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Abstract: Speech discrimination that determines whether a participant is speaking at a given moment
is essential in investigating human verbal communication. Specifically, in dynamic real-world
situations where multiple people participate in, and form, groups in the same space, simultaneous
speakers render speech discrimination that is solely based on audio sensing difficult. In this study,
we focused on physical activity during speech, and hypothesized that combining audio and physical
motion data acquired by wearable sensors can improve speech discrimination. Thus, utterance and
physical activity data of students in a university participatory class were recorded, using smartphones
worn around their neck. First, we tested the temporal relationship between manually identified
utterances and physical motions and confirmed that physical activities in wide-frequency ranges
co-occurred with utterances. Second, we trained and tested classifiers for each participant and
found a higher performance with the audio-motion classifier (average accuracy 92.2%) than both
the audio-only (80.4%) and motion-only (87.8%) classifiers. Finally, we tested inter-individual
classification and obtained a higher performance with the audio-motion combined classifier (83.2%)
than the audio-only (67.7%) and motion-only (71.9%) classifiers. These results show that audio-motion
multimodal sensing using widely available smartphones can provide effective utterance discrimination
in dynamic group communications.

Keywords: speech discrimination; group communication; physical motion; multimodal sensing;
sensor fusion; smartphone

1. Introduction

In the various organizations we belong to, we go about our daily lives and build relationships
with others through communication. For example, in companies, smooth communications reduce
meeting durations and improve work efficiency and productivity, and several studies have proposed
effective indicators that lead to such organizational improvement [1–3]. Organizational improvement is
effective in schools as well as in companies, and it can be utilized for the evaluation and improvement
of participatory classes that are recently increasing.

To facilitate communications, it is necessary to first evaluate communications, and utterance
discrimination that determines whether a participant is speaking for a particular time is essential in
evaluating group communications. However, it is laborious and time-consuming to manually segment
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speech from recorded audio or video. Therefore, automatic and semi-automatic speech segmentation
methods have been actively studied [4,5]. Voice activity detection (VAD), or speech activity detection
(SAD), is the fundamental step for these endeavors, which aim to determine “when speech occurred”,
i.e., to distinguish time segments that contain speech from those that do not [6]. Although most VAD
methods are formulated on a single target speech source, recent studies expanded to multi-speaker VAD
in situations with multiple simultaneous speakers [7,8]. The aims of this field also partly overlap with
those of research on speaker diarization, which is defined as the task of determining “who spoke when”.
Speaker diarization has been applied to multi-speaker speech recognition, generation of meeting
minutes, and subtitle generation, and has become prominent in the domain of speech research [9,10].
Speaker diarization systems for specific situations can assume some prior knowledge, such as the
number, position, or even identity of speakers present. However, a more ideal general-purpose speaker
diarization system is desired to perform speech and non-speech detection, speech segmentation,
and speaker identification without specific prior knowledge. Wide use of speaker diarization started
with analysis of telephone conversations and broadcast news [10], and has recently extended to the
conference meeting domain [9]. Most studies of multi-speaker SAD/VAD and speaker diarization use
only audio information for discrimination [8,11,12].

In broadcast news, a single speaker is assumed, and boom or lapel microphones are often used.
On the other hand, conference meetings containing multiple speakers are often recorded by desktop or
far-field microphones; thus, they are more prone to background noise. Furthermore, unlike broadcast
news, there are no prepared manuscripts in conference settings, resulting in frequent overlapped
speech. Such situations cause errors in utterance discrimination, especially in cases where a speaker
talks more quietly than others, or multiple people talk simultaneously [13]. It is also argued that the
performance of audio-only algorithms may have plateaued [14], and studies using visual sensing
instead of audio sensing [13], or studies on multimodal approach, are attracting attention. In particular,
studies using visual information in addition to audio are increasing. To improve the performance
under the circumstances described above, studies have focused on non-verbal cues such as the lip,
facial, or hand motions of speakers [7,14–16]. Moreover, non-verbal cues often accompany speech,
and more studies have investigated the inherently meaningless gestures that occur naturally during
speech [17]. Other studies have revealed that events such as turn-taking, listening, or interruption in
speech are accompanied by different types of gestures or body movement [18–20].

In comparison to the use of visual sensing, the use of physical motion sensing with a wearable
sensor is another possible direction for facilitating speech discrimination by capturing physical motions
accompanied by speech. Studies have been conducted on speech recognition using the physical activity
information obtained from accelerometers [21] and on identifying characteristic motion rhythm and
gesture frequencies while talking/listening [1]. Thus, in utterance discrimination, the multimodal
approach of combining audio and motion information is expected to increase discrimination accuracy.
In addition, in situations where a large number of people participate and change their positions
dynamically, it is difficult to cover them by visual sensing using cameras; hence, the use of wearable
sensors is expected to be particularly useful in these situations. Moreover, smartphones are widely
owned and used, and they are equipped with acceleration and audio sensors. This has led to a growth
in the field of human activity recognition using wearable sensors [22–25]; hence, by using smartphones
as wearable sensors, speech discrimination can become easily accessible anywhere by merely installing
an application. However, this hypothesis has not been explicitly tested.

Therefore, in this study, we aimed to verify the hypothesis that in group communications consisting
of multiple speakers, higher-accuracy discrimination can be achieved by combining the audio and
physical motion data obtained by smartphones used as wearable sensors, in comparison to unimodal
utterance discrimination using only audio data. The target task can be positioned as multi-speaker
SAD/VAD for people wearing smartphone sensors. With the data recorded simultaneously by using
multiple smartphone sensors in a participatory class at a university where a large number of people
formed groups and communicated simultaneously, we tested the following three-step hypotheses:
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(1) the physical motion data we focused on in this study contains information about occurrence and
absence of speech; (2) in the utterance discrimination within individuals, where individual differences
are insignificant, higher accuracy can be achieved by using both the audio and physical motion
information, in comparison to using only the audio information; and (3) in comparison to using only
audio data, the combined usage of the multimodal data can also benefit the utterance discrimination
over individuals, where an existing model trained with a fixed set of data is desired to perform well
for new data without requiring the labor of manual speech annotation for the new data.

2. Materials and Methods

2.1. Participants

University students taking a participatory class that aimed to cultivate communication and
facilitation skills participated in the experiment. Throughout the course, the students experienced
various kinds of communication practices, such as self-introduction, interview, dialogue, presentation,
and facilitation of a small group through a workshop. Data from 12 Japanese students (three females
and nine males) from three groups measured in the final class of the term were used for this study.
In this final class, the students had small group discussions about the important points that they
had learned throughout the course for successful communication, the goals and aspirations they
currently held, how they could make use of what they had learned in striving for those goals, and their
suggestions for improving the participatory class. All the communication was in Japanese.

Written informed consent was obtained from all participants. The study was approved by
the Ethics Committee of Tokyo Institute of Technology and was conducted in accordance with the
Declaration of Helsinki.

2.2. Data Acquisition

The utterances and physical motions of participants communicating in the participatory class
were recorded using a smartphone (ZC551KL; ASUSTeK Computer Inc. (Taipei, Taiwan)) worn around
their neck, which contained a built-in triaxial accelerometer capable of recording at a sampling rate of
100 Hz, and a microphone capable of recording at a sampling rate of 44,100 Hz (Figure 1). The recording
duration was 60 min.
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Figure 1. Smartphone sensor worn around the neck. The three axes of the built-in accelerometer are
indicated by (ax, ay, az).

Students were divided into groups of four; each group sat in a circle on the floor and communicated
amongst the group members. Approximately 190 students were in a seminar room of approximately
120 m2. The distance between groups was comparable to that between group members; thus, students
were close enough to hear other groups’ conversations. Under an approximation that the students
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filled the room in a regular square lattice-like manner, the density translated into a mean interpersonal
distance of 0.7 m.

To perform binary classification using supervised learning, all data were manually labeled as
1 (class speech) or 0 (class non-speech) in 0.1 s increments. This segment length was decided in
consideration of the tradeoff between the effort required for manual labeling and the time resolution to
be achieved. Typical speech durations are much longer than 0.1 s, and the length of our data is quite
long (60 min), both contributing to statistical stability. Furthermore, most applications of VAD involve
the extension of detected speech periods by a few hundred milliseconds on each side for stable results
(the so-called hangover procedure) [6,26], lessening the need for higher time resolutions. Therefore,
we deemed a segment length of 0.1 s to give sufficiently fine resolution for our purpose. Periods that
could be identified as utterances were considered speech, as were those identified as laughter.

2.3. Data Preprocessing

Data preprocessing was conducted using MATLAB R2019a (MathWorks, Inc. (Natick, MA, USA)).

2.3.1. Audio Data

We adopted signal energy as the audio feature for speech discrimination, because it has been
used as a primary audio feature in many VAD methods [6,8], can take advantage of wearable sensors
(i.e., it is most sensitive to the wearer’s voice), and does not require personalized and complex
modeling for each speaker. First, to reduce computational cost, the audio signal was down-sampled
from 44,100 Hz to 11,025 Hz. Here, 11,025 Hz was determined in reference to the telephone audio
sampled at 8 kHz. Second, a short-time Fourier transform (STFT) with a sliding Hamming window
of 0.0232 s (256 samples) and 50% overlap (128 samples) was applied to represent the audio data
in the time-frequency domain. Finally, by integrating the absolute square of STFT coefficients over
frequencies and averaging at each 0.1 s time segment, we obtained power time series for use in the
following analyses.

In addition, we evaluated the signal-to-noise ratio (SNR) of the audio data as follows. Based on
the manual labels, we calculated the mean power during speech Pspeech and non-speech Pnonspeech for
each sensor. Then, the SNR = 10 log10(Pspeech/Pnonspeech) indicates how much the signal level of the
sensor wearer’s speech dominates the level of background noise, which includes the voices of other
speakers. Table 1 shows the obtained SNR for the twelve participants (mean SNR = 8.55 dB).

Table 1. Signal-to-noise ratio (SNR) of the audio data for the twelve participants.

SNR (dB)

Participant 1 8.06
Participant 2 9.34
Participant 3 9.34
Participant 4 10.25
Participant 5 8.40
Participant 6 7.84
Participant 7 7.89
Participant 8 7.75
Participant 9 10.56
Participant 10 9.47
Participant 11 8.25
Participant 12 5.58

2.3.2. Accelerometer Data

First, from the triaxial acceleration data
(
ax(t), ay(t), az(t)

)
recorded using the wearable sensor,

we calculated acceleration norm a(t) =
√

a2
x(t) + a2

y(t) + a2
z(t). Since the measurement is subjected to
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Earth’s gravity, the acceleration norm fluctuates around the gravitational acceleration of approximately
9.8 m/s2. Second, an STFT with a sliding Hamming window of 1.28 s (128 samples) and 1.18 s overlap
(118 samples) was applied to represent the acceleration norm data in the time-frequency domain.
Then, the power time series calculated by the absolute square of STFT coefficients at each frequency
bin from 1 to 20 Hz with 0.1 s time steps were used as the physical motion features in the following
analyses. The 60 min of power time series contained approximately 36,000 time points (excluding
several time points at both edges where the sliding time window for STFT goes beyond the boundaries).
Although activity classification studies using smartphone as wearable acceleration sensor often focus
on lower frequencies (≤10 Hz) [21,25], we also included higher frequencies, as we could not eliminate
the possibility that they contribute to speech discrimination.

2.4. Analysis to Verify Co-Occurrence of Utterances and Physical Motions

To confirm the potential usefulness of the physical motion feature in discriminating speech vs.
non-speech periods, we tested the co-occurrence relationship between utterances and physical motions,
according to the following procedure (Figure 2).
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Figure 2. Analytic flow of the co-occurrence of utterances and physical motions.

At the individual level, we evaluated the degree of co-occurrence by calculating the temporal
correlation between the power time series at each frequency (from 1 Hz to 20 Hz) of physical motion
and the binary correct-answer time series (1: speech, 0: non-speech) for each participant (Figure 2
(1)). Here, we used nonparametric Kendall rank correlation, because the distributions of physical
motion data are highly skewed (note that signal power is always positive) and prone to outliers.
Since the binary utterance data have many ties, Kendall’s τB(tau-b) was used to make adjustments
for the ties [27,28]. Positive correlation indicates larger physical motion power during speech than
non-speech periods.

By performing a one-sample Wilcoxon signed-rank test on the correlation values at each frequency
over participants (n = 12), we tested the consistency of the co-occurrence relationship between utterances
and physical motions at the group level (Figure 2 (2)). For multiple tests over the 20 frequencies,
family-wise error rate was controlled using the Bonferroni correction.

2.5. Utterance Discrimination within Individuals

In utterance discrimination within individuals, we performed analyses with the aim of verifying
whether higher accuracy could be achieved by using both the audio and physical motion data,
in comparison to only the audio data.
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The audio and physical motion power time series calculated, according to the preprocessing
steps above, were used as the features. Each 60-min data contained approximately 36,000 samples
corresponding to 0.1 s time segments.

Using the random forest algorithm [29], for each individual data separately, we fitted and tested
the three types of speech vs. non-speech binary classification models: (1) using only the audio
feature, (2) using only the physical motion features, and (3) using both the audio and physical motion
features. We fitted and tested the classification models using randomForest package [29] in R statistics
software [30], with default parameters (ntree: 1000; mtry: 1 for model (1) and 4 for models (2) and
(3); nodesize: 1; maxnodes: unlimited). As the data were measured in a participatory class in which
students communicated in groups, the data could be non-stationary (e.g., the volume of voice and
physical motion might have changed gradually as they became familiar with their groups). Therefore,
we verified the accuracy of each classification model by a 10-fold cross-validation of randomly sampling
without preserving the time series structure.

To address the classification of imbalanced data, the data balance was improved by generating
positive example data (speech samples) and deleting negative example data (non-speech samples),
using the synthetic minority over-sampling technique (SMOTE) [31] package in R. The method
consists of a combination of over-sampling the minority class and under-sampling the majority class.
The over-sampling of the minority class involves synthesizing minority class examples by joining
existing minority class neighboring samples in the feature space. The method has been shown to help
in constructing classifiers with better performance for imbalanced datasets [31]. The number of speech
and non-speech samples before and after SMOTE for the twelve participants are shown in Table 2.

Table 2. Number of speech and non-speech samples (each corresponding to 0.1 s time segment) for the
twelve participants.

Original After SMOTE

Non-Speech Speech Non-Speech Speech

Participant 1 34,054 1934 7736 5802
Participant 2 30,464 5524 22,096 16,572
Participant 3 31,361 4627 18,508 13,881
Participant 4 32,583 3405 13,620 10,215
Participant 5 32,370 3618 14,472 10,854
Participant 6 32,466 3522 14,088 10,566
Participant 7 31,318 4670 18,680 14,010
Participant 8 33,004 2984 11,936 8952
Participant 9 33,713 2275 9100 6825

Participant 10 32,901 3087 12,348 9261
Participant 11 32,422 3566 14,264 10,698
Participant 12 32,809 3179 12,716 9537

We evaluated the fitting of the three models using the accuracy, recall, and precision, with speech
as positives and non-speech as negatives.

2.6. Utterance Discrimination over Individuals

We also tested the performance of the inter-individual prediction model, using both the audio and
physical motion data in comparison to that of using only the audio data. This was to test whether the
combined usage of the multimodal data can also benefit the utterance discrimination over individuals,
where an existing model trained with a fixed set of data was desired to perform well for new data from
new individuals, without requiring labor for manual speech annotation for the new data.

Here, we used the same audio and physical motion power time series as in the within-individual
discrimination above. However, to alleviate the potential influence of individual differences in the
characteristics of utterance and physical activities, the individual power time series were standardized
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using the median for centering and median absolute deviation (MAD) for scaling for robustness against
outliers. Subsequently, these features were used for utterance discrimination over individuals.

Random forest classifiers with the three sets of features, (1) using only the audio feature, (2) using
only physical motion features, and (3) using both the audio and physical motion data, were fitted
and tested by leave-one-subject-out cross-validation, using the data of all participants. Here, of the
data of twelve participants, the data of 11 individuals were used as training data, while the data
of the other individual were used for the test at each fold. As with the utterance discrimination
within individuals, the data balance was improved by over- and under-sampling, using SMOTE for
imbalanced classification.

Again, we evaluated the fitting of the three models using the accuracy, recall, and precision.

3. Results

3.1. Co-Occurrence of Utterances and Physical Motions

Temporal correlation analysis results that indicate the degree of co-occurrence between the
utterance and physical motions at each frequency are shown in Figure 3. Although the correlation
values were small and the sensitivity varied among participants, consistent positive correlation
indicated a co-occurrence relationship between utterances and physical motions at an extensive range
of frequencies from 1 Hz to 20 Hz. The consistency of the co-occurrence relationship was confirmed by
one-sample Wilcoxon signed-rank tests on the correlation values over participants (Table 3).
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Table 3. Results of one-sample Wilcoxon signed-rank tests (V-statistic, p-value, and Bonferroni-corrected
p-value) on the co-occurrence between utterance and physical motion at each frequency.

Frequency V-Statistic p-Value Bonferroni-Corrected p-Value

1 Hz 62 0.038574 0.77148
2 Hz 78 0.000244 0.00488
3 Hz 78 0.000244 0.00488
4 Hz 78 0.000244 0.00488
5 Hz 78 0.000244 0.00488
6 Hz 78 0.000244 0.00488
7 Hz 78 0.000244 0.00488
8 Hz 78 0.000244 0.00488
9 Hz 78 0.000244 0.00488

10 Hz 78 0.000244 0.00488
11 Hz 78 0.000244 0.00488
12 Hz 78 0.000244 0.00488
13 Hz 78 0.000244 0.00488
14 Hz 78 0.000244 0.00488
15 Hz 78 0.000244 0.00488
16 Hz 78 0.000244 0.00488
17 Hz 78 0.000244 0.00488
18 Hz 78 0.000244 0.00488
19 Hz 78 0.000244 0.00488
20 Hz 72 0.003418 0.06836

3.2. Utterance Discrimination within Individuals

The results of the performance tests of utterance discrimination within individuals are shown
in Table 4. In addition, we conducted paired t-tests to compare the average performance over
individuals between the multimodal (combination of audio and physical motion) and other two
models, and verified that the combination model performed significantly better in terms of accuracy
(combination vs. audio only: t(11) = 16.49, Bonferroni-corrected p = 2.5 × 10−8; combination vs.
motion only: t(11) = 16.79, Bonferroni-corrected p = 2.1× 10−8), recall (combination vs. audio only:
t(11) = 15.27, Bonferroni-corrected p = 5.7 × 10−8; combination vs. motion only: t(11) = 4.35,
Bonferroni-corrected p = 0.0069), and precision (combination vs. audio only: t(11) = 14.25,
Bonferroni-corrected p = 1.2× 10−7; combination vs. motion only: t(11) = 12.23, Bonferroni-corrected
p = 5.8× 10−7). These results confirm that a better discrimination could be achieved by using both
the audio and physical motion data in all three performance metrics (accuracy, recall, and precision),
compared to using only the audio or physical data.
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Table 4. Performance of intra-individual classification (%) using multimodal (combination of audio
and physical motion) and unimodal data.

Combination Audio Physical Motion

Participant 1
Accuracy 90.99 77.59 85.73

Recall 88.90 68.52 83.31
Precision 89.96 76.69 83.40

Participant 2
Accuracy 92.55 82.69 88.31

Recall 89.24 74.80 86.90
Precision 93.11 83.14 85.98

Participant 3
Accuracy 90.93 79.11 84.65

Recall 87.56 73.11 76.77
Precision 90.95 76.99 85.89

Participant 4
Accuracy 94.91 81.67 90.28

Recall 94.38 76.74 93.20
Precision 93.79 79.71 85.46

Participant 5
Accuracy 90.74 82.33 86.54

Recall 85.91 72.13 80.15
Precision 91.95 84.37 87.41

Participant 6
Accuracy 89.59 81.10 85.22

Recall 84.59 70.92 76.69
Precision 90.50 82.54 87.29

Participant 7
Accuracy 92.79 79.68 88.87

Recall 90.47 69.65 88.11
Precision 92.54 80.32 86.22

Participant 8
Accuracy 92.26 79.47 88.53

Recall 90.69 69.50 89.58
Precision 91.19 79.96 84.56

Participant 9
Accuracy 93.54 83.60 88.22

Recall 90.84 76.02 88.48
Precision 93.91 84.19 84.72

Participant 10
Accuracy 95.33 84.42 91.43

Recall 94.00 76.83 92.72
Precision 95.05 85.36 87.94

Participant 11
Accuracy 93.68 80.74 89.17

Recall 92.23 72.29 88.97
Precision 92.99 80.76 86.21

Participant 12
Accuracy 89.43 72.24 86.75

Recall 87.14 60.08 85.04
Precision 88.09 70.76 84.21

Average
Accuracy 92.23 80.39 87.81

Recall 89.66 71.72 85.83
Precision 92.00 80.40 85.77

3.3. Utterance Discrimination over Individuals

The results of the performance tests of utterance discrimination over individuals are shown
in Table 5. As with the utterance discrimination within individuals, we also confirmed a higher
performance of inter-individual prediction using both the audio and physical motion data in all three
metrics (accuracy, recall, and precision), compared to using only the audio or physical data.
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Table 5. Performance of inter-individual classification (%) using multimodal (combination of audio
and physical motion) and unimodal data.

Combination Audio Physical Motion

Accuracy 83.22 67.66 71.86
Recall 74.23 72.81 59.02

Precision 84.50 60.09 70.02

4. Discussion

To verify the hypothesis that a higher accuracy can be achieved in utterance discrimination by using
physical activity data in combination with audio data acquired by wearable sensors, we performed
experiments in a participatory class in which many students participate and speak at the same time.
We tested the co-occurrence relationship between the utterance and physical motion and compared the
performance of intra- and inter-individual prediction between the models that used multimodal and
unimodal data.

First, the co-occurrence relationship between utterance and physical motion at a wide range of
frequencies (1 Hz to 20 Hz) was confirmed from the analysis of temporal correlation between the
manually identified utterances (correct data) and physical activities identified from the sensing data.
This suggests that physical motions contain information about speech, and reinforces the validity of a
previous study [21] that attempted utterance discrimination on physical motion features alone.

In the speech vs. non-speech binary classification, we confirmed a higher performance of intra- and
inter-individual prediction by using both the audio and physical motion features, compared to using
only the audio or physical motion features. This proved the effectiveness of utterance discrimination in
a multimodal approach. As a related study for utterance discrimination using multimodal approach,
there is a proposed system that combines audio features with video features. The system has been
shown effective on datasets that contain not only constrained scenarios where the participants try
not to move, but also dynamic situations such as people standing up and walking out of a room [14].
In comparison to such systems that utilize fixed microphone and cameras, our approach of utilizing
wearable sensors has the advantage that it can be easily applied anywhere without the need to install
fixed sensors, provided wearable sensors (i.e., smartphones) are owned by, or available to, the users.
Similarly, a recent work on the audio-visual multimodal speaker diarization also discussed a potential
extension by considering the use of wearable sensors to handle more complex scenarios involving tens
of participants [32]. Meanwhile, the “wear-less sensing” approach using the fixed sensors also has
its merits; thus, a complementary use or fusion of the wearable and wear-less multimodal sensing
approaches are expected to be pursued in future studies.

Regarding the relatively lower accuracy of the inter-individual classification compared to the
intra-individual classification, the impact of individual differences may be the major cause. There are
various individual differences, such as in voice volume, frequency and temporal pattern of speech,
and tendency toward moving actively or not when talking. In the intra-individual classification,
where the training and validation data come from the same participant, such individual differences are
handled by the prediction model customized for each person. However, the individual differences
render it more difficult to identify the periods of speech in inter-individual classification, which learns
the discrimination model with the data of specific individuals and applies it to the data of new and
unknown individuals. In this study, individual differences in the scales of voice volume and magnitude
of body movement were standardized separately. In future studies, incorporating the modeling and
estimation of individual differences in the patterns of movement during speech could be helpful in
improving the performance of inter-personal speech discrimination.

The purpose of this study was to verify the concept that multimodal sensing that combines
audio and physical motion information can improve the performance of speech discrimination,
compared to using only unimodal sensor data; hence, further studies are needed for an optimal



Sensors 2020, 20, 2948 11 of 13

classifier and feature selection. For example, we used random forest as the classifier, treating
the data at each moment independently. To take the temporal structures in the feature data into
consideration (e.g., by using hidden Markov model classifiers, as in previous studies [9,11,16,33,34])
can yield significant improvements in the stable identification of speech periods. Deep learning
approaches have also been shown to be effective [35], and one study developed a convolutional
neural network-based VAD algorithm that runs in real-time on a smartphone [36]. Regarding feature
selection, we used only the one-dimensional intensity feature of audio data; however, the use
of higher-dimensional features, such as mel-frequency cepstrum which has been widely used in
speech recognition [14,15,37], and combining multiple features [26,38], can contribute to overall
performance improvement. Integrating these more advanced state-of-the-art SAD/VAD methods with
physical motion information available from wearable sensors can lead to even higher performance.
Furthermore, to extend and generalize the effectiveness of our approach in various situations and
with the different smartphone devices owned by individuals, we need to verify whether the high
classification performance obtained in this study can also be achieved when using data from situations
other than the target participatory class used in this study, and when using wearable sensors with
different weights and sizes. The optimal wearing position of the smartphone sensor can also be refined.

In conclusion, this study has shown that the multimodal sensing of audio and physical motion
during communication using wearable sensors is effective for improving utterance discrimination
performance in real-world situations where many people participate and speak simultaneously. Further
advancement of the method used in this study can enable a handy and widely available evaluation
of communication in various dynamic real-world situations, where the number of participants and
composition of a group are fluid, and many people speak simultaneously. Such technologies are
expected to be useful in basic scientific studies to elucidate social processes and structures, as well as in
engineering applications to provide support for improving efficiency, productivity, and soundness in a
wide range of social groups and activities. Possible target fields in which communication is affected by
noise include classrooms, office meetings, construction sites, hospitals, parties, public transportation,
and other social activities.
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