
sensors

Article

Machine Learning Methodology in a System
Applying the Adaptive Strategy for Teaching
Human Motions

Krzysztof Wójcik 1,* and Marcin Piekarczyk 2

1 Production Engineering Institute, Cracow University of Technology, Al. Jana Pawla II 37,
31-864 Cracow, Poland

2 Institute of Computer Science, Pedagogical University of Cracow, ul. Podchorazych 2,
30-084 Cracow, Poland; marcin.piekarczyk@up.krakow.pl

* Correspondence: krzysztof.wojcik@mech.pk.edu.pl; Tel.: +48-12-374-3263

Received: 13 November 2019; Accepted: 4 January 2020; Published: 6 January 2020
����������
�������

Abstract: The teaching of motion activities in rehabilitation, sports, and professional work has
great social significance. However, the automatic teaching of these activities, particularly those
involving fast motions, requires the use of an adaptive system that can adequately react to the
changing stages and conditions of the teaching process. This paper describes a prototype of an
automatic system that utilizes the online classification of motion signals to select the proper teaching
algorithm. The knowledge necessary to perform the classification process is acquired from experts
by the use of the machine learning methodology. The system utilizes multidimensional motion
signals that are captured using MEMS (Micro-Electro-Mechanical Systems) sensors. Moreover, an
array of vibrotactile actuators is used to provide feedback to the learner. The main goal of the
presented article is to prove that the effectiveness of the described teaching system is higher than
the system that controls the learning process without the use of signal classification. Statistical
tests carried out by the use of a prototype system confirmed that thesis. This is the main outcome
of the presented study. An important contribution is also a proposal to standardize the system
structure. The standardization facilitates the system configuration and implementation of individual,
specialized teaching algorithms.

Keywords: pattern recognition; human–machine interface; machine learning; MEMS sensors; haptic
feedback; motor learning

1. Introduction

1.1. Motor Learning

Motion activity is understood as the performance of a certain movement of parts of the body.
Teaching these activities (i.e., motor learning [1]) has great social significance, particularly in areas
such as rehabilitation for people with motor system dysfunctions, sports, recreation, as well as the
acquisition of skills that are essential for professional vocational work (e.g., piloting, machine operation,
and teleoperation) [2–11]. The possibility of facilitating the teaching of these kinds of activities through
automated systems is of enormous significance.

First, we examine the general scheme of learning. In the majority of known strategies, this process
takes place with the participation of a teacher (supervised learning), usually with the use of a feedback
loop. The process is illustrated by means of a simplified chart in Figure 1.

Sensors 2020, 20, 314; doi:10.3390/s20010314 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3699-9955
http://dx.doi.org/10.3390/s20010314
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/1/314?type=check_update&version=2


Sensors 2020, 20, 314 2 of 23

Figure 1. The scheme of the learning process with teacher participation. The motion activity of the
learner’s body is evaluated by the teacher or automatic controller, which uses an actuator to send
feedback to the learner. The object of this process (i.e., the learner) uses the local feedback loop to
control his or her movements.

With the use of local feedback, the learner controls the activity that is the subject of learning (e.g.,
moving specific parts of the body or voice emission). Moreover, from the point of view of control
theory, the learner (as a whole) is also an object of control with a designated input and output [12].
The teacher’s suggestions are the input signal, while the output signal is the activity undertaken by the
learner (e.g., a movement or sound). This activity is assessed by the teacher, who determines the best
means for its correction and subsequently sends the information to the learner. Thus, we see another,
more general feedback loop connected to the process of learning. The teaching process must have
a defined general aim that should refer to further learning outcomes, such as the improvement of a
person’s health or an increase in the efficiency of machine operation. The appropriate assessment of
these outcomes requires the learning process to be conducted using expert knowledge (we consider an
expert to be a person who is able to establish the proper way of teaching and understand technical
aspects of the system).

The introduced general scheme can be utilized to describe the automatic system for learning
fast motor skills. The system should be characterized by certain features and satisfy specific
requirements, namely:

1. The motion sensor system should be convenient and non-obstructive to the learner [3,13].
2. The learning method should feature only short delays between the performance of the movement,

the trainer’s communication, and the reaction of the learner (Concurrent Feedback (CFB)) [10,13].
3. Teacher–student communication should be performed at a relatively low level, which does not

require a great deal of intellectual activity on the part of the learner [4,14].
4. Teaching methods should be adaptive, i.e., they should be able to adapt automatically to the

specific teaching conditions and changing phases of the entire teaching process [13].

The above requirements define the main problems related to building an automatic system for
teaching fast and periodic movements. Such problem identification has not been described in the
literature. Nevertheless, there are works in which similar problems are discussed [5,6,15–25]. We
return to this matter in Section 1.5 (Related Work).

1.2. The Motion Capture Process

Systems for motion capture can utilize many kinds of sensors. For instance, by using image sensors
(cameras) and algorithms for image recognition, we are able to determine a person’s profile in the image
and calculate the coordinates of selected parts of the body [26]. MEMS (Micro-Electro-Mechanical
Systems) sensors are frequently used as motion sensors [17,27]. The small casing of a typical MEMS unit
can contain several kinds of sensors, such as triaxial accelerometers, gyroscopes, and magnetometers.
These sensors make it possible to calculate the acceleration of body parts with respect to a certain
coordinate system (e.g., associated with the Earth). As a result, the speed and position can be computed.
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1.3. The Communication between Teacher and Learner

Teacher–learner communication can be achieved through different senses, such as hearing, sight,
touch, proprioception, and balance. Given the above mentioned characteristics of motor learning,
most currently existing systems utilize a combination of touch, auditory, and visual sensations [14].
Especially in systems that apply concurrent feedback, because of the short reaction time, the sense
of touch is preferred (systems with Vibrotactile Feedback (VTFB) [4,13,18]). The literature describes
many useful constructions that generate haptic and vibrotactile sensations (e.g., vibration motors).
In accordance with control theory, herein, these devices are called actuators [12].

1.4. Classification Processes in Teaching Algorithms

In the decades of practice in motion teaching, many diverse strategies have been invented [1,2].
However, as previously noted, the adequate choice of strategy requires knowledge and experience.
The acquisition of expert knowledge is a central problem that faces the creators of automated motor
learning systems. It is characteristic that capable systems are involved in the domain of rehabilitation,
not in sports and professional skills, in which proper teaching techniques need to be respective
and flexible [3,13]. There exist many factors (e.g., learner’s fatigue level and injury) that affect the
undertaken movement to a significant degree. Thus, in order to select an appropriate teaching
algorithm, a classification of the motion signals has to be conducted. The knowledge that allows
this process to be performed can originate from an expert or an experienced teacher. The expert can
examine a group of sample signals and ascribe them to previously defined classes. Consequently,
a sequence composed of pairs (signal, label_o f _class), called a learning sequence, is built [28].

The automatic assignment of an unknown signal (signals are also called objects) to individual
classes can be assessed using a predefined metric function. This technique is utilized in the Nearest
Neighbor (NN) method and its modifications (e.g., k-Nearest Neighbor (kNN); see Section 2.3) [28–31].
Motion signals can also be classified using methods in which the probability that an object belongs to
a particular class is estimated (e.g., Bayesian classifier [27,28]). The Hidden Markov Model (HMM)
is often utilized for this purpose [32]. The signals can also be recognized using a model based on
a defined ontology [33]. A syntactic method can be used as another approach. If an object can be
described with the aid of particular grammar, then we can consider the object to belong to the class
ascribed to this grammar [34]. Other commonly used classification methods for motion signals apply
Artificial Neural Networks (ANNs) [17,28,35]. Similarly, methods based on Support Vector Machine
(SVM) are frequently used [21,36].

The above points show a wide range of available solutions. However, we should be aware that
the method applied in motor learning systems must be understandable to the teacher and possible to
implement in real-time control algorithms.

1.5. Related Work

There are many works that describe particular subproblems concerning the motion activity
teaching. They mainly involve the implementation of learning systems in rehabilitation (in which
movements are generally slow) and sports [3,18]. The main properties of typical teaching systems
are presented in Table 1. The depicted solutions do not meet all the requirements listed in Section 1.1.
The systems proposed by Stamm [6] and Wang et al. [22] are typical examples. The systems, using a
set of sensors, calculate several parameters that describe the motion. However, the data interpretation
is performed by the trainer, and the feedback is provided to the learning person after the motion.
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The description of the learning person in terms of an object being controlled (see the flowchart in
Figure 1) suggests that for the motor learning, some methods normally applied to machine learning
problems can be utilized. This particularly relates to teaching the ANN and embedded agents [37].
The problems of applying diverse teaching strategies and ways of teacher–learner communication are
broadly described in the literature. Despite the fact that the works do not involve the real-time motor
learning, many concepts (e.g., teachable agent [38]) may be adopted in this field [39,40].

Table 1. A brief review of selected teaching systems using different paradigms and approaches,
including sensor types, methods of communication with the user, and the aim and scope of the analysis.

Authors and Works Application
Field Sensors Communications

to Learners Scope of Analysis

Zahradka,Behboodi
et al. [19], 2019

neuromuscular
rehabilitation MEMS IMU functional electrical

stimulation
online gait

phase detection

Bark, Hyman [18], 2015 rehabilitation
after stroke

infrared
camera haptic, visual position controlling

Haladjian, Reif,
BrĂL’gge [20], 2017

rehabilitation,
sports skiing MEMS IMU haptic

guiding
for visually

impaired skiers

Taborri, Palermo,
Rossi et al. [21], 2019

sports
race walking MEMS IMU without

communication

offline classification
for referee’s

and trainer’s analysis

Alonso, Dieguez
et al. [16], 2015

sports
volleyball

biometric
sensors

without
communication

online classification
for trainer’s analysis

Stamm [6], 2018 sports
swimming MEMS IMU

without
communication

offline analysis
for trainer

Wang, Wang, Zhao
et al. [22], 2019

sports
swimming MEMS IMU without

communication

offline analysis
of movement
parameters

Umek, Kos
et al. [7], 2018

sports
swimming,
kayaking

MEMS IMU without
communication

online monitoring
for trainer’s analysis

Jiao, Wu, Bie, Umek,
Kos [23], 2018

sports
golf MEMS IMU without

communication
offline classification
for trainer’s analysis

Moeyersons, Fuss, Tan,
Weizman [5], 2016

sports
snowboarding

pressure
sensors haptic, visual

trainer’s online
analysis and feedback

Hachaj, Ogiela,
Piekarczyk [24], 2014

sports
karate

multiple
infrared

depth cameras

without
communication

online classification
for trainer’s analysis

Hachaj, Piekarczyk,
Ogiela [25], 2017

sports
karate MEMS IMU

without
communication

offline classification
for trainer’s analysis

Wang, Yao
et al. [9], 2017

surgical
training

MEMS IMU
joystick haptic, visual

online surgery
simulation

and analysis

Żywicki, Zawadzki,
Górski [8], 2017

work skills
training

(Industry 4.0)
MEMS IMU haptic, visual online simulation

of operation in factory

1.6. Study Objectives

The described properties of an automatic teaching system suggest that the system efficiency
depends on several cooperating subsystems. Therefore, the question is not what kind of sensors
should be used, nor what particular algorithms for signal analysis have to be implemented. Instead,
the following main research question is posed:
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Can fast motion activities be efficiently taught using an automatic motor learning system that:

• uses an array of MEMS inertial sensors,
• utilizes vibrotactile actuators to ensure system–learner communication, and
• applies the classification process to select the adequate teaching algorithm?

The goal of the presented paper is to provide an answer to this question.
In an effort to achieve this aim, a prototype motor learning system was designed and built.

The constructed system can be treated as a platform for testing numerous variants of system elements.
During preliminary tests, several algorithms for teaching were examined, and a typical motion activity
was chosen to be taught. Finally, the interaction between the teaching system and the learners
was examined. Two groups of subjects were taught using the automatic system, and the learning
process was evaluated using defined efficiency factors. A statistical analysis of the obtained data
was performed. To enable similar systems to be built and the whole experiment to be replicated, we
describe key elements of the system implementation. This description is an additional contribution
of this paper. However, because of space limitations, we do not describe matters that are beyond the
main scope of our study.

In Section 2, we describe the main problems related to the classification task. Section 3 presents
the results of implementing the system. In Section 4, we summarize the main outcome of this research.

2. The Motion Activity Teaching System

Figure 2 presents a simplified diagram of the signal flow in the prototype teaching system.
The main differences from the general scheme in Figure 1 are the application of a set of teaching
algorithms instead of a single algorithm and the implementation of modules intended for signal
classification. These elements are described in the next sections.

Figure 2. General flowchart of the real-time teaching system prototype. The signal that selects the
teaching algorithm is symbolized by the thick gray arrow.

The proposed learning system is a real-time discrete control system (the sampling interval equals
10 ms). In each period, a sequence of actions is performed: reading the signals from sensors, signal
preprocessing, classification, and realization of the particular algorithm with relevant control of
the actuators.
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2.1. The Motion Sensors and Preprocessing of Their Signals

With the aim of building a portable system, we resolved to use MEMS inertial units (their
particular type is described in Section 3). We assumed that the sensors, which were attached to
selected places on a learner’s body, sent digital signals of acceleration and rotation directly to the
main minicomputer. The transmitted values were represented by floating point numbers. Thus,
the components of acceleration formed a vector, a = [ax ay az]T , which, after applying integration
operations, could be utilized to calculate speed and position signals. The rotation was sent by means
of the four values creating the quaternion q = (vx, vy, vz, k) [31,41]. This represents the rotation of
the sensor in relation to its fixed, initial orientation. Consequently, we assumed that the quaternion
expressed the sensor rotation in relation to the coordinate system associated with the Earth. However,
the acceleration vector was represented in the local sensor frame. As a result, even a small, accidental
rotation of a part of the body during the course of the movement significantly changed the values of
the measured accelerations. This could be remedied by employing the value of the rotation supplied
by the quaternion and calculating the acceleration in the independent, connected with the Earth, frame.
We call this frame simply the inertial frame.

Now, let us describe the motion more precisely. From the quaternion q, we can calculate a matrix
A that describes the sensor’s rotation. On this basis, we can designate a matrix B that defines the
conversion of coordinates from the sensor frame to the inertial reference frame: B = A−1. Then, we
can obtain the sensor acceleration expressed in the inertial frame: ainer = B a. Finally, to determine the
motion from the obtained vector of acceleration, we must deduct the constant value of gravitational
acceleration from it. Let amotion denote the acceleration vector after this modification.

We must be aware of important problems involving the accuracy of the computed motion
signals. These problems are the result of accelerometer errors, but are primarily associated with the
phenomenon of the gyroscope drift [41,42]. Due to space limitations, we do not discuss these issues.

Let us consider one chosen component of the vector amotion received from a given sensor. We
regard this component as a certain signal, and we ascribe to it a unique index i.

The values of this signal, sampled at discrete time stamps, create a time series that is denoted by
Fi; that is,

Fi = ( f 1
i , f 2

i , . . . , f m
i ); i ∈ I (1)

where f k
i is the value of the kth probe of the Fi signal (we adopted the rule that the upper index relates

to the probe number), m is the number of signal probes, and I is the set of indices that identify
the signals.

Signals in the form of Expression (1) are referred to as one-dimensional signals. Typically, we
have several one-dimensional signals at our disposal. The selection of the most appropriate signals for
further analysis is performed by the expert using a dedicated program interface. The set of indices of
selected signals is denoted by K, i.e., K ⊂ I.

All selected one-dimensional signals should be filtered to reduce noise and disturbances. We
can assume that the noise density of the acceleration signal has an approximately constant value (for
the MEMS accelerometer in the prototype system, this value was 0.4 mg/

√
Hz [41]). Thus, for our

application, which involves relatively slow signals, we can significantly reduce noise using a low
pass filter (for a cutoff frequency of 5 Hz, the noise amplitude was reduced by approximately 10 dB).
In the described system, a simple low pass IIR (Infinite Impulse Response) filter [43,44] was applied:
ok = (1− α)ok−1 + α f k, where f k and ok are the values of the kth probes of input and output signals,
respectively, α is the fixed parameter that determines the cutoff frequency.
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2.2. Choosing the Classification Method

The problem of selecting a proper classification method for motion analysis has been extensively
discussed in the literature [21,32,36,45]. The recommended solutions are based on SVM, kNN, HMM,
and, in some cases, ANN approaches. Since it is assumed that the expert should actively participate
in the process of knowledge acquisition in the motor learning system, the representation of system
data should be as simple as possible. For example, the information contained in the parameters of
SVM or in the synapse weights of ANN is difficult to interpret. In contrast, an emission matrix used
in the HMM method and pattern signals used in the minimal distance methods are understandable
to people. Preliminary testing was used to examine the possibility of applying HMM and minimal
distance approaches. The motion signals and the general test layout were as described in Section 3.
Table 2 presents typical results that were obtained after the analysis of a nine minute motion signal
(classification errors were calculated by comparing the outputs of the classifiers with the expert’s
judgments; the implementation of HMM was based on [32] and [46]). The error rate of the compared
methods was approximately at the same acceptable level, whereas the HMM method (more precisely,
a forward procedure [46]) was characterized by a radically shorter computational time. However, for
the sake of better supervising the system at work, which was essential for prototype development, we
decided to implement a version of minimal distance kNNModelmethod [30] (the method is described
in the next section). We return to the potential use of the HMM method in Section 3.7).

Table 2. Results of the numerical experiments and the main properties of the HMM and minimal
distance kNNModel methods. The classification was performed on nine minute signal divided into two
parts referring to two classes of signals (Section 2.9). In order to apply the HMM method, these parts
are segmented into two second fragments corresponding to signal periods. In the HMM approach, Nis
the number of states and T is the length of the string of symbols describing the signal fragments; in the
kNNModel, T is the number of probes in the compared fragments of the signal. The features of the
kNNModel method strongly depend on the defined distance function (see (9)).

Method Time Complexity Classification Classification Possibility
of the Classifier Time (ms) Error Level (%) to Interpret

HMM O(N2T) 0.003 14 possible, but difficult
kNNModel O(T2) 3.7 11 easy

2.3. Signal Patterns and Definition of the Distance Function

As a result of signal preprocessing, we obtained a set of one-dimensional signals that corresponded
to individual sensors and particular components of acceleration, speed, or position. This set is
designated S; that is,

S = {Si : i ∈ K} (2)

where Si = (s1
i , s2

i , . . . , sm
i ) is a preprocessed one-dimensional signal, sk

i is the value of the kth probe of
the Si signal, and m is the number of signal probes.

The S set will be called a multi-dimensional signal. We defined a one-dimensional pattern as a
generalized one-dimensional signal, i.e., a series of probes, and we assumed that they covered only
one period:

Pi = (p1
i , p2

i , . . . , pw
i ); i ∈ K (3)

where Pi is a one-dimensional pattern, pk
i is the value of the kth probe in Pi pattern, and w is the

number of pattern probes (equal to the pattern period).
The pattern Pi is constructed on the basis of the signal Si. A set of one-dimensional patterns,

denoted by P, is called a multi-dimensional pattern (by analogy with the one- and multi-dimensional
signal). The method of pattern creation is described in Section 2.5.
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We now concentrate on the learning sequence, which is the series of exemplary objects and the
class labels ascribed to them. If the objects are considered to be multi-dimensional signals of motion,
then the learning sequence can be expressed as follows:

L = ((S1, ι1), (S2, ι2), . . . , (Sq, ιq)) (4)

where (Su, ιu) is the uth element of the learning sequence, Su is a multi-dimensional signal, ιu is a
class label, and q is the number of pairs in the learning sequence.

By replacing all Su multi-dimensional signals in L with the patterns created by them, we obtain
a sequence:

P = ((P1, ι1), (P2, ι2), . . . , (Pq, ιq)) (5)

where Pu is a multi-dimensional pattern created from the multi-dimensional signal Su. The other
denotations are as described in (4).

The P sequence represents more general and less redundant knowledge about the teaching
motion. Let us consider the uth multi-dimensional pattern Pu from P . This pattern can contain several
one-dimensional patterns that relate to individual signals. For the sake of clarity, we introduce the
double indexing of one-dimensional patterns. Thus, the one-dimensional pattern Pi,u is constructed on
the basis of the ith signal (i ∈ K) and corresponds to the uth element of the sequence P . Accordingly,
the multi-dimensional pattern Pu, referring to the uth element of P , can be expressed as:

Pu = {Pi,u : i ∈ K} (6)

Our task is to classify a multi-dimensional signal that describes the present motion. We denote
this current signal by Scur, i.e.,

Scur = {Si : i ∈ K} (7)

where Si = (s1
i , s2

i , . . . , sm
i ) is a one-dimensional signal (denotations are as in Equation (2)).

We assumed that in each one-dimensional signal Si, signal probes from a certain moment to the
present moment of time were memorized (the last probe was indexed by m).

Let us turn to the main process of the classification. In order to classify an unknown object
(i.e., the multi-dimensional signal Scur), we computed its distance, defined by a certain function dist
(see (9)), to all patterns in the sequence P . Let us take into account a set of k elements from the P ,
which include the nearest patterns. This set is divided into subsets with the same class label. Each
subset can be expressed by:

Qr = {(Pz, ιz) : ιz = r} (8)

where r is the class label of all elements included in Qr.
The output class is established on the basis of such a subset Qmax that has the greatest cardinality.
The described algorithm refers to the kNNModel method [30]. Figure 3 depicts the main data

structures that are applied in the presented method’s implementation.

Figure 3. Simplified flowchart of the kNNModel method and data structures utilized in the
implementation of this method.
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Naturally, the properties of the method depend on the definition of the pattern objects and the
distance function. In a situation in which the function’s arguments are a multi-dimensional signal and
pattern, that is finite sets, the distance (metric) can be defined by employing a certain distance function
h between the elements of these sets, i.e., between a one-dimensional signal and one-dimensional
pattern. With this approach, the problem of computing the dist function can be divided into easier
subproblems in which the distances between one-dimensional signals are computed. In the prototype
system, the dist function is defined using a simple arithmetic mean:

dist(Pu, Scur) = 1/N ∑
i∈K

h(Pi,u, Si) (9)

where Pu, Scur are the multi-dimensional pattern and signal, N is the cardinality of set K, and h(Pi,u, Si)

is the distance function between the one-dimensional pattern Pi,u ∈ Pu and the one-dimensional signal
Si ∈ Scur.

The employed distance function h should assess a certain similarity of the sequence of signal
samples to those of the pattern. For this purpose, the Dynamic Time Warping (DTW) method [47] was
frequently used. However, it applies nonlinear signal scaling, which can result in a discrepancy in the
assessment of the signal similarity conducted by the teacher and the system. This makes subsequent
pattern editing (Section 2.5) more difficult. In the prototype system, we applied a method based on
direct comparison of signals, with the assumption that the degree of similarity ought not to be affected
by the linear transformations of the signals (property of translation and scale invariance). To this end,
we introduced an auxiliary function g that evaluates the distance between the signals after certain
scaling and dislocation of one of them. We used the mean squared measure, which is commonly used
to compare temporal sequences [43]. The function g is defined as:

g(Pi,u, Si, a, b, c, d) = 1/n

√√√√n−1

∑
k=0

(pb−ak
i c + d − sm−k

i )2 (10)

where Pi,u = (p1
i , p2

i , . . . , pw
i ) is a one-dimensional pattern, Si = (s1

i , s2
i , . . . , sm

i ) is a one-dimensional
signal, n is the number of probes for which the signals are matched, n ≤ m, n ≤ w, and a, b, c, d are the
chosen values of parameters; we assumed that they belonged to established sets, namely a ∈ Za, b ∈ Zb,
c ∈ Zc, and d ∈ Zd; see Section 2.4 (for greater clarity of the notation, the operation of transforming
the value of the expression b− ak to the closest integer is omitted; similarly, the appropriate shift of
this value by the period value (so that it belongs to the range 〈1, w〉, in which the pattern sequence is
defined) is also omitted).

The parameters a and b correspond to the scaling and shift of the signal in the time domain,
whereas c and d are associated with the scaling and shift of the signal values. By using the function g,
we can define the final metric h, which gives the distance between the current one-dimensional signal
and the one-dimensional pattern considering their best matching:

h(Pi,u, Si) = mina∈Za ,b∈Zb ,c∈Zc ,d∈Zd
g(Pi,u, Si, a, b, c, d) (11)

The calculation of this function requires the designation of the values of four parameters (a, b, c, d)
that minimize the function g. Apart from the particular form of the h function, the presented method
illustrates the general idea of signal and pattern matching and obtaining the fit parameters.

2.4. The Calculation of the h Function

Let us comment on the numerical aspects of the h function computation. This calculation refers to
minimization of the g function. In the prototype system, a stable two stage “trial and error” algorithm
was used [48]. In the first stage, the method consists of computing the values of g function for a
certain number of possible values of the parameters a, b, c, and d. We assumed that the parameters
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were chosen from the discrete subsets: Z′a, Z′b, Z′c, Z′d, of the sets Za, Zb, Zc, Zd, respectively (11). Then,
the maximum number of necessary computations of the g function is the product of the cardinality
of these subsets. In practice, we obtained a number on the order of a quarter of a million (in our
case, this was achieved for the following cardinalities: card(Z′a) = 30, card(Z′b) = 20, card(Z′c) = 15,
and card(Z′d) = 25). The number of the relevant values of parameters c and d can be reduced by the
proper normalization of the signals. The normalization involves the linear transformation of the
signal: sk

norm = ζsk
pre + η where sk

pre and sk
norm are the values of the kth signal probes before and after

normalization, respectively, and ζ, η are constant parameters. The normalization was performed in
the range in which the signals were compared; see (10). The parameters ζ and η were selected in such
a way that the minimal and maximal values of the normalized signal related to established levels
(−0.6 and 0.6 in our case). As a result of the normalization process, the number of computations of
g function could be reduced to an acceptable level (around 5000). The described stage of calculation
allowed determining approximate areas that included local minima of the function g.

The second stage of the “trial and error” algorithm involved a repetition of the finding procedure
in the mentioned areas. This made it possible to locate the minimum more precisely.

The uncomplicated form of the g function (it depended on simple pb−ak
i c + d − sm−k

i components
(10)) enabled using an effective program code written in the time optimized assembler language.
Consequently, the computation time of g function was limited to satisfactory level on the order of 3 ms
(for the processor used; see Section 3.2).

2.5. The Creation and Updating of Patterns

In this section, we concentrate on the problem of creating class patterns. Under the expert’s
supervision, the learner performs a sequence of a dozen to several dozen movements belonging
to a particular class. All signals are recorded in the system memory. Let us consider a certain
one-dimensional signal. First, this signal is segmented into windows that correspond to the periods of
motion [49]. Then, an averaged signal shape is created from these windows (a simple arithmetic mean
is employed). Subsequently, windows with the greatest distance (according to the h function) from the
averaged signal are rejected. Averaging of the remaining signals creates a signal pattern.

The described method corresponds to a simplified k-means algorithm of clustering (only one
cluster is created) with the use of h as a metric function [29,50]. The method was performed for each
one-dimensional signal; as a consequence, a multi-dimensional pattern could be be built.

Through the creation of new patterns, the expert was able to modify the system knowledge,
adapting it to subsequent stages of learning. Additionally, an uncomplicated form of the patterns
(simple time sequences) enabled their adjustment to the learner’s individual features. For example,
we could adapt the system to the length of the learner’s limbs by changing the amplitude of the pattern
signal. Figure 4 illustrates examples of motion signals and the patterns that they create.

2.6. The Synchronization of Patterns

In the majority of cases, the teaching algorithms calculate the value of motion error. Thus, besides
knowing the signal value at the current moment, we have to know the value of a certain pattern signal
that describes the motion. We call this kind of pattern a shape pattern. However, to synchronize the
shape pattern properly with the current signal, we should know which probe in the shape pattern
corresponds to the current moment. The index of this probe will be called a “time point”. To calculate
its value, we can utilize information provided by available motion signals. The time point can be
obtained through the appropriate matching of the current signals to special patterns by minimizing
the g function. This minimization leads to the determination of the parameters a, b, c, and d (10).
The parameter b refers to a shift in the time domain. Moreover, as seen in the (10), this parameter
directly corresponds to the last sample in the current signal (see the sample indices for k = 0). Thus,
the value of the parameter b relates to the time point.
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The special pattern used in the synchronization process is called a time pattern. Similarly,
the pattern used in the classification task is called a class pattern. Figure 5 illustrates the introduced
types of patterns.

Figure 4. Signals and patterns created from the signals. For example, the red signal in the upper
window represents the x component of acceleration. The unit of the vertical axis is 1 m/s2, and the
time axis is scaled in seconds. The bottom window depicts the time pattern (black) created from the
x component of acceleration on the base of several periods depicted in the top. Two shape patterns
created from the x and z components of position are also depicted.

The time pattern can be (but does not have to be) the shape pattern or the class pattern
simultaneously. An appropriate decision in this regard was made by the expert.

The multi-dimensional time pattern, which is composed of several one-dimensional time patterns,
can be used to determine one reliable value of the time point. We can rank the results of individual
solutions that are calculated on the base on one-dimensional time patterns according to a certain
reliability criterion. In the described prototype system, the criterion is based on the value of the
distance function h (11) between the current one-dimensional signal and its associated time pattern.
The value of the aggregate time point is calculated as a weighted average of a fixed number of the
best results.
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Figure 5. The multi-dimensional signals and patterns applied in the motion learning system: the current
multi-dimensional signal and the collection of multi-dimensional class patterns for the classification
process (left side), current multi-dimensional signal and multi-dimensional time pattern, and current
multi-dimensional signal and multi-dimensional shape pattern.

2.7. The Calculation of Motion Error

Here, we reflect on the problem of calculating the error signal. In the simplest case, the error
can be calculated as the difference between the current motion signal value and the value of the
sample of the relevant shape pattern, which corresponds to a given moment in time. However, we can
significantly reduce the susceptibility to disruption by calculating a weighted average of the errors
computed in the “last” samples (e.g., for n samples, the weight parameters can vary from zero for
the first sample, to one for the last sample taken). Using this method, we can calculate the errors for
all of the one-dimensional signals for which the patterns of shape were created. Consequently, we
obtain a vector of errors: e = [e1 e2 . . . en]T . The tasks of calculating the errors and the time points
are depicted in the block diagram in Figure 2.

2.8. Actuators and Calculation of Their Activity

Because of the small dimensions and the ability to convey messages quickly, the proposed system
used vibrotactile actuators [18]. Before further discussion, we provide some details about the actuator’s
construction. Each actuator consisted of four units, which were built using electrodynamic devices
(a movable coil and permanent magnet). The vibrations generated by the unit’s coil were passed to the
skin surface by the use of a special plastic tappet. The units were mounted onto elastic tape, which
constituted a kind of band. Figure 6a,b shows a general view of the actuators.

Figure 6. Peripheral elements of the teaching system. (a) Actuator: the band built on the base of an
elastic hook-and-loop strip. (b) Actuator’s units (behind a protective film). (c) VN-100 inertial sensor.

The actuators were controlled by means of a specialized driver (the prototype system used the
Atmega 128 microcontroller). Its task was to convey power impulses to the entry of the relevant unit
of the given actuator, according to commands received from the main minicomputer via the USB port
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(the driver can control two actuators). Normally, a power signal consists of two short pulses with a
duration of 0.25 s and a frequency of 20 Hz.

The vibrotactile units were installed on one plane, denoted by p, which was perpendicular to an
assumed axis of a given body part (see Figure 6a). Turning on the vibrations in one unit informed the
learner about the required direction of motion [18].

Let us focus on the means of controlling the actuators. We should define which one of the
calculated components of the error vector e (Section 2.7) influences the relevant actuator. An additional
issue is determining the means of aggregating many signals into a single actuator signal; the method
should be easily understandable to the expert. Therefore, the signal of each ith actuator is simply a
linear combination of the components of the error vector; that is,

gi = C e =

 c11 . . . c1n
c21 . . . c2n
c31 . . . c3n

 e (12)

where gi = [gix giy giz]
T is the vector of the ith actuator (in the inertial reference frame),

e = [e1 e2 . . . en]T is the vector of error, n is the number of components of the error vector (equal to
the number of shape patterns), and C is a 3× n matrix of weight coefficients of linear combinations.

The main advantage of the above approach is the ability to customize the configuration of the
sensors and actuators. The vector e expresses the error in the inertial frame; therefore, the calculated
vector gi is also expressed in this frame. However, in order to control executive units, gi must be
transformed to a local actuator’s frame. Typically, the actuators are mounted close to certain sensors
(they are “rigidly” connected to them). Then, using the rotation matrix of the sensor, we can express
the vector gi in the actuator’s frame:

wi = A gi (13)

where A is the matrix of sensor rotation calculated at earlier stages of processing (see Section 2.1), and
wi is the vector activating the ith actuator expressed in its local coordinate system.

Finally, we can project the vector wi onto the plane p of the actuator and obtain the
two-dimensional vector oi, which defines the way of activating its units. We describe the projection
operation as follows:

oi = G wi (14)

where oi is the two-dimensional actuator vector on plane p, wi is the three-dimensional actuator
vector, and G is the 2× 3 linear transformation matrix.

In practice, as a result of certain limitations in the way in which the actuator is mounted, there
may occur a rotation of its axes in relation to those of the sensor. This effect can be easily compensated
by selecting elements of the matrix G in such a way that the simple projection is expanded into a
rotation operation.

The next procedure is evident: the only remaining step is to calculate the direction of the vector
oi (on the plane p) that determines the vibrotactile unit to activate. Unfortunately, before this final
step, which conventionally “closes” the feedback loop, we have to resolve several significant problems
connected to the physiology of senses and the psychology of learning. We present the most important
among them [1,51].

1. A person’s inability to properly interpret the fast changing signals of the actuator; this obvious
and fundamental constraint is especially apparent in the detection and interpretation of the
actuator signals, which indicate, in succession, different directions of movement.

2. The need to select the optimal parameters of vibrotactile unit impulses so the learner can best
perceive and interpret them [18].
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3. The requirement to limit the number of actuators activated in a single period of motion; usually,
during the course of a single motion period, the learner is able to interpret the signals derived
from only a single actuator correctly (the remaining actuators exert a disturbing effect).

2.9. Algorithms of Motion Teaching Corresponding to Particular Classes

The calculated vector e can be regarded as a conventional error signal. However, we have at our
disposal many kinds of signals and values characterizing the motion (rotation matrices, time point
value, h distance function values, etc.) that can be used in several specialized teaching algorithms (this
possibility is depicted in Figure 2 by dashed arrows). To reveal some essential questions, we focus here
on only two algorithms, which correspond to two classes of motion signals. The first class, denoted
by Cα (see Figure 5), refers to movements in which there are small errors in the taught trajectories.
The second class, named Cβ, refers to certain typical and often significant errors in the motion.

2.9.1. Algorithm of Class Cα

The algorithm of the Cα class corresponds to the work of a discrete regulator. In each sampling
interval, the vectors oi (14) for all actuators are derived. Then, the actuator that should be activated
is determined. The selection criterion is based on the maximum length of the actuator vector over
one period (the vector length refers to the Euclidean norm). Let oact denote the vector of the activated
actuator. Next, the actuator’s unit, which relates to the direction of the vector oact on the plane p, is
chosen. If the length of the oact exceeds a defined threshold, denoted by len, and the time elapsed
since the previous actuator activation overruns a fixed level elaps, then the unit is activated (in the
prototype system, the above parameters were experimentally determined: len = 0.03 m, elaps = 2.5 s).
After establishing the indices of activated actuator and its unit, the teaching algorithm sends these
data to the actuator driver. It generates power impulses that are conveyed to the relevant unit; see
Section 2.8.

In our case of teaching fast motions, the key problem was the inability of the learner to interpret
rapidly alternating signals (see the constraints described in Section 2.8). However, with the assumption
that the taught trajectory is a closed curve, the generation of actuator signals may be limited only to
cases in which the considered body part exceeds the trajectory from the inside. The direction of a
velocity vector is used to detect such situations. The learner should imagine that his/her movement is
limited by a virtual outside boundary. A simplified signal flow diagram that relates to the Cα class
algorithm is illustrated in Figure 7.

Figure 7. A simplified diagram of the signal flow of the class Cα algorithm. The elements of the general
system (Figure 2) are depicted in gray.
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2.9.2. Algorithm of Class Cβ

The class Cβ algorithm corresponds to major motion errors, which require a more decisive reaction.
This reaction is the signal of the selected actuator (or actuators) defined by the teacher. The generation
of this signal starts at a moment corresponding to a certain probe in the time pattern (the probe is
selected by the teacher). An additional condition of actuator activation is the correct calculation of the
time point (the decision is made on the basis of the value of the h distance function; see Section 2.6).
The class Cβ algorithm is able to teach the learner to avoid typical motion errors.

3. Results of System Testing

3.1. Goals of the Experiment

The main goal of the experiment was not to assess the particular teaching algorithms, but to
evaluate the general concept of algorithm selection using the results of the signal classification process.
To this end, we compared two learning methods. In the first approach, the classification process was
performed, and an adequate algorithm was chosen, whereas the second method used a fixed algorithm.

Learning efficiency can be assessed by the use of a previously defined benchmark, which can
utilize spatial, temporal, energy, or economic aspects of the task (e.g., the level of learning of excavator
control can be evaluated by the volume of extracted material over a defined time). In practice, the final
benchmark is estimated by parameters and factors that correspond to certain stages of the learning
process [1].

Many types of parameters, such as position matching errors, movement time, velocity, motion
range, and average torques or forces [1,52], can be considered. Moreover, with digitized motion signals,
we can easily calculate parameters defined in the time and frequency domain. For instance, in the
time domain, the RMSE (Root Mean Squared Error) [52,53] can be calculated, whereas in the frequency
domain, we can compute the mean amplitude related to certain frequency band, or the parameter
IPNS (Integral of the Power spectrum density of Normalized Speed) [53]. The proper use of these
parameters requires the establishment of ranges in time or space in which the parameters should be
calculated. Typically, the ranges are chosen by the expert. It should be noted that the ranges can also be
determined automatically using the results of the signal classification process. For instance, a signal’s
belongingness to a particular class can define the time ranges in which the RMSE parameter should
be computed.

In this context, the described automatic system can be regarded as a platform for evaluating the
learning process. We return to these issues in Section 3.6. Here, we address the general matters of the
conducted experiment.

3.2. Components of the Tested Learning System Prototype

In this part, we briefly depict the evaluation configuration and the system components.
VN-100 [41] inertial sensors were used as motion sensors (Figure 6c). The sensors and the actuator
driver were supplied with a 7.2 V battery pack. The VN-100 sensors operated at a sampling rate of
100 Hz [41], which complied with the sampling interval of the main discrete control system. The system
was implemented on a portable PC minicomputer equipped with a dual core I5 processor working
at a frequency of 2.4 GHz. All of the software, i.e., the signal processing and recognition modules,
pattern management module, and graphical user interface, was written in C++ programming language
(a small part of the software was written in the assembler). The software was developed, written,
and tested by the authors (Borland C++ Builder 6.0 and Atmel Studio 7.0 environments were used).
The teaching algorithms and defined signal classes are detailed in the next sections. Figure 8 presents
the layout of the system elements during the experiment. The experiment was performed in a room
located on the Cracow University of Technology Campus.
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Figure 8. Schematic view of the system elements during the test.

From the expert’s advice, a simplified movement, which was an exercise for swimming the
butterfly stroke, was chosen to be taught. The exercise consisted of moving the hand according to
specific timing (with a lower speed and a pause in the upper position). Figure 9 shows the trajectories
of the training motions projected on a plane that was approximately parallel to the plane through
the shoulder blades and tailbone (the trajectories were displayed by a graphical user interface of the
teaching system).

Figure 9. Position of the left and right wrists projected on the selected plane (it is parallel to the plane
defined by the shoulder blades and tailbone). Continuously changing colors of trajectories are related
to time flow; the brightest colors correspond to the latest signal probes. The units on the axes refer
to 0.2 m.

3.3. Participants

The tests were conducted using a sample of 18 students of Automatics and Robotics (Cracow
University of Technology, Poland). All students participated on a voluntary basis. Before the
experiment, they gave their written informed consent. The compliance of the research with ethical
principles was confirmed by the institute authority responsible for research (Production Engineering
Institute, Cracow University of Technology) who also supervised the research and controls publishing
their results. The students (four females, 14 males) were healthy, right handed, and 22–25 years old.
The exclusion criteria were as follows:

• possessing the skill of swimming using the butterfly stroke,
• lack of normal motor control of the upper extremities,
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• a history of neurological disorders (declared by the subject).

The participants were randomly divided into two groups of the same cardinality.

3.4. Teaching Algorithms and Signal Classes Used in the Test

The pattern of the correct motion (Cα class) was created by the expert (swimming instructor),
whereas the pattern of the Cβ class was created by an additional student selected by the expert using a
short preliminary test. The selected person demonstrated typical errors consisting of the lack of the
desired pause in the upper phase of the movement (the person did not participate in further research).
The Cβ class algorithm generated actuator impulses at the moment at which the pause should occur.

3.5. Test Procedure

The total test duration was limited to five minutes (plus a break) to prevent the subjects from
tiredness and to test only the transfer of skills [1]. For both groups of participants, the course of
learning was as follows:

First phase (lasting 1 min): use of the automatic teaching system, which was supervised
by the instructor,
Second phase (2 min): normal operation of the system (without instructor),
Third phase (3 min): break,
Fourth phase (2 min): examination of the learned skills, unassisted repetition of the exercise
by the learner (actuators were switched off).
The first group was taught using the method that applied the classification process to select

the proper algorithm (related to Cα or Cβ), whereas the second group was taught using the class Cα

algorithm only (without the classification process).

3.6. Outcome Measures and Data Analysis

To evaluate learning quality, we used three different parameters. The first factor was based on
the RMSE parameter [53] and estimated the accuracy of the motion learned by the person [1,52]. We
calculated the RMSE from each preprocessed one-dimensional signal Si = (s1

i , s2
i , . . . , sm

i ) (2), which
corresponded to a position. Each parameter was computed in relation to the relevant shape pattern:
Pi = (p1

i , p2
i , . . . , pw

i ) (3) (in our case, two shape patterns for the x and z positions were defined). The ith

RMSE parameter was computed by:

RMSEi =

(
1/n

n

∑
k=1

(sk
i − pind(k)

i )2

)1/2

(15)

where n is the length of the range in which RMSEi is calculated and ind(k) is the index of the pattern
probe that corresponds to the kth signal probe.

The function ind(k) computes the index of the shape pattern using the method of calculating the
time point (Section 2.6). From all the calculated RMSEs, the arithmetic mean was computed. This
value, denoted by E1, estimated the aggregate deviation of the movement. It was computed in the
defined range of the signal (from 0.3 to 0.9 of its total length), which referred to the fourth phase of
the experiment.

The second parameter, denoted by E2, was similarly computed; however, the signal classification
process was used to establish a suitable time range. First, the longest time interval in which the motion
signal belonged to only the Cα class was determined. The beginning of this interval was the starting
point of the range in which the parameter was calculated (the range had a constant length of 30 s).
Because the best range was determined, this factor was, to some degree, resistant to accidental errors
of motion.
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The last parameter, denoted by E3, was used to evaluate the progress of learning. This can be
expressed by a difference between the values of selected parameters that correspond to the testing
phase and a certain stage before learning (or its early phase) [52]. The simple difference can be extended
by a weight factor that determines the impact of the earlier phase. In our case, the E3 parameter was
computed as follows:

E3 = E test
2 − βE pre

2 (16)

where E test
2 and E pre

2 are parameter values corresponding to the fourth (test) and first phases of the
experiment, respectively, and β = 0.25.

The calculated values of the parameters E1, E2, and E3 for participants of both groups are
sequentially presented in Table 3.

Table 3. E1, E2, and E3 are parameters that evaluate teaching efficiency for the two methods of learning
(method = 1 includes the classification process); the unit of all parameters is 1 mm.

Parameter Method Participant Index in the Group
1 2 3 4 5 6 7 8 9

E1
1 63 102 80 79 57 73 57 75 56
2 137 87 102 160 72 77 69 96 51

E2
1 50 109 80 81 41 79 63 67 52
2 129 99 131 156 54 79 65 96 54

E3
1 16 92 44 59 11 64 45 45 22
2 104 74 93 122 41 44 40 74 40

The obtained results can be analyzed using Student’s t-test (two-sample location test). However,
we should ensure that suitable conditions of t-test usage are met. The groups of data, corresponding
to two learning methods, should be sampled independently, have a normal distribution, and have
equal (homogeneous) variances. In our case, we checked whether the data had a normal distribution
(normality test) using the Shapiro–Wilk test. Next, the homogeneity of the variance was assessed using
Levene’s test.

The calculated values of statistics referred to Shapiro–Wilk and Levene’s tests, as well as their
critical values related to a confidence level of 0.95 are shown in Table 4.

On the grounds of the obtained results, we applied Student’s t-test to all efficiency parameters.
Table 4 presents the mean values of E1, E2, and E3; their standard deviations; the calculated values of
Student’s t-distribution; and the p-values that correspond to them.

Table 4. Results of the Shapiro–Wilk (S-W) test, Levene’s test, and Student’s t-test for the parameters
E1, E2, and E3 and the two learning methods.

Parameter Method Mean Std. dev. S-W S-W Levene Levene Student’s t Student’s t
(mm) (mm) crit.val. crit. val. Distribution p-Value

E1
1 71.1 15 0.89

0.83

3.5

4.5

1.75 0.0492 94.5 35 0.92

E2
1 69.1 21 0.95 3.2 1.80 0.0462 95.8 37 0.93

E3
1 44.0 26 0.94 0.9 1.84 0.0422 70.3 31 0.87

3.7. Test Results and Discussion

Based on the results of Student’s t-test, with a probability of error of 0.049, 0.046, and 0.042 for the
efficiency parameters E1, E2, and E3, respectively, the hypothesis stating that the mean efficiency of
both learning methods is equal should be rejected in favor of the hypothesis that the learning efficiency
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is greater when the classification process is used. However, this positive result should be discussed in
light of several aspects.

3.7.1. The High Level of Motion Errors

Let us focus on the Cα class algorithm. The vector of the error e was calculated at exact moments
(Section 2.7). Thus, a significant error value may appear when a movement is performed too early or
too late, even if the motion is correct. Consequently, the class Cα algorithm sends corrective signals
that refer to not only spatial, but also temporal errors of the movement. This effect was observed in the
upper area of the learned movement in which the short pause should occur. Most often, the output
signals were generated just before or after the expected moment of pause.

Additionally, taking into account a variable delay of human reactions, the whole system can
become unstable, as defined in control system theory [12]. As a consequence, we obtained a relatively
high level of motion errors for all the parameters (E1 = 94.5, E2 = 95.8, and E3 = 70.3). This can be
considered a significant drawback of the Cα class algorithm.

These errors can be corrected by applying an additional control algorithm that can interrupt the
process of generating improper and confusing output signals. In fact, we observed that applying
the Cβ class algorithm (in addition to the Cα algorithm) led to a reduction in the mean errors (for
the method that uses both the algorithms, the efficiency parameters were E1 = 71.1, E2 = 69.1, and
E3 = 40.0). Improving of all the parameters (particularly the E3 that assesses the learning progress) can
be regarded as a substantial advantage of the proposed method.

3.7.2. The Problem of Properly Interpreting Haptic Messages

The observation of the tests revealed that many subjects had significant problems with the proper
interpretation of fast messages from vibrotactile actuators (it is “hard to follow”, they reported).
The calculated values of Student’s t distributions (1.75, 1.8, 1.84, for parameters E1, E2, and E3) were
close to the critical value of 1.746, related to confidence level of 0.95. We can expect that this level will
be exceeded for faster moves. Therefore, to teach very fast movements, specialized teaching algorithms
must be developed. Moreover, some subjects exhibited exceptionally low sensitivity to the haptic
stimulus (e.g., Participant No. 2 from the first group and No. 4 from the second). For these persons,
as above, specialized algorithms for teaching should be created. We should also note that generating
messages too frequently had a surprisingly large effect on the proper detection of the messages (the
time between the actuators’ activation should exceed 2 s, a relatively high value).

The communication between the system and the learner may be supported by the use of other
senses (hearing, sight). However, because we aimed to create a system for teaching fast motions,
such as those in sports and machine operation, this solution was intentionally disregarded. Such
applications require learners to focus their visual and mental attention on the particular task performed.

3.7.3. Creating Efficient Teaching Systems

The possibility of creating an effective automatic system that uses vibrotactile feedback and is
applicable to sports has been discussed in the literature. The current status of the research was concisely
articulated in the quotation from [14]: “Haptic feedback: Many concepts, few proofs”. In the above
discussion, we argue that the efficiency of teaching fast movements can be improved by using the
classification process to determine the learning algorithm. This can be regarded as the main outcome
of the presented research.

This result can help to develop miniaturized “personal” teaching systems for sports and
rehabilitation applications. In this case, the classification task was relatively simple and can be
performed using HMM methods. The low time consumption of these methods (Table 2) enabled their
implementation without the use of high performance processors. However, because of the difficult
supervision of the classification phase, developing larger systems may be impossible. The presented
research showed that the kNNModel method enabled creating sophisticated teaching systems that
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were equipped with several sensors and actuators. Such systems can be embedded in the steering
systems of machines (e.g., excavator or crane) and vehicles. In this way, machine operators can be
trained in a near-real working environment.

3.7.4. Expert’s Knowledge and Problems of System Optimization

The knowledge included in the motion patterns is an essential part of the teaching system.
However, we must emphasize that this knowledge comes from an expert, which can be considered
an external element. This inhomogeneous system structure is difficult to model and precludes using
conventional methods of synthesis and optimization of the control systems, such as the Markov
Decision Process (DDP) or the Iterative Linear Quadratic Regulator (ILQR) [12].

4. Conclusions

The creation of an automatic system for teaching motion activities, especially related to sports
or professional work, is a difficult problem. The main goal of this study was to show that the
proposed automatic system was able to carry out the teaching process effectively. The conducted tests
confirmed this thesis. The most essential features of the described system were the application of
MEMS inertial sensors in the process of motion capture, the use of vibrotactile actuators to ensure
system–learner communication, and the application of the motion classification process to select the
adequate teaching algorithm.

Additionally, this paper described several solutions that aided in the creation of an efficient
system, particularly the teacher’s choice of the appropriate system configuration (including the kind
of motion signals used), calculating actuator signals as linear combinations of the desired motion
components, and the use of the results of the signal classification to calculate the learning efficiency
parameters. The articulation of the above issues (especially from the first group) was an attempt to
formulate a standardized approach to building a motor learning system.

The results of the performed test showed that subjects had significant difficulties in correctly
interpreting fast haptic messages. A solution to this problem, as proposed in this paper, is building
specialized algorithms for teaching fast motion activities. This defines the basic scope of the future
works. Additional system improvements should be the development of advanced methods for creating
and editing motion patterns (e.g., automatically matching the patterns to individuals) and the addition
of a module to manage a database with patterns of typical motion activities.
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