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Abstract: Autonomous wheelchairs are important tools to enhance the mobility of people with
disabilities. Advances in computer and wireless communication technologies have contributed to
the provision of smart wheelchairs to suit the needs of the disabled person. This research paper
presents the design and implementation of a voice controlled electric wheelchair. This design is
based on voice recognition algorithms to classify the required commands to drive the wheelchair.
An adaptive neuro-fuzzy controller has been used to generate the required real-time control signals
for actuating motors of the wheelchair. This controller depends on real data received from obstacle
avoidance sensors and a voice recognition classifier. The wheelchair is considered as a node in
a wireless sensor network in order to track the position of the wheelchair and for supervisory
control. The simulated and running experiments demonstrate that, by combining the concepts of
soft-computing and mechatronics, the implemented wheelchair has become more sophisticated and
gives people more mobility.
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1. Introduction

The elderly, as well as millions of other people, suffer from paralysis and disability, which makes
them physically unable to interact normally and adhere to the demands of life [1]. Wheelchairs are
important tools to enhance the mobility of persons with disabilities. Developments in computers and
communications technologies have contributed to the availability of smart wheelchairs that meet the
requirements of a disabled person. In order to help the handicapped to carry out their daily work,
many attempts have been made to apply modern technologies in computers and communications to
build smart wheelchairs that suit their needs. These wheelchairs need to be equipped with a real-time
computer control unit and a set of sensors for navigation and obstacle avoidance tasks [2,3].

A disabled person can control a wheelchair by simply moving a part of the body, using sound or
brain signals. The method of generating commands for guiding the wheelchair depends mainly on the
patient’s condition and degree of disability or paralysis. In our previous research [3], the brain-computer
interface based on electrooculography (EOG) signals was used to control an electric wheelchair. In this
paper, the voice will be used in guiding the wheelchair.

Voice recognition has gained increasing importance in computer-controlled applications.
Voice recognition techniques evaluate the voice biometrics of a person, such as the frequency, flow of
voice, and accent. This technology will provide a new way of human interaction with machines.
Although voice recognition is normal for people, it is not an easy task for a computer, especially when
used in real-time applications. A simple design for a voice-controlled wheelchair is given in the
literature [4–6]. The speech recognition is done by a voice recognition module connected to the
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main controller. The wheelchair is controlled directly by the voice commands used by an Arduino
microcontroller to drive the motors. A smart phone-based, voice-controlled wheelchair is proposed by
Malik et al. [5] who used an Android application to recognize a user’s voice.

Incorporating soft-computing tools, such as fuzzy logic and artificial neural network (ANN),
in predicting wheelchair commands based on voice signals makes it very attractive for engineers
to design and implement smart wheelchairs that suit the requirements of the disabled and elderly
people [3,7]. An obstacle avoidance fuzzy controller has been used for guiding an electric wheelchair [7].
The proposed algorithm uses data from eight ultrasonic sensors distributed around the wheelchair
to make navigation decisions. The power consumption was evaluated, and it was found that the
field programmable gate array (FPGA) hardware implementation reduces the battery life. Wahyudi &
Syazilawati [8] proposed an adaptive neuro-fuzzy inference system (ANFIS) controller for a security
door access control system, to convert and classify the voice commands to control commands after
feature extraction. Perceptual linear prediction coefficients with fast Fourier transform have been
used as a feature of the person’s voice. Experimental results showed that the proposed system
produced a good security performance. Mazo et al. [9] proposed a wheelchair control system uses
dependent-user recognition voice (in generating commands) integrated with ultrasonic and infrared
sensors. The wheelchair can be driven using voice commands (high-level control) and with the
possibility of avoiding obstacles (low-level control). Both PID controller (for position and speed control)
and fuzzy controller (for obstacle avoidance) were used in the proposed system. Xu et al. [10] present
an adaptive human machine interaction method based on surface electromyography signals for the
hands-free control of an intelligent wheelchair. However, the proposed detection method requires
reducing noisy signals from facial movements when a user is talking and looking around.

In this research, the real-time voice recognition and intelligent control of the wheelchair are
considered. The main features will be extracted from the person’s voice data and an ANFIS will be used
to classify each voice command and produce the required control commands accordingly. The rest of
the paper is organized as follows. The concepts of voice recognition are given in Section 2. The elements
of the proposed system are discussed in Section 3. Sections 4 and 5 present wheelchair control system
design, including hardware and software design, respectively. Experimental and simulation results are
discussed in Section 6. Finally, a conclusion and some suggested future work are given in Section 7.

2. Voice Recognition

Speech could be a useful interface to interact with machines. It has been made possible to have
a system capable of real-time conversations. However, this is still facing a lot of problems, which are due
to the variation in speaker due to age, gender, speed of signal, different pronunciation, surroundings
noise, etc. [11,12]. In order to overcome the problems of using a joystick or any other input method
needed to move muscles (especially for those suffering from a high level of disability), this paper
introduces a voice-based wheelchair control system for disabled people. Voice recognition is the ability
of a machine or program to receive and interpret dictation or to understand and carry out spoken
commands. The first voice recognition product was launched in 1990 by Dragon. As published in
the literature [9,12,13], the first voice recognition product that could recognize continuous speech
was introduced by IBM in 1996. During the past twenty years, there has been exponential growth in
voice-controlled applications, especially after the launch of smartphones, where more sophisticated
voice recognition software products have been developed.

Voice recognition techniques are classified into two types, namely speaker dependent and speaker
independent. The speaker dependent system is based on training the person who will be using the
system, while the speaker independent system is trained to respond to a word regardless of who
speaks. The first type demonstrates a high accuracy for word recognition, thus it is recommended for
a voice-controlled wheelchair. A voice recognition unit (VRU) is required to provide communication
channel between computer and human voice. This interface is mainly based on feature extraction
of the desired sound wave signal. A typical voice recognition system consists of a data acquisition
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system, pre-emphasis of the acquired signals, feature extraction process, classification of the features,
post-processing of the classifier output, and finally the control interface and device controller.

The sound signal is an electrical activity generated by the microphone. The traditional computer’s
microphone was used as a voice signal reader with MATLAB software to acquire the voice signal.
The computer’s microphone with the MATLAB software were used to process the detected signals and
convert them into five commands, namely moving forward (Forward), moving backward (Backward),
stopping (Stop), turning right (Right), and turning left (Left). These commands are used by the real-time
controller to generate a sequence of control signals to adjust the speed and direction of each wheel.

3. The Proposed System

The proposed system consists of four main components, namely an electric wheelchair,
voice recognition unit, real-time control unit, and position tracking unit, as illustrated in Figure 1.
A low-cost microphone is used as voice sensor to record the person voice. The recorded voice is then sent
to the voice recognition unit, which will verify the required action, based on his/her voice. A single-chip
microcontroller has been used to communicate serially with the intelligent voice recognition unit.
The navigation and steering of the wheelchair has been controlled using an adaptive neuro-fuzzy
inference system.
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3.1. Electrical Wheelchair Prototype

This study contemplates an electric wheelchair prototype with two geared DC-motors. The motor
actuation module has a gear ratio of 1:48 and an electronic drive module. The implemented wheelchair
prototype has six ultrasonic sensors (type HC-SR04 model) to detect any obstacle and to increase the
safety of motion. Two sensors were positioned at the front, two on the back, and one on each side
of the wheelchair [3]. These sensors have a 2–400 cm non-contact measuring function with stable
readings, and they handle good range accuracy (around 2 mm). For safety operation, the wheelchair
is considered as a node in a wireless sensor network. By using this technology together with a GSM
module, it becomes possible to track the position of the wheelchair and to excercise supervisory control.

3.2. Voice Recognition Unit (VRU)

The voice recognition unit used in this research is represented by a personal computer where
MATLAB software is acquiring and classifying the voice signals received from a built-in microphone.
Through MATLAB, the sound wave will be trained and classified as a command, and then these trained
commands will be used via a Bluetooth module to the main microcontroller.

3.3. Real-Time Control Unit

The microcontroller type (MEGA-2560) has been used as the main controller. It has 54 digital
input/output pins, 16 analog inputs, 8 KB SRAM, 4 KB EEPROM, and 256 KB flash memory.
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The microcontroller takes voice commands together with feedback signals from obstacle avoidance
sensors to generate the required control signals for the driving motors.

3.4. Position Tracking Unit

The owner of the wheelchair can track the location and status of the wheelchair. The GSM/GPS
module (type SIM808) is used to indicate the location of the wheelchair and send an SMS to the mobile
phone of the owner showing the exact location on Google map application.

4. Hardware Design

The overall layout of the hardware design of the implemented wheelchair prototype is shown
in Figure 2. As shown, it has two microcontrollers, two DC motors, voice recognition unit, and six
ultrasonic sensors. The voice recognition unit is connected serially to the main microcontroller via a
Bluetooth module (type HC-06). An electronic drive unit (type L298N) drives each DC motor via the
microcontroller. As shown in Figure 3, the main microcontroller generates the triggering signals for
the six ultrasonic sensors while the output signals for these sensors are used by the real-time controller
to generate the appropriate control commands (direction and duty cycle of the pulse width modulated
(PWM) signal) for both right and left DC motors.
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The second microcontroller type (ARDUINO UNO) is connected directly to the GSM/GPS module.
It is responsible for position-tracking task and equipped with an independent power source to keep
it working 24 h. The position tracking task will be managed by sending an SMS with the “track”
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command from the owner’s cell phone to the GSM unit. The position tracking algorithm in the UNO
microcontroller responds directly by resending and texting to the owner’s cell phone with a Google
Map link showing the latitude and longitude of the exact current position of the wheelchair according
to the reading data of the GPS chip.

5. Software Design

The software module of the implemented wheelchair prototype contains three primary components,
namely voice features extraction, generating control commands, and real-time controller.

5.1. Voice Features Extraction

In the feature extraction process, the raw voice signal been converted to feature vector which can be
used for classification. Features are extracted from preprocessed voice and can be used to represent the
voice signal. In general, speech recognition is mainly done in two stages, namely training and testing.
However, before this, some basic procedures are necessary applied to speech signals. Figure 4 outlines
the basic process of speech recognition. It shows that an input of different voice signals come from
a microphone before it is preprocessed using suitable techniques like filtering. The regarding useful
features are extracted to distinguish between different signals [13]. In this research, the classification
process is achieved using neuro-fuzzy controller. A neural network (step 4) is trained based on the
selected features extracted (step 3) from the input speech signals (step 1).
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Pre-emphasis (Step 2): In this step an equal loudness curve is constructed. Each channel (with
80 samples per frame) has been filtered independently using a finite impulse response filter. This filter
emphasizes high frequencies and attenuates lowers. The overlap analysis block is used to convert
scalar samples to a frame output at a lower rate. Then, the voice data are framed and windowed using
the available window function such as hamming window.

Autocorrelation signal: It is a mathematical tool for finding repeating patterns by calculation of
the all-pole coefficients. Autocorrelation can be used to calculate the all pole coefficients using the
well-known “Levinson–Durbin” algorithm [8]. Using the MATLAB Simulink, autocorrelation has been
done for the selected five voice commands, namely Forward, Back, Left, Right, and Stop, as given in
Figure 5. Correlation signal analysis has been achieved between signals (frames) of the given class
(Forward, Backward, Right, Left, and Stop). The results of correlation analysis showed the possibility
of using these signals to implement feature extraction (step 3).
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Neural networks controller design: In this step, different voice signals (80 frames for each action
direction Stop, Forward, Back, Right, and Left) are taken from the recorded input speech signals.
Two data sets, one for training and the other for validation and testing are chosen based on seven
statistics features (Mean, Median, Minimum, Mode, Peak-to-Peak, RMS, and Standard Deviation).
The dimension of the training and testing input matrices is of (7 × 400) each. While the target data
is a matrix of (5 × 400) dimension. The classification has been made using neural network tool on
MATLAB version R20116a workspace. The implemented neural network topology was of (7-25-10-5).
It has a 7-node linear input layer, two sigmoidal nonlinear hidden layers of 25 and 10 units respectively,
and a 5-node linear output layer as shown in Figure 6.

An error-back propagation learning algorithm has been applied based on a Levenberg–Marquardt
algorithm with learning rate of 0.05 and stopping criterion of mean error square less than or equal to
0.005. As illustrated in Figure 7, after 197 iterations, the neural network has learnt effectively.
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The tested data is used to confirm learning with an output of the required action signal is perfectly
achieved, as shown in Tables 1 and 2 as a sample. The seven selected features of each voice commands
given in Table 1 are used for training the neural network to recognize each command. Meanwhile,
Table 2 shows the five required outputs for each voice commands which will be implemented by the
main microcontroller.

Table 1. A sample of test input pattern.

Testing Input Pattern
Features Stop Forward Back Right Left

Mean −0.008 −0.0075 0.0056 −0.0006 0.0048
Median −0.002 0.00015 −0.00006 0.00018 0

Minimum −0.21 −0.3176 −0.05 −0.1021 −0.0313
Mode 0 −0.0002 −0.00006 0 0

Peak to
Peak 0.4356 0.4716 0.2078 0.2809 0.286

RMS 0.0468 0.0615 0.0284 0.024 0.03
STD 0.0463 0.0614 0.028 0.024 0.0302
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Table 2. Target and actual NNs output for given input pattern.

Output Pattern
Action Target Actual NNs Output

Stop

1 1.012
0 −0.002
0 0.018
0 −0.025
0 −0.002

Forward

0 −0.0008
1 1.0014
0 −0.0005
0 −0.00002
0 −0.00007

Back

0 0.0058
0 −0.0002
1 1.0262
0 −0.004
0 −0.0283

Right

0 −0.0117
0 0.0001
0 0.0308
1 1.0313
0 −0.0507

Left

0 −0.01
0 0.0002
0 0.018
0 0.0014
1 0.99

5.2. Generating Control Commands

As given in Figure 4, step 5 is dedicated to convert the trained and classified sound commands to
control commands using the ANFIS. Five control commands are considered, namely moving forward
(Forward), moving backward (Back), stopping (Stop), turning right (Right), and turning left (Left).

5.3. Real-Time Control

The implementation of fuzzy logic as a decision tool and artificial neural network as a modeling
methodology will help designers to investigate controllers without the need for accurate mathematical
model of the plant to be controlled. Therefore, these soft-computing tools open the way for new
researches for the real-time control of an intelligent wheelchair. For safe mobility and smooth steering
of the wheelchair, the MATLAB neuro-fuzzy design application has been used to construct an ANFIS
to calculate the accurate duty cycle of the PWM signal sent to each DC motor. The direction and the
speed of rotation for each wheel will be controlled by the duty cycle value of the PWM signal. The duty
cycle value (100) has been selected to set the maximum speed of the wheelchair.

The real-time controller reads the output of the six Ultrasonic sensors (S1 to S6) in centimeter
and accordingly generates the duty cycle for each PWM signal to drive the right and the left DC
motors. Two ANFIS controllers are designed, one for each DC motor. Table 3 shows the training
dataset used in the learning process implemented by the ANFIS. The measured distance generated
from each ultrasonic sensor is represented by three fuzzy sets with Gaussian membership functions.
These fuzzy sets are short (SH), normal (NR), and far (FA), as illustrated in Figure 8. The ANFIS is
used to tune the membership functions of the fuzzy sets for both right and left motors are given in
Figures 9 and 10, respectively.
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Table 3. Dataset used for training the real-time controller.

Sensors Outputs (Cm) PWM Duty Cycle
S1 S2 S3 S4 S5 S6 Right Motor Left Motor

100 40 50 50 100 100 70 100
30 100 50 50 100 100 80 45
100 100 20 50 100 100 100 90
100 100 40 10 100 100 65 80
40 50 15 100 100 100 80 55
40 45 100 20 100 100 55 75
40 40 25 25 100 100 65 20
100 100 40 40 35 100 100 80
100 100 40 40 100 35 80 100
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The resulting multi-input multi-output (MIMO) ANFIS algorithm given in Figure 11 has been
tested on the simulation model and the real prototype. The performance of the resulting MIMO
ANFIS algorithm was perfect and all the cases have been covered—even the in-between cases have
been covered extremely perfect. Table 4 shows the dataset and generated values of the duty cycles of
the pulse width modulated (PWM) signals of both right and left DC motors using the neuro fuzzy
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controller. It is clear that the error between generated and desired root mean square error (RMSE)
values of the PWM signals are 0.082 for right wheel and 0.339 for left wheel.
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Table 4. Resulting control signals for the same trained dataset.

Sensors Outputs PWM Duty Cycle
S1 S2 S3 S4 S5 S6 Right Motor Left Motor

100 40 50 50 100 100 69.96 99.89
30 100 50 50 100 100 80.02 44.94
100 100 20 50 100 100 99.82 90.01
100 100 40 10 100 100 64.99 80.15
40 50 15 100 100 100 79.98 55.1
40 45 100 20 100 100 55.12 74.88
40 40 25 25 100 100 64.99 20.05
100 100 40 40 35 100 100.13 80.05
100 100 40 40 100 35 79.87 99.9

6. Results and Discussion

The principal part of the software implemented in this research work is the extraction of voice
features. The implemented software enables the voice signals to be read and processed from a built-in
microphone into command. It sends the command signal over a Bluetooth connectivity module to the
microcontroller. The real-time controller produces the control signals needed for both the right and left
motors. For safe operation, the maximum speed of the implemented wheelchair system, as shown in
Figure 12, is 125 rpm, when the PWM signal duty cycle is only 40% of the full value.

A real-time simulator was developed that integrates knowledge about the wheelchair and its
working environment to illustrate wheelchair actions and how it will act according to the voice
commands. The speed responses for both left and right motors to the five commands provided by the
voice recognition module are demonstrated in Figure 13.

The ANFIS controller’s actions has been evaluated and tested when an obstacle appears in
the wheelchair’s working area. Figure 14 illustrates the speed responses of both motors when the
wheelchair on the left front meets an obstacle. It is obvious that the speed of the right motor is reduced
to allow the wheelchair to turn right to avoid obstacles. If the wheelchair meets an obstacle on the
right front side, the speed of the left motor is reduced to enable the wheelchair to turn left.
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The direct interface between MATLAB Simulink, and the V-REP 3D simulator software is an
approach to simulate the behavior of the implemented wheelchair system. Figure 15 illustrates the
behavior of the 3D simulation model during the implementation of the resulting MIMO ANFIS
algorithm. It is clear that the wheelchair model is able to avoid obstacles on the left and right front
sides. The MIMO ANFIS controller is able to make the required decision, even with obstacle distance
excluded from the training data given in Table 4.
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A supervisory control mode can be used via the GSM technique, whereby the wheelchair receives
control commands from the owner by sending SMS to the wheelchair, such as to stop the wheelchair or
move it in any direction. The owner can send SMS with the command “check” and the wheelchair
system will reply immediately with SMS showing the status of the wheelchair (location & battery level).
Moreover, once the stop command been activated to stop the wheelchair, a timer will start counting
time, if the timer reaches three minutes and no forward action been executed, an emergency SMS will
be sent to the owner telling him that the wheelchair is stopped for more than three minutes and the
patient or the user might be in a trouble or might be in a sleeping situation. More safety consideration
has been included using the GSM/GPS technique. The second microcontroller (ARDUINO UNO) was
programmed to respond to the SMS commands received from the wheelchair’s owner. In this case,
the wheelchair’s owner sends an SMS message with the word “track” and then immediately receives
an SMS response from the second microcontroller. Using such a technique will update the location and
the battery level situation for the owner by sending an SMS each 15 or 20 min, or any time could be
indicated depending on the patient’s situation, to inform him the location of the wheelchair located
and what is the battery level.

7. Conclusions

An ANFIS based voice-controlled wheelchair was designed and implemented to support
individuals with physical disabilities. By using voice instructions, the patient can control the electrical
wheelchair. The functioning and overall performance of the implemented wheelchair prototype system
was tested using various test commands and perturbations. The results obtained from the simulator
and prototype model demonstrate that the use of the ANFIS based controller together with online
sensor signals can maximize wheelchair performance and improve the quality of life of physically
challenged people. The implemented prototype has many benefits, including simplicity, inexpensive,
position tracking, and safety. It has a set of sensors to detect static and dynamic obstacles as well any
slippery roads.

A feed-forward multilayer neural network with (7-25-10-5) topology of input, hidden and output
layers was implemented for classification to recognize the voice of individual speakers with suitable
datasets for training and testing.
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