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Abstract: Ultra-wideband (UWB) radar has become a critical remote-sensing tool for non-contact vital
sign detection such as emergency rescues, securities, and biomedicines. Theoretically, the magnitude
of the received reflected signal is dependent on the central frequency of mono-pulse waveform used
as the transmitted signal. The research is based on the hypothesis that the stronger the received
reflected signals, the greater the detectability of life signals. In this paper, we derive a new formula
to compute the optimal central frequency to obtain as maximum received reflect signal as possible
over the frequency up to the lower range of Ka-band. The proposed formula can be applicable in
the optimization of hardware for UWB life detection and non-contact monitoring of vital signs.
Furthermore, the vital sign detection results obtained by the UWB radar over a range of central
frequency have been compared to those of the former continuous (CW) radar to provide additional
information regarding the advantages and disadvantages of each radar.

Keywords: UWB radar; monocycle pulse; non-contact vital sign detection; optimal frequency;
Bessel-Gaussian integral; Hankel Transform

1. Introduction

Nowadays, radars not only are used to detect long-ranged targets such as military airplanes,
but also they are used for short-range detections, especially in the monitoring of human activities,
monitoring sleeping infants or adults, etc. In such biomedical applications, radars can be widely
categorized into types, namely continuous wave (CW) radar and ultra-wideband (UWB) radar. Each of
these radars has its own advantages and disadvantages as follows.

CW radars can provide accurate Doppler frequency measurements. They are of compact size,
have low cost, longer detection range, and robust operation for practical portable and handheld
applications. Therefore, CW radars are popular monitoring tools of human health such as sleep apnea
syndrome, breathing disorder detection, and non-contact monitoring of the respiration of patients in
hospitals [1–11].

UWB radars emit low electromagnetic radiation and, thus, consume relatively low levels of
power. This is because UWB pulse duration is typically in the order of nanoseconds. UWB radars can
provide high precision in target ranging up to centimeter scale, and have more penetrating capabilities
through obstacles compared with CW radars. Nowadays, UWB radars are popularly used for detecting
multiple targets through walls, finding individuals buried underneath earthquake rubble, breast cancer
monitoring, medical microwave imaging, and non-contact vital sign detection [12–39].

Due to the distance between the target and the radar, a stronger received signal is strictly required
to overcome noises and interferences, especially for tiny vital motions such as breathing and heartbeat
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motions. For UWB radars, the strengths of the heartbeat and breathing signals can be improved by
adjusting the central frequency of the mono-pulse transmitted waveform. For CW radar, the carrier
frequency of CW radars can be increased up to the lower region of the Ka-band to improve detection
accuracy, because the short wavelength of the Ka-band sensor is capable of detecting small movements
like chest-wall motion [7,8]. In practice, we do not have the luxury of unlimited bandwidth for which
we can sweep across the entire range of frequencies. This is because the remote-sensing hardware
(like antennas, PA, LNA), once set up, can operate at best on a few gigahertz of bandwidth. This practical
problem has become our motivation to investigate the optimal central frequency for non-contact vital
sign detection using a monocycle UWB radar. The organization of this paper is as follows.

The theoretical background is presented in Section 2. Then, in Section 3, a new model is derived
from approximation techniques to theoretically investigate the optimal frequency, key parameters,
behaviors and recovering vital sign spectra. The formula to obtain the optimal central frequency is
derived from the new model into the simple formula. The simulations and experiments are presented
in Sections 4 and 5, respectively. As an extra study, in Section 4.4, the central frequency of the UWB
radar has been compared to the carrier frequency of CW radar to provide additional information
regarding the advantages and disadvantages of non-contact vital sign detection.

2. Background

2.1. Transmitted Signal Model

In impulse radio ultra-wideband (IR-UWB) radar applications, one of the most simple-to-generate
transmitting pulses is monocycle waveform, as illustrated in Figure 1a. The waveform defined as the
first derivative of the Gaussian pulse can be easily generated by microwave circuits or FPGA boards
with low distortion [14–25]. In time domain, the amplitude, s(t), of the monocycle waveform is defined
as [20–22]

s(t) = −
2
√

e
td

A0te−2( t
td
)

2

(1)

where td = 1/(πkc) is the time duration between the maximum and minimum, kc is the central frequency
(Hz), and A0 is the transmitting amplitude. The maximum and minimum values of s(t) are, respectively,
A0 and −A0 due to the multiplication factor −2

√
e/td.
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In the frequency domain, the monocycle wave form of (1) can be obtained by applying the Fourier
transform (note that tf (t) ↔ (j/2π) (dF(k)/dk))

S(k) =

∞∫
−∞

s(t)e− j2πktdt = −
2
√

e
td

A0

∞∫
−∞

te−2( t
td
)

2

e− j2πktdt = s0ke−αk2
(2)
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where

s0 = j
A0

k2
c

√
e

2π
and α =

1
2k2

c
(3)

The frequency domain of the transmitting signal is plotted in Figure 1b. From (2) and (3),
the 3db-bandwidth of the transmitting signal s(t) depends on the central frequency kc as well as the
order of the Gaussian pulse [20].

2.2. Received Signal Model

In general, the received signal can be modeled as the summation of multipath reflected signals
from different objects with time delay, that is

R(t, τ) =
∑

p
σps

(
t− tp

)
+

∑
o
σos(t− to(τ)) +

∑
v
σvs(t− tv(τ)) (4)

The first term represents the multipath signals reflected from stationary objects with reflection
coefficient (σp) and time delay (tp). Also, the second term also represents the multipath signals reflected
from non-stationary objects with reflection coefficient (σo) and time delay (to). Lastly, the third term is
the multipath signals reflected from human vital signs with reflection coefficient (σv) and time delay
(tv). From (4), R(t,τ) is a function of “fast time” t, which is the wave-propagation time, and “slow time”
τ, which is the time of signal detection.

For this research, the analysis focused on vital sign motion of one human. Therefore, the received
signal in (4) can be reduced to

R(t, τ) = σvs(t− tv(τ)) (5)

where the delay time tv(τ) is equal to 2d(τ)/c (c is the speed of light in vacuum). The distance to the
target is

d(τ) = d0 + mh sin(2π fhτ) + mr sin(2π frτ) (6)

where d0 is the nominal distance between the radar and the human chest. The mh and mr are, respectively,
the movement amplitudes of the heart and respiration. The fh and fr are, respectively, the fundamental
frequencies corresponding to heartbeat and respiration. From (6), the time delay in (5) can be written as

tv(τ) = 2d(τ)/c = t0 + th sin(2π fhτ) + tr sin(2π frτ) (7)

where t0, tr, and th are the delays related to the human distance, respiratory and heart motions,
respectively.

2.3. Detection Block Diagram

A block diagram of the radar system and received signal in both fast and slow times are shown in
Figure 2a,b, respectively. The principle of detecting physiological movements is based on the phase
shift of the received reflected signals in the slow-time domain. The signals from stationary objects
do not shift in the slow-time domain. The human chest exhibits periodic movement, as shown by (6)
and (7), and will induce the shift of the signal along the slow-time domain. From [22–39], the vital
sign spectrum Y(t0,f ) is defined as the Fourier transform of the received signal in its slow-time domain
that is

Y(t0, f ) = σv

∞∑
u=−∞

∞∑
l=−∞

Clu(t0)δ( f − l fh − u fr) (8)

where

Clu(t0) =

∫
∞

−∞

Jl

(4πmh
λ

)
Ju

(4πmr

λ

)
S(k)dk (9)
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defined as the spectral coefficient of the l-th harmonic of the heartbeat and the u-th harmonic of
respiration. In (8), the δ(.) is a Dirac delta function. In (9), Jl and Ju are Bessel functions of the first kind
for heartbeat and respiration, respectively. The S(k) is defined in (2) and λ is the wavelength associated
with the central frequency of transmitted wave. From (9), it is seen that the spectral coefficient Clu
is dependent on both the central frequency (through λ) of the signal and the movement amplitude,
mr and mh. The coefficient Clu not only is related to the harmonics of respiration and heartbeat signals,
but also related the intermodulation effects between them as well [8].
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3. Spectral Coefficient Solution

In this section, the spectral coefficients Clu in (9) will be simplified using an approximation
technique. Then the formula of the optimal central frequency will be derived by taking the derivative
of the magnitude of the received signal with respect to the central frequency of the transmitted signal.
The optimization criteria aim to maximize the magnitude of the received signal.

In general, the heart movement is usually less than 0.3 mm [40]. For frequencies up to 40 GHz,
the Bessel functions Jl in (9) can be approximated [7], that is

Jl

(4πmh
λ

)
≈

1
l!

(2πmh
λ

)l
(10)

Figure 3 shows the comparison between the original Bessel function of the first kind and its
linear approximation for (a) heartbeat, and (b) respiration. However, for respiration, the movement
amplitude mr is large compared to the wavelength λ. The approximation does not provide good
accuracy, as shown in Figure 3b. For the respiration case, we use

Ju

(4πmr

λ

)
=
∞∑

p=0

(−1)p(2πmr/λ)
u+2p

p!(u + p)!
(11)

Next, by substituting (2), (10) and (11) into (9) and letting λ = c/k, we have

Clu(t0) =
s0

l!

(2πmh
c

)l ∞∑
p=0

(−1)p(2πmr/c)u+2p

p!(u + p)!

∫
∞

−∞

ku+l+2p+1e−αk2
dk (12)
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The integral term of the above equation can be evaluated by applying the Gaussian integral of
general order [41], that is

Clu(t0)

=


s0
l!

( 2πmh
c

)l ∞∑
p=0

(−1)p( 2πmr
c )

u+2p

p!(u+p)!

√
π
α
(n−1)!!

(2α)
n
2

; for n = u + l + 2p + 1 = even

0 ; for n = u + l + 2p + 1 = odd

(13)

By letting α and s0 as in (3) and kc = c/λc, we have

Clu(t0) =
jA0
√

e
l!

(2πmh
λc

)l ∞∑
p=0

(−1)p(2πmr/λc)
u+2p

p!(u + p)!
(u + l + 2p)!! (14)

The power series term above can be viewed as the Bessel function of (11) multiplied by the double
factorial term (u + l + 2p)!! Thus, we define

Glu

(4πmr

λc

)
=
∞∑

p=0

(−1)p(2πmr/λc)
u+2p

p!(u + p)!
(u + l + 2p)!! (15)

where (u + l + 2p)!! = (u + l + 2p)!/[2(u+l+2p−1)/2.((u + l + 2p − 1)/2)!], the above function depends on
4πmr/λc with l and u orders, and it is convergent by the well-known ratio test

lim
p→∞

∣∣∣∣∣∣ap+1

ap

∣∣∣∣∣∣ = lim
p→∞

(u + l + 2p)(2πmr/λc)
2

(p + 1)(u + p + 1)
= 0 (16)

Consequently, (14) can be rewritten as

Clu(λc, mr, mh) =

 jA0
√

e
l!

( 2πmh
λc

)l
Glu

(
4πmr
λc

)
, u + l = odd

0 , u + l = even
(17)

From the above equation, we can initially observe that for given values of mr and mh, the coefficient
Clu (the received signal strength) can be improved by increasing the central frequency (kc = c/λc).
Note also that the −3 db bandwidth is dependent on the central frequency as well as the type of
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Gaussian pulse defining the transmitting signal [20]. In the next section, the optimal central frequencies
for both respiratory and heartbeat models will be derived.

3.1. Respiratory Model

The harmonic components of the respiratory can be obtained by letting l = 0 [25], in (17) that is

C0u(λc, mr) =

 jA0
√

eG0u
(

4πmr
λc

)
, u = odd

0 , u = even
(18)

The spectral coefficient decays as the order number of u increases. From [25–27], the harmonic
orders of u = 0, 1, 2 and 3 are significant for respiration spectrum, and we can evaluate them as

C00(λc, mr) = C02(λc, mr) = 0
C01(λc, mr) = jA0

√
eG01

(
4πmr
λc

)
C03(λc, mr) = jA0

√
eG03

(
4πmr
λc

) (19)

By substituting (19) into (8), we have

Yresp(t0, f ) = σv

3∑
u=0

C0u(λc, mr)δ( f − u fr) = R1δ( f − fr) + R3δ( f − 3 fr) (20)

where R1 is the coefficient of the fundamental frequency fr. R3 is the coefficient of the third harmonic
3fr. These quantities R1 and R3 can be evaluated as

R1 = jσvA0
√

eG01

(4πmr

λc

)
and R3 = jσvA0

√
eG03

(4πmr

λc

)
(21)

Note that the R3 should be minimized as possible, since it could interfere with the detectability
of the fundamental frequency of the heartbeat signal. This is because, while their spectra are very
close, the amplitude of R3, which is relatively large, could superimpose on the heartbeat signal [25].
To improve the detectability of the fundamental respiration frequency, the optimal frequency can be
obtained by taking the derivative of the above equation with respect to central frequency, that is

∂R1

∂kc
=
∂G01(4πmr/λc)

∂kc
= 0 (22)

G01 was computed from (15) power-series expansion, thus we have

∞∑
p=0

(−1)p(2p + 1)(2p + 1)!!
p!(p + 1)!

(2πmr

λc

)2p
= 0 (23)

1− 3(3)!!
1!2!

(
2πmr
λc

)2
+

5(5)!!
2!3!

(
2πmr
λc

)4
−

7(7)!!
3!4!

(
2πmr
λc

)6
+

9(9)!!
4!5!

(
2πmr
λc

)8

−
11(11)!!

5!6!

(
2πmr
λc

)10
+

13(13)!!
6!7!

(
2πmr
λc

)12
−

15(15)!!
7!8!

(
2πmr
λc

)14
+ . . . = 0

(24)

The high-order polynomial cannot easily be factored, we need to use numerical techniques to
find a polynomial’s roots. With the polynomial roots command in MATLAB program and for-loop
coding, we discovered that 2πmr/λc = 0.597 is the valid root corresponding to the global maximum of
the function. Finally, the optimal central frequency (kOR1) to maximize the respiration strength can be
derived as

kOR1 = 0.597
c

2πmr
(25)
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which is inversely proportional to the respiratory movement amplitude mr. In practice, for a fixed or
approximated value of mr, the corresponding optimal central frequency of the transmitted signal can
be easily calculated by using (25).

3.2. Heartbeat Model

Similar to the respiration case, the harmonics of the heartbeat can be obtained by substituting
index u = 0 into (17). We have

Cl0(λc, mr, mh) =


jA0
√

e
l!

( 2πmh
λc

)l
Gl0

(
4πmr
λc

)
, l = odd

0 , l = even

(26)

It is seen from the above equation that Cl0 is dependent on kc, mh and especially mr. This is
because the chest motion mr also affects the heartbeat movement [8,24,25], The dominant spectra of the
heartbeat signal are

Yheart(t0, f ) = σv

3∑
l=0

Cl0(λc, mr, mh)δ( f − l fh) = H1δ( f − fh) + H3δ( f − 3 fh) (27)

where H1 is the coefficient of the fundamental frequency and H3 is the coefficient of the third harmonic
of heartbeat, which can be written as

H1 = jσvA0
√

e
(2πmh
λc

)
G10

(4πmr

λc

)
and H3 = jσvA0

√
e

1
6

(2πmh
λc

)3
G30

(4πmr

λc

)
(28)

The heartbeat estimation observed from the fundamental frequency can be erroneous; consequently,
we can better detect that by maximizing its strength with the optimal frequency. We take the maximum
derivative with respect to kc, that is

∂H1

∂kc
=
∂
{( 2πmh

λc

)
G10

(
4πmr
λc

)}
∂kc

= 0 (29)

and apply the product rule

(2πmh
λc

)∂G10
(

4πmr
λc

)
∂kc

+ G10

(4πmr

λc

)∂( 2πmh
λc

)
∂kc

= 0 (30)

Then, substituting (15) for G10(4πmr/λc) to the above equation yields

∞∑
p=0

(−1)p(2p + 1)(2p + 1)!!

(p!)2

(2πmr

λc

)2p
= 0 (31)

1− 3(3)!!
(1!)2

(
2πmr
λc

)2
+

5(5)!!
(2!)2

(
2πmr
λc

)4
−

7(7)!!
(3!)2

(
2πmr
λc

)6
+

9(9)!!
(4!)2

(
2πmr
λc

)8

−
11(11)!!
(5!)2

(
2πmr
λc

)10
+

13(13)!!
(6!)2

(
2πmr
λc

)12
−

15(15)!!
(7!)2

(
2πmr
λc

)14
+ . . . = 0

(32)

The valid root for maximization is 2πmr/λc = 0.3901 with the same method as (24), then the optimal
central frequency (kOH1) to maximize the heartbeat strength H1 is

kOH1 = 0.3901
c

2πmr
(33)
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From the above equation, kOH1 is inversely proportional to mr. It is very important to note that
although the H1 value can be maximized via the optimal central frequency as in (33), the undesired
third respiratory harmonic (R3) begins to increase as the frequency increases, and R3 degrades the
detection accuracy of the heartbeat signal. Hence, the optimal central frequency for increasing H1

strength should not give rise to R3. The relevant discussion is provided in Section 4.2.

3.3. Avoiding the Central Frequency for the Peak R3 harmonic and the Null Point H1

As mentioned before, the third respiratory harmonic, R3 will degrade the accuracy of detection
and its value increases as the frequency increases. The constraint should put the range of frequency
at which the radar operates to avoid the occurrence of the third harmonic, especially its peak value.
Similar to the R1 case, the frequency at the maximum R3 can be obtained via derivatives,

kavoid,R3 = 1.1405
c

2πmr
(34)

Also, it is worth pointing out that there is one frequency at which H1 = 0. This is defined as the
null point knull, H1, which can be obtained by solving

H1 =
(2πmh
λc

)
G10

(4πmr

λc

)
= 0 (35)

the null frequency can be obtained as

knull,H1 = 0.9533
c

2πmr
(36)

On the contrary, the R1 strength has no null-point, which will be discussed in Section 4.1.

3.4. Vital Sign Spectrum Model of Monocycle UWB

According to (20) and (27), the vital sign signal model in (8) can be rewritten as

Y(t0, f ) = jσvA0
√

e

Yresp(t0, f )︷                                                      ︸︸                                                      ︷[
G01

(4πmr

λc

)
δ( f − fr) + G03

(4πmr

λc

)
δ( f − 3 fr)

+
(2πmh
λc

)
G10

(4πmr

λc

)
δ( f − fh)+

1
6

(2πmh
λc

)3
G30

(4πmr

λc

)
δ( f − 3 fh)

]
︸                                                                                  ︷︷                                                                                  ︸

Yheart(t0, f )

+ Yinter(t0, f )
(37)

where

Yinter(t0, f ) = σv

∞∑
u = −∞

u , 0

∞∑
l = −∞

l , 0

Clu(λc, mr, mh)δ( f − l fh − u fr) (38)

The Yinter is an intermodulation model caused by heartbeat and respiratory signals, where Clu
is denoted in (17). The null-point value of Yinter occurs every quarter of the wavelength that is a
point in which the quantity is zero; to avoid this, methods based on IQ detection, demodulation and
antenna diversity have been proposed. The methods based on IQ demodulation were applied for
accurately detecting low signal-to-noise ratio [30] and have the problem of unbalance between IQ
channels, but theoretically, there is not intermodulation because it detects the phase.

The proposed model (37) in the neglected intermodulation case is compared with the MATLAB
simulation as shown in Figure 4, where the related parameters are referred from Table 1. Respiration and
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heartbeat movement amplitudes are given as 1.8 and 0.08 mm, respectively, for a relaxed human [8],
and the central frequency is done with 6 GHz following the FCC mask.Sensors 2020, 20, x FOR PEER REVIEW 9 of 20 
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Table 1. Simulation parameters 1.

Parameters Quantity Value

d0 nominal distance 1 m
σv reflection amplitude 1
mh heartbeat amplitude 0.08 mm
fh heartbeat frequency 1.1 Hz (66 beats/min)
mr respiratory amplitude 1.8 mm
fr respiratory frequency 0.4 Hz (24 beats/min)

A0 Tx voltage 1 V
kc central frequency 6 GHz (follow FCC)

fs_fast sampling frequency in fast time 1000 GHz (for comparing to theory)
PRI pulse repetition interval 25 ns
τmax maximum slow time 100 s

fs_slow sampling frequency in slow time 200 Hz
1 Note all simulations are done with Intel Core i7-3770 CPU of 3.4 GHz, RAM 8 GB, 64-bit, Windows 8.1 Pro,
and MATLAB 2018a.

As illustrated in Figure 4, the result from the proposed model is in good agreement with that of the
simulation, while the proposed model is faster than computing the simulation. The intermodulation
effect (Int08) and third respiratory harmonic (R3) occur at 0.8 and 1.2 Hz, respectively, and they are
strongly dependent on the respiratory movements (chest motions). The third respiratory harmonic is
a serious problem that is often close to the heartbeat frequency H1 [25], in this case, H1 is at 1.1 Hz.
However, these interferences could be filtered out, as suggested in [25], or trying to find a best
orientation, as proposed in [42].

4. Analysis of Optimal Central Frequency

In the following section, numerical simulations are performed to verify the performance of the
new formula and optimal frequency.

4.1. Detected Respiratory Strength

The study of frequency response of the respiratory model (21) is shown in Figure 5. Figure 5a
illustrates the value of R1 (dB) versus the central frequency with mr varying from 0.8 to 12 mm while
mh is assumed to be fixed at 0.08 mm, which is typical in ordinary people [8]. The other parameters are
fixed, as shown in Table 1. Figure 5b shows the plot of optimal central frequency versus respiratory
amplitude mr with mh varying from 0.02 to 0.2 mm.
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From Figure 5a, the curve graph described the tendency to respond at greater respiratory amplitude
mr when the central frequency starts to match the system’s natural frequency (its resonant frequency) of
the periodically chest vibration. It is seen that, for each mr, as the central frequency increases, the value
of R1 increases and reaches the highest value (optimal), and then starts to decline. For large values of
mr, the value of R1 increases to the highest point and declines more quickly than those with smaller
mr. This can be explained as follows: the larger value of mr increases the speed of Ju(4πmr/λ). The
plot of the simulated optimal frequency versus the respiratory amplitude mr is shown in Figure 5b
compared to the simple formula kOR1 in (25). The results show that the kOR1 formula (solid line) is
almost identical to the simulation results (marker), which remains almost unchanged over the varying
the heartbeat amplitude mh. This means that the optimal frequency is strongly dependent on the
respiratory amplitude mr. Also, when the respiratory amplitude becomes large, the optimal frequency
for the maximization decreases.

4.2. Detected Heartbeat Strength

Following the same suggestions in Figure 5, the accuracy of the heartbeat model (28) is also
compared with the simulation versus the central frequency as shown in Figure 6a.
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Figure 6. (a) Comparison between H1 formula and simulation with small–large respiratory amplitudes
mr = 0.8–12 mm at the assumed heartbeat mh = 0.08 mm; (b) comparison between kOR1 formula and
simulation with varying heartbeat amplitude mh = 0.02–0.2 mm.
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As shown in Figure 6a, as the central frequency increases, the heartbeat value H1 increases until it
reaches the maximum value at the optimal central frequency. When the central frequency becomes too
high, the strength H1 starts decreasing, especially for those with large values of mr. Intuitively, if the
respiratory amplitude mr becomes large, it causes the H1 peak to drop quickly. This is because the
chest surface vibration interferes directly with the heartbeat motion corresponding to the H1 function
in (28). This means that the strength H1 depends on mh and especially mr.

The optimal frequency simulations in Figure 6a are compared with the simple Equation (33) as
shown in Figure 6b with the same conditions as Figure 5b. The optimal central frequency begins to
reduce when the respiratory amplitude becomes large. The simulation results are almost unchanged
with the heartbeat amplitude mh, this means that the optimal frequency value is strongly dependent on
the respiratory amplitude mr.

4.2.1. Comparison of Heartbeat Strength with R3 Harmonic

According to Figure 4, the H1 spectrum tends to be associated directly to the third respiration
harmonic (R3). In order to improve the H1 strength, the relative strength H1/R3 must be considered as
in Figure 7a. It is shown that as the central frequency increases, the relative strength decreases, but not
cause H1/R3 ≤ 1 for the detectable H1 spectrum [8].
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Figure 7. The relative strength versus the central frequency with the small–large respiration amplitudes
mr from 0.8 to 12 mm at the heartbeat mh of 0.08 mm: (a) H1/R3; (b) H1/Int08.

4.2.2. Comparison of Heartbeat Strength with Intermodulation

The H1 strength is compared with the intermodulation effect (Int08) at 0.8 Hz according to Figure 4,
resulting in Figure 7b with the same suggestions in Figure 5. The relative strength H1/Int08 decreases
when the central frequency becomes high, but also not causing H1/Int08 ≤ 1 [8].

According to Figure 7a,b, the R3 effect is more serious than the intermodulation, because R3 is very
close to H1 and the highest peak of the harmonics. Therefore, the H1 signal can be maximized in the
premise that the R3 harmonic is not so large as to affect the detection accuracy [8]. In addition, a best
strategy could be to filter these harmonics and interferences, as suggested in [25], or trying to find a
best orientation, as proposed in [42].

4.3. Discussion on the Optimal Central Frequency

We consider the behaviors R1, H1, H1/Int08, and R1/R3 versus the same frequency as shown in
Figure 8 with the respiration and heartbeat amplitudes of 1.8 and 0.08 mm, respectively, which are
the typical values of a relaxed human [8]. Figure 8a shows a graph of R1 and H1 magnitudes and the
relative strength of H1/R3, H1/Int08, R1/R3 are analyzed in Figure 8b.
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of H1/R3, H1/Int08, and R1/R3.

For improving the H1 strength with the condition of H1/R3 > 1, its optimal frequency has the
lowest value shown in Figure 8b; in this case, it should not exceed 7.4 GHz. The R3 harmonic can
be removed, and the frequency can be increased up to the maximum H1 at 10 GHz computed from
(33), corresponding to Figure 8a. In addition, we can avoid the null-point H1 from evaluating (36).
In this case, calculating the null-point frequency is approximately 24 GHz, corresponding to Figure 8b.
Using through-the-wall radar, the respiratory signal could be enough to detect life, and also maximized
using the optimal central frequency computed from the simple Equation (25). In this case, calculating
the optimal frequency is about 16 GHz, corresponding to Figure 8a.

Finally, Figure 8 shows that the central frequency should be limited to the lower region of the
Ka-band for typical values of human chest wall movement [8].

4.4. Comparison between UWB and CW Radars

In [8], the received baseband signal of CW radars for the vital sign signal can be approximated as

B(τ) = B0 cos
[

4πd(τ)
λ

+ θ

]
(39)

Determining the amplitude, B0 is assumed as 1, the distance d(τ) is denoted in (6), the total phase
shift θ is assumed as 90◦, the wavelength λ is demonstrated from f = 500 MHz to 40 GHz, and the
related parameters are referred from Table 1. The CW carrier frequency is compared with the UWB
center frequency for the analysis of the behaviors R1, H1, H1/R3, and H1/I08, as shown in Figure 9,
with the relaxed respiration mr = 0.8–3 mm and heartbeat mh = 0.08 mm [8,23–26,28]. Note that the
CW simulation results using the MATLAB program are equal to the ADS results in [8].

As illustrated in Figure 9a, the UWB radar can detect the respiratory strength better than CW at the
same frequency; this does not apply at the higher frequency. Unfortunately, from Figure 9d, the relative
strength H1/R3 of UWB is less than CW at the same frequency, which means the CW radar is more
efficient than UWB for detecting the heartbeat signal at the same frequency. Further, from Figure 9b,
both UWB and CW radars find it difficult to detect the heartbeat signal using a lower frequency < 1 GHz.
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Figure 9. Comparison between ultra-wide band (UWB) central frequency (line) and continuous wave
(CW) carrier frequency (dashed line) with respiratory amplitudes mr = 0.8–3 mm at heartbeat amplitude
mh = 0.08 mm: (a) respiratory strength; (b) heartbeat strength; (c) the relative strength of heartbeat
compared with intermodulation effect of 0.8 Hz; (d) the relative strength of heartbeat compared with
3rd respiratory harmonic.

5. Experimentation for Optimal Central Frequency of Respiration

The UWB radar system used for this experiment is shown in Figure 10. The experimental
components are listed in Table 2.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 

 

 

Figure 10. Experimental setup with a human range of 1m according to block diagram in Figure 2a. 

Table 2. Equipment List. 

Block Manufacturer Specifications 

UWB source HP-8133A pulse generator 
0.5 V Peak voltage,  

Central frequency 3 GHz, 

Tx and Rx antennas Vivaldi type (S-band) 
2–5 GHz, 10 dBi 

Angular width (3 dB) ≈ 45̊ 

PA ZVE-8G + Mini-Circuits 2–8 GHz, 30 dBm 

LNA R&K-AA260-OS 2–5 GHz, 26 dBm 

ADC 
Agilent Oscilloscope, Infiniium 

DSO80604B 

Max frequency 6 GHz  

Sampling rate 40 GSa/s 

USB port Agilent GPIB, 82357B Transfer over 850 KB/sec 

Belt sensor BIOPAC Systems Records respiratory effort 

Transmission 

Power 
- 

−5 dBm, bandwidth of 2–5 

GHz 

Before the actual experiment, the preliminary step was done by measuring the respiratory signal 

of a person sitting 1 m from the UWB radar, as shown in Figure 10. A belt sensor was used to measure 

the person’s respiratory movement amplitude and the result is shown in Figure 11a,b. As shown in 

Figure 11a, the peak value mr of the sinusoidal waveform is not constant over the time of 

measurement. In practice, this alteration is always the case and should be expected to be seen, 

although the person is sitting still. From the belt measurement, the average value of mr is 

approximately 9.5 mm. As shown in Figure 11b, the frequency domain shows two dominant spectra 

at 0.38 and 0.42 Hz, which correspond to respiratory rates of 22.8–25.2 breaths per minute. To measure 

the respiration signal, a monocycle waveform was generated by the UWB source with the 3-GHz central 

frequency and time duration td = 0.1 ns computed by td = 1/(πkc). The measurements of the transmitted 

waveform by the oscilloscope and corresponding frequency domain are shown in Figure 12a. 

Figure 10. Experimental setup with a human range of 1m according to block diagram in Figure 2a.



Sensors 2020, 20, 2916 14 of 19

Table 2. Equipment List.

Block Manufacturer Specifications

UWB source HP-8133A pulse generator 0.5 V Peak voltage,
Central frequency 3 GHz,

Tx and Rx antennas Vivaldi type (S-band) 2–5 GHz, 10 dBi
Angular width (3 dB) ≈ 45◦

PA ZVE-8G + Mini-Circuits 2–8 GHz, 30 dBm
LNA R&K-AA260-OS 2–5 GHz, 26 dBm

ADC Agilent Oscilloscope, Infiniium
DSO80604B

Max frequency 6 GHz
Sampling rate 40 GSa/s

USB port Agilent GPIB, 82357B Transfer over 850 KB/sec
Belt sensor BIOPAC Systems Records respiratory effort

Transmission Power - −5 dBm, bandwidth of 2–5 GHz

Before the actual experiment, the preliminary step was done by measuring the respiratory signal
of a person sitting 1 m from the UWB radar, as shown in Figure 10. A belt sensor was used to measure
the person’s respiratory movement amplitude and the result is shown in Figure 11a,b. As shown in
Figure 11a, the peak value mr of the sinusoidal waveform is not constant over the time of measurement.
In practice, this alteration is always the case and should be expected to be seen, although the person is
sitting still. From the belt measurement, the average value of mr is approximately 9.5 mm. As shown in
Figure 11b, the frequency domain shows two dominant spectra at 0.38 and 0.42 Hz, which correspond
to respiratory rates of 22.8–25.2 breaths per minute. To measure the respiration signal, a monocycle
waveform was generated by the UWB source with the 3-GHz central frequency and time duration
td = 0.1 ns computed by td = 1/(πkc). The measurements of the transmitted waveform by the oscilloscope
and corresponding frequency domain are shown in Figure 12a.Sensors 2020, 20, x FOR PEER REVIEW 15 of 20 
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Figure 11. The respiratory movement amplitude measured by a belt sensor; (a) time domain;
(b) frequency domain.

In this system, the peak transmitted power is about −5 dBm and the operable frequency is from
2 to 5 GHz for all components. The system bandwidth does not fully follow the FCC regulations of
3.1–10.6 GHz, which is set to limit interference to existing communication systems only, but in this
experiment the power on the chest surface does not exceed 10 W/m2 (permissible exposure limit),
thus the electromagnetic radiation poses no safety threat [43]. The received reflected signal from the
human subject was amplified by the LNA and sent to the oscilloscope. The signal on the oscilloscope
was captured and transferred to a PC via the GPIB port interface and then the data were discretized by
MATLAB program for further signal processing. The slow-time signals were captured approximately
at the rate of 512 times in 80 s. For each slow-time measurement, the received signals were measured
over the duration of 25 ns (fast time), which is then discretized to 7985 points. Figure 12b shows the
received signals measured in fast-time domain with multiple overlapping slow-time measurements.
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Figure 12c shows the corresponding 2D-matrix (7985 × 512) of fast-time versus slow-time plots.
The antenna coupling as well as the signal-to-noise ratio (SNR) can be improved by using basic filters to
remove static signals, like linear least-squares, smooth filter, and bandpass filter for slow and fast-time
domains [22,31,44]. The fast Fourier transform (FFT) technique was used to compute the Doppler
shift of the vital sign signals [22–39]. The plots of Doppler shift are shown in Figure 13a where the
theory plot has been compared with experimental UWB measurement. In this case, the plots show no
intermodulation between heartbeat and respiration, due to the use of 3-GHz central frequency which
is too low.
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Next, the main experiments were carried out to investigate the frequency characteristic of the
received signal magnitude. The received signal measurements were taken with three trials, with three
different persons, and the central frequency of the transmitted signal was varied from 2 to 4 GHz.
As shown in Figure 13b–d, the measurement results of the three cases are compared with the theory
plot where mr is assumed to be 9.5 mm and the optimal central frequency is calculated by the proposed
Equation (25) to be 3 GHz.

From Figure 13b,c, it is probably difficult to see that the maximum magnitudes do occur at 3.0
and 3.1 GHz, respectively, because the experimental curves are almost flat. However, as shown in
Figure 13d, it is obvious to see the optimal frequency characteristic where the normalized magnitude
of the received signal is increased from 0.9 (at 2.0 GHz) to maximum 1.0 (at 2.6 GHz) and then starts to
decline at the higher central frequencies. The mismatches between the theory plots and experimental
plots are mostly due to the fact that the amplitude of chest movement in practice is not periodic over
the time. As opposed to (6), which assumes mr to be constant, the amplitude of human chest movement
does not follow perfect sinusoidal form, as measured and shown in Figure 11a. Another reason could
be the loss of symmetry of the monocycle pulse that normally comes from the limited bandwidth of
the antennas and other RF components, which is very typical in the real-world situations [44].

The experiment was not carried out to measure the heartbeat signals due to testing the large
respiratory amplitude movement (mr = 9.5 mm) and the lack of higher frequency capabilities of our
hardware, these results correspond to the heartbeat strength analysis in Figure 6a. To see the better
optimal frequency characteristic of the vital-sign signal strength, a wider range of frequencies for the
experimental part may be suitable for future study.

6. Conclusions

The detection of vital signs using radar system is essentially based on interpreting the echo
signals scattered from human micromovements. These vital movements induce changes in frequency,
amplitude and time-of-arrival of the received signals. Monocycle UWB radar is popularly used as a
non-contact monitor since it could free the person from wearable sensors and imposes no infringement
on personal privacy. However, due to the distance between the target and the radar, the stronger
received signal is strictly required to overcome noises and interferences, especially for tiny vital motions
such as breathing and heartbeat motions. In this paper, it was shown that, while other parameters
were kept as constants, the magnitudes of the heartbeat and breathing signals could be improved by
adjusting the central frequency of the transmitted monocycle waveform.

In this study, the formula for optimal central frequency had been derived and presented, based on
the calculus derivative-optimization method. Note that, due to the greater intensity of breathing
motions, it is easier to detect respiratory movement than heartbeat. For the respiratory detection,
the frequency obtained from the proposed formula could be directly applied. However, the heartbeat
signal is so weak and is always covered by the larger respiratory signal. Therefore, in order to obtain the
optimal central frequency for the heartbeat signal, the proposed formula must be used in conjunction
with the minimization of the third harmonic of the respiration signal.

The experimental results and formula are quite different because of the loss of symmetry of the
monocycle pulse that normally comes from bandwidth antennas, hardware, environment, etc., in the
real-world applications. However, the proposed formula to compute optimal central frequency can
be useful in estimating the range of frequencies at which the remote-sensing hardware operates.
According to Figures 5a, 6a and 7a, the optimal frequency is higher for smaller respiratory movement
mr. To avoid significant performance deterioration as mr increases, we could estimate for optimizing
the central frequency that should be limited to the lower region of the Ka-band.

Furthermore, as an extra study, we compared the performances of UWB and CW radars.
According to simulation results, for given frequencies, the UWB radar is better off at detecting
the respiratory signal, while the CW radar performs very well in detecting small signals from heartbeat
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motion. For frequencies lower than 1 GHz, both uses of UWB and CW radars find it difficult to detect
a small heartbeat signal.

Lastly, it is worth pointing out that this study was done without considering the problems of
sampling rates of both fast-time and slow-time domains. Also, the proposed analytical framework was
based on the approximation of the Bessel function which was accurate for the heartbeat no greater
than 0.3 mm. The aforementioned issues will be revisited and improved in future studies.
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