TensorFlow graph of the
specified checkpoint of the highest AP in the selected model; (2) infer detections from the test dataset
with the exported TensorFlow graph with non-maximal suppression threshold of 0.6; (3) evaluate the
detections with manually labelled tomatoes as reference and obtain the AP of IoU ≥ 0.5; (4) filter out
the boxes with confidence scores below 0.5; and (5) record the detected tomato number and locations.

2.4. Evaluation Metrics

The average precision with IoU thresholds of 0.5 was used to quantify the model accuracy.
This metric is popular for measuring the accuracy of object detectors, as it balances the performances
of precision and recall. The average precision could be calculated by the area under the precision-recall
curve. Precision is calculated by Equation (1), and recall is calculated by Equation (2), where TP
is the number of true positives, FP is the number of false positives, and FN is the number of false
negatives. Both of these parameters are calculated on all the boxes by rank according to the descending
predicted confidence.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
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In this research, we used COCO detection metrics to calculate the average precision. The COCO
metrics are the official detection metrics used to score the COCO competition (http://cocodataset.org/)
and can report statistics such as AP at IoU thresholds of 0.5.

2.5. Tomato Localization

Then, tomatoes detected in subimages was composed together and located in the stitched image.
The tomato localization was performed by the following five steps: (1) rename the detected sub-image
to its original name for linking to the original image; (2) put the detected sub-image to the original
location of the stitched image; (3) recalculate the box coordinates in the stitched image and label the
boxes on the edge of the subimage; (4) Merge the boxes on the seams by recognizing the split parts
using the box distance and shape similarity (ratio of the side length in both directions); and (5) calculate
the number of tomatoes in each stitched image and outline the detected boxes.

2.6. Tomato Size Estimation

Finally, tomato sizes in images including width, height, and aspect ratio were determined by
the bounding box merged in the location map. The tomato width and height were represented by
the bounding box width and height, and the aspect ratio was calculated by the ratio of the width to
the height.

3. Results

3.1. Accuracy Analysis of Deep Learning Models

There were three deep learning models trained with different deep convolutional neutral networks,
i.e., Resnet 50, Resnet 101, and Inception-Resnet-v2. Running the models on the validation images
yielded the change in average precision with the epoch (Figure 3). It was observed that all the models
obtained the highest accuracy at approximately 10 epochs, and then the accuracy decreased. This may
be caused by overfitting, as the size of training dataset was quite small compared with the COCO
dataset. Among the models, the deep learning model with Resnet 101 achieved the highest AP of 0.82,
so this model was selected as the tomato detection model.
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Then, the model was applied on the test dataset and achieved the AP of 0.87. Then, the detected
results were further analysed with the distribution of true positive, false positive, and false negative
at an IoU threshold of 0.5. True positive means that a box was detected as a tomato and overlapped
with one manually labelled tomato box, and the interception area was greater than 0.5 of the union
of their areas. False positive means a box was detected as a tomato, but its IoU was less than 0.5

http://cocodataset.org/
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with any manually labelled tomato box. False negative means a box was not detected as a tomato,
but its IoU was greater than 0.5 with one or more manually labelled tomato boxes. Therefore, the false
positive number is the number of detected tomatoes that are not tomatoes or that do not meet the IoU
requirements, and the false negative number is the number of missed tomatoes or those that were not
accurately located.

We counted the number of true positives and false positives based on the detected tomato box
and its scores. Figure 4A shows that as the score increased, the percentage of false positives decreased.
At the same time (Figure 4A), the percentage of true positives increased, which means that more
detected tomato boxes met the requirement of IoU. The relative frequency distribution (Figure 4B)
showed that more than 80% of the false positives had scores less than 0.1, and more than 80% of the
true positives had scores not less than 0.9. As shown in Figure 5A, when the score was low, there were
many overlapping boxes with poor location precision. This may lead to many false positive detections
at IoU ≥ 0.5. Comparing the tomato sizes in Figures 5C and 5D indicated that large size tomatoes
tended to have high scores. However, there was a small portion of manually labelled tomatoes with
scores less than 0.2.
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3.2. Tomato Counting Assessment

Tomato counting is the basic step for yield estimation [9,21]. Through the application of the
selected deep learning model to the test dataset, tomatoes were detected, and the boxes of tomatoes in
each subimage were labelled (Figure 6A,C). According to the distribution of true positives (Figure 4),
the detected tomatoes were filtered by score. Then, only the tomatoes with scores ≥ 0.5 were retained
(Figure 6B,D), and the number of tomatoes in each subimage was recorded. Correlation analysis of the
number of labelled and detected tomatoes per subimage showed a high coefficient of determination
(R2 = 0.87). However, the number was slightly underestimated when the tomato number was greater
than 20 per subimage, as shown in Figure 7. This may be caused by some tomatoes with low scores
(less than 0.5), which were filtered out. One example is the tomato in the image shown in the blue
box of Figure 6D, of which less than a quarter was visible and was quite small, but it has been
manually labelled.
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3.3. Tomato Localization for the Whole Cultivation Bed

Yield mapping is quite important for monitoring the growth of tomatoes, providing information
on spatial variation on which to base agronomic decisions [7]. Precise tomato detection allows for the
generation of yield maps and could also be an assistant tool for robotic harvesting. After the tomatoes
in the subimages were detected and labelled, the tomatoes were transferred to the stitched image
of one cultivation row in the green house, and the segmented box on the seaming line was merged.
In total, 1422 tomatoes were detected and located along this row. Figure 8A shows the location map
for tomatoes in one row in the greenhouse of the Seki farm. By enlarging some zones in Figure 8A,
it shows that the red tomatoes were all near the bottom of the shelf, and the green tomatoes were
mainly in the upper region (Figure 8B,C).Sensors 2020, 20, x FOR PEER REVIEW 11 of 18 
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3.4. Tomato Size Estimation

Tomato size estimation is of great significance for yield estimation [7,27] and prediction [8,10].
On-tree estimation of fruit size is useful for the prediction of maturity and harvest time [8,10],
and estimation of fruit size together with fruit number allows estimation of fruit weight (‘yield’) [7,27].
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By using the faster R-CNN models with Resnet-101, the final detection of tomato showed precise
detection. Tomato length, width, and aspect ratio in an image can be determined based on the
bounding box. Taking the tomato merged in one row (see details in Section 2.5) as an example, the size
distribution (Figure 9A) showed that about 16.53% and 13.78% of the tomatoes had a width and height
less than 50 pixels, respectively. The aspect ratio (Figure 9B) showed that about 89% tomatoes had an
aspect ratio in the range of 0.67 to 1.27, and about 33% tomatoes had an aspect ratio in the range of 0.97
to 1.17. The closer the aspect ratio value was to 1, the closer the shape of tomato was to a circle.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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4. Discussion

4.1. Accuracy Comparison with Other Tomato-on-Plant Detection Techniques Using RGB Images

Using the faster R-CNN models with Resnet-101, the tomato detection model showed relatively
high precision on the test dataset. To compare with previous tomato detection performance, the method
and the best result of each paper are listed in Table 4. Following the suggestion by Koirala [7], the F1
score of the test detection in this research was calculated for comparison (see Figure S2). When available,
the F1 score of other researches were recorded. Some previous researches lack the F1 score recording or
precision-recall curve for determining the F1 score [13,14,18,28], but from their accuracy descriptions,
the accuracy of this research were higher than most machine learning method. The research [19] got a
high F1 score for mature tomato detection, which was less difficult than for green tomatoes. However,
when compared with other deep learning approaches [29,30], this method showed lower accuracy.
On one hand, this was due to the lower resolution or smaller size of tomatoes in our image, as we aimed
to compile a tomato layout map. On the other hand, both of their studies optimised the non-maximum
suppression with IoU, which inspired us for future work.

Table 4. Scientific reports in tomato on plant detection based on colour (RGB) images. The best result
of each paper is shown. When available, the F1 score is recorded; otherwise, the validation metric used
by the authors is included.

Author Method Accuracy

Schillaci et al., 2012 [28] Scanning window with support vector machine Twenty true positives against 26 false positive
Khoshroo et al., 2014 [13] Colour analysis and region growing Overall classification accuracy: 82.38%

Yamamoto et al., 2014 [14] Pixel-based segmentation, blob-based
segmentation, X-means clustering Recall: 0.8, precision: 0.88

Zhao et al., 2016 [18] AdaBoost classifier and colour analysis
True positives rate: 96.5%
False positive rate: 10.8%

Missing (False negative) rate: 3.5%
Sun et al., 2018 [29] Faster R-CNN with Resnet 50 mAP (green and red tomatoes): 90.9%
Liu et al., 2019 [19] Machine learning and colour analysis F1 score: 92.15%
Liu et al., 2020 [30] Yolo-tomato F1 score: 93.91%, AP: 96.40%

This paper Faster R-CNN with Resnet 101 F1 score: 83.67%, AP: 87.83%
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4.2. Error Analysis

4.2.1. Overfitting

Overfitting is a common problem in machine learning. According to observations of the AP
with the epoch (Figure 10), the faster R-CNN model with Resnet 101 showed overfitting after epoch
over 10. One reason may be the size of training dataset was quite small which consisted of 1779
subimages (864 × 1296 pixels), as the model was pretrained on the COCO dataset, which consisted
of 118,287 images and 80 classes for training (https://www.tensorflow.org/datasets/catalog/coco).
Enlarging the training data size and diversity may help to solve this problem. Data augmentation
techniques [31] could artificially enlarge both the number and the variety of training images and have
been shown to yield significant performance gains [23]. In this research, only random horizontal flip
was used as the data augmentation method, and more data argumentation methods will be used to get
a better training model in the future.

1 
 

 

 

 

Figure 10. Change in average precision (AP) at an intersection of union (IoU) threshold of 0.5 of training
data and validation data using Resnet 101 with the epoch.

4.2.2. Manual Labelling

Manual labelling served as ground truth in the accuracy analysis. For precise fruit detection,
ground truth boxes should be tight enough to cover the object and some of the background around
the object perimeter [32]. However, we cannot ensure that all the visible tomatoes were labelled
and all the placement for boxes were appropriate, even though we checked the images three times.
For the same tomato, different people will label the tomato with a box of different sizes and locations.
This causes errors in tomato training and detection. Several efficient labelling methods have been
developed [33–35]. Use of these methods not only saves time spent labelling but also uses less labour,
making it possible to standardize the method of box placement.

4.2.3. Influence of Tomato Size on Determination

The results (Figure 6D) showed that very small tomatoes (in image size) may have a higher
possibility regarding false or missing detection. Other than less information increasing the difficulty
in recognition, it was partly due to the criterion for determining truth positive. The detection was
recognized as true positive only if it has enough overlap with the manually label box measured by IoU.
Based on the IoU calculation equation, the smaller the object is, the lower the IoU value when offset in
pixels. As shown in Figure 11, the IoU of the left boxes (Figure 11A) is 0.53, and the IoU of the right

https://www.tensorflow.org/datasets/catalog/coco
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boxes (Figure 11B) is 0.47. This means that for very small tomatoes, a small misplacement of the box
causes a low IoU. Hence, even small errors in the detection of smaller fruit caused these fruits to be
registered as false positives [23]. As Figure 12 showed, by calculating the moving median value of
every 51 true positive boxes and false positive boxes, respectively, the box area of true positive was a
little larger than false positive at all the scores. The box area of 28.99% of the false positive boxes was
smaller than 2000 pixels, and 81.16% of the false positive boxes was smaller than 5000 pixels, while that
of only 5.59% and 28.33% of the true positive, respectively (Table 5). Therefore, the detector seems to
work better for tomatoes with a bounding box area large than 2000 pixels and could largely reduce
false positives for tomatoes with a bounding box area large than 5000 pixels. This issue could be solved
by increasing the image resolution in the future.
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Table 5. Cumulative relative frequency of true positive and false positive boxes of box area.

Box Area (Pixel) True Positive Boxes False Positive Boxes

≤1000 0.00% 0.97%
≤2000 5.59% 28.99%
≤3000 13.97% 59.42%
≤4000 20.83% 72.95%
≤5000 28.33% 81.16%

4.3. Limitations

4.3.1. Long Training Time

We used transfer learning for tomato detection, which has some shortcomings in training time
compared with other machine learning methods, e.g., support vector machine and random forest
methods. However, compared with the training time, the testing time cost of detection per image is more
important for application. We tested the model on one mini-size ZBOX computer (ZOTAC, Shenzhen,
China) that was equipped with an Intel®Core™ i5-7500T CPU (Intel Corporation, Santa Clara,
CA, USA), NVIDIA GeForce GTX 1060 (NVIDIA Corporation, Santa Clara, CA, USA) and 64-bit
Ubuntu 16.04 operation system (Canonical Ltd., London, UK). The model required 0.37 s to detect
tomatoes per image, which is acceptable for real-time detection. In addition, if we take into account
the time needed to manually design filters and extract features, “the time used for annotating images
and training the CNN becomes almost negligible” [36].

4.3.2. Only Visible Tomatoes

A fruit load estimation relies on the assessment of the total number of fruits per tree, not the
number of fruit visible in an image [32]. As this method is based on RGB images, it could only detect
the tomatoes visible in the image. If the tomatoes are entirely shaded by leaves or other tomatoes,
then they cannot be counted. Actually, the tomato growing “wall” is 3D, but we can only see two
dimensions from the image. In the future, by increasing the number of image viewpoints by taking
photos on both sides of the row and merging the tomatoes detected from both sides of the row, we could
reduce the influence of the nonvisible and get the real tomato counts.

4.3.3. Tomato Size Estimation in Images

The tomato size measured in real-world dimensions such as in centimetres is more important for
estimating tomato yield. However, in this research, we only used one camera and obtained 2D images,
while the tomatoes in the same image has different distances to the camera considering that the tomato
was not located on the same plane and the effects of camera projection. This means that we should not
use a fix conversion parameter from image size to real size. In the future, we will consider using a
multi-vision camera to generate depth information to get the distance of each object to the camera,
and this would assist in estimating tomato real size as a conversion reference from tomato image size.

4.4. Perspectives on Ripeness Estimation and Yield Prediction

As each tomato was labelled by a bounding box, the ripeness of the tomatoes could be estimated.
The tomatoes could be cropped by a bounding box and compared with reference tomato images.
Then, by using customized bag of colour layout features, their similarity could be assessed. All the
detected tomatoes had a similarity score in the range of zero to one, with more similarity to the
referential tomato for a higher score. There is an example shown in Figure 13.
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Deep learning has yet to be applied to for prediction of fruit load per tree and per orchard [32].
However, in crop yield prediction such as corn [37] or soybean [38], it already has some attempts.
By combining time series of tomato growth data (i.e., tomato size, number and ripeness status) and the
environmental data (e.g., weather, soil data) collected in internet of things enabled greenhouse [11],
as well as diseases detection [39], using deep learning to build a long short-term memory model with
convolution neutral network has great potential in yield prediction.

5. Conclusions

In this paper, we trained three faster R-CNN models combined with three deep residual networks
(i.e., Resnet 50, Resnet 101, and Inception-Resnet-v2) for tomato detection. The tomato detection model
using faster R-CNN with Resnet 101 achieved the highest average precision and was selected for tomato
detection. It got average precision of 87.83% (IoU ≥ 0.5) on test dataset, showing good accuracy for
detecting highly occluded immature tomatoes on plants in real cultivation scenes. For tomato counting,
it received a high coefficient of determination (R2 = 0.87) with tomato manually labelled considering
more than 10% quite small tomatoes (size < 50 pixels). By locating the tomatoes and merging the
split tomatoes, 1422 tomatoes were detected and located along one tomato cultivation row in the
greenhouse, and their sizes were estimated based on the bounding box. By tomato detection, counting,
location, and size estimation, this method shows great potential for ripeness and yield prediction.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/10/2984/s1,
Figure S1. Example of tomato bounding box labelling by a web-based interactive labelling tool (http://fieldphenomics.
com/); Figure S2. Precision-recall curve of the tomato detection model on test dataset.
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