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Abstract: In the underlay cognitive radio networks, the main challenge in detecting the idle
radio resources is to estimate the power spectrum maps (PSMs), where the radio propagation
characteristics are hard to obtain. For this reason, we propose a novel PSMs estimation algorithm
based on the generative adversarial networks (GANs). First, we constructed the PSMs estimation
model as a regression model in deep learning. Then, we converted the estimation task into
an image reconstruction task by image color mapping. We fulfilled the above task by designing
an image generator and an image discriminator in the proposed maps’ estimation GANs (MEGANs).
The generator is trained to extract the radio propagation characteristics and generate the PSMs
images. However, the discriminator is trained to identify the generated images and help to
improve the generator’s performance. With the training process of MEGANs, the abilities of
the generator and the discriminator are enhanced continually until reaching a balance, which
means a high-accuracy PSMs estimation is achieved. The proposed MEGANs algorithm learns
and utilizes accurate radio propagation features from the training process rather than making direct
imprecise or biased propagation assumptions as in the traditional methods. Simulation results
demonstrate that the MEGANs algorithm provides a more accurate estimation performance than the
conventional methods.

Keywords: underlay cognitive radio networks; power spectrum maps estimation; deep learning;
generative adversarial networks; image reconstruction

1. Introduction

As wireless communication technologies continue to grow, radio resources are facing huge
demands. Cognitive radio (CR) technology is an important technology in wireless communications.
To achieve better exploitation of the radio resources, the CR transceivers intelligently change their
transmitting parameters based on detecting and utilizing the radio “white holes” [1,2]. The term
“white holes” refers to the unused radio resources in frequency, space, time domains, etc. [3,4].

The cognitive radio networks (CRNs) play a fundamental role in the applications of the CR
technology. There are two main components in the cognitive radio networks: the primary users (PUs)
and the secondary users (SUs) [5]. The PUs network is a licensed network that initially owns the
spectrum resources. However, the SUs network refers to the unlicensed network that aims to access
the licensed spectrum dynamically. CRNs can improve radio resources’ utilization by allowing SUs to
opportunistically access a licensed band, provided that the PUs is absent; i.e., the utilization of the
radio “white holes”.
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CRNs typically work on two main modes: the overlay mode and the underlay mode, as shown in
Figure 1. In the overlay mode, the SUs are allowed to access the spectrum holes, which are unoccupied
by PUs [6]. They directly target temporal spectrum “white holes” by allowing secondary users to
identify and exploit instantaneous spectrum availability in a non-intrusive manner. The “white
holes” in the overlay mode are mainly about the unused radio resources in the frequency domain.
The common practice is, if several SUs discover that a PU is using a certain frequency, the whole SU
network will avoid using that frequency. However, CRNs usually spread over a large region relative
to the range of PUs. To further enhance the utilization of radio resources, secondary users can safely
use the same frequency outside the range of PUs, which is the core idea of the underlay CR networks.

(a) The overlay mode (b) The underlay mode

Figure 1. The overlay and underlay modes of cognitive radio networks (CRNs).

Regarding the underlay CR networks, which are also known as the spatial reuse CRNs,
CR transmissions are permitted on the condition that the interference from SUs is under certain limits
and does not degrade the quality of service (QoS) of PUs due to the attenuation in the propagation
paths [7]. This approach imposes severe restrictions on the transmission power of SUs. The “white
holes” in the underlay mode are mainly about the unused radio resources in the spatial domain.
By employing efficient radio management techniques, the underlay CRNs can significantly increase
the spatial efficiency of the spectrum.

To achieve the spatial reuse of the radio resources, SUs have to sense the spectrum and exploit the
spatial “white holes” in the CRNs’ region. Herein, the power spectrum maps (PSMs) can be used as
a powerful tool to determine the PUs’ signals across a finite geographical area. Based on the estimation
result of the power spectrum maps, we can obtain the distribution of the signal strength and estimate
the spectrum utilization in a particular region. The power spectrum map can be seen as a visible
cartography of the power spectrum. In addition, it is a developing technology that visually overlays
power spectrum information on a map, enabling rapid frequency deconfliction and maximizing the
utilization of the available spectrum. Many schemes are focused on the applications of the power
spectrum maps. For example, in [8], the authors exploit the TV white space for device-to-device (D2D)
communications with the aid of the existing cellular infrastructure. The power spectrum maps provide
a service for the D2D link to determine its maximum permitted emission power in an unlicensed
digital TV band, which enables opportunistic transmission across the available channels. To construct
and manage a spectrum database to obtain the temporal and spatial spectrum availability information,
the authors in [9] propose a joint tensor completion and prediction scheme for multi-dimensional
spectrum map construction. Furthermore, aiming to provide real-time awareness of radio spectrum
utilization across time, frequency and geography, DARPA has also launched its advanced RF mapping
program, known as Radio Map [10].

As for the underlay CRNs, the PSMs portray the primary users’ power distribution in frequency
and space [11,12]. Knowing the power spectrum (PS) at any location is particularly useful in wide-area
CR networks, where the power transmitted by PUs reaches only a small subset of SUs [13]. Estimating
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and utilizing the PSMs allow remote SUs to reuse the idle bands dynamically. The power spectrum
maps also enable SUs to adapt their transmitting power to minimize the interference to primary users.
The PSMs estimation has been identified as a key functionality to ensure that SUs do not interfere
with PUs.

As shown in Figure 2, the general setup for estimating the power spectrum maps includes
several receiving SUs and transmitting PUs, which are uniformly distributed in the target region.
The receiving SUs are willing to cooperate in estimating the power spectrum maps of the target region
under an additive white Gaussian noise with a known variance (i.e., the noise floor in Figure 2).
Suppose that the number of SUs, their locations and the receiving power spectrum are known, but the
number of PUs, their locations or the transmitting power spectrum are unknown. Our task is the
following: using the above-known parameters to estimate the power spectrum at any location; i.e.,
the power spectrum maps of the target region.

Figure 2. From left to right: The power spectrum of the primary user (PU); the distribution of the
transmitting PU and receiving secondary users (SUs); the power spectrum map at frequency f1.

The above task is actually undetermined. In fact, there is an infinite number of PSMs functions
which can satisfy the known parameters; i.e., there are numerous solutions for the above task. To reduce
the solution space of the estimation task, initial efforts have been made for the PSMs estimation by
utilizing the prior information or assumptions of the radio environment of the target region. Traditional
methods for the estimation task include spatial interpolation algorithms and the basis expansion
(BP) algorithm.

The conventional spatial interpolation algorithms include the Kriging interpolation [14,15] and the
inverse distance weighted (IDW) interpolation [16,17]. The Kriging interpolation algorithm originates
from the geological mineral reserves calculation task. As for the PSMs estimation task, the algorithm
assumes that the unknown power spectrum values can be estimated with weighted linear combinations
of the available power spectrum values, expressed through the semi-variogram, which quantifies
the relationships between the average field value differences of different locations and the distances
separating them. We can regard the semi-variogram (e.g., linear variogram, exponential variogram,
etc.) as spatial characteristics assumptions of the target region [18].

The IDW interpolation algorithm assumes that the power spectrum only depends on the distance
dt between the interpolation node and the receiving SU. The power value pv of the inverse distance (i.e.,
( 1

dt
)pv ) controls the influences of the known nodes on the interpolation node. The IDW interpolation

algorithm is not related to any actual physical process. It is difficult to determine whether the specific
power value pv is appropriate or not.

Regarding the basis expansion algorithm [19,20], the authors exploit the sparsity in frequency and
space to establish the basis expansion model. The radio environment prior information is utilized by
directly adopting an approximate radio propagation function (the Okumura–Hata model, the inverse
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polynomial law model, etc.) of the target region. In addition, the basis expansion algorithm also
assumes that the primary users lie in several candidate locations.

All the algorithms mentioned above are effective in a particular environment. However, the actual
radio environment is often complex. Inappropriate or biased assumptions may lead to inaccurate
PSMs estimation.

Deep learning, as the core technology of the artificial intelligence (AI), has unique advantages in
power spectrum map estimation. By learning and adjusting the deep neural network’s parameters,
the deep learning methods can achieve infinite approximations of any complicated functions. Through
extracting the essential characteristics of the radio environment, we can collect all kinds of states
and prior information for CRNs by the deep neural network, which makes the PSMs’ estimation
more precise and intelligent. Estimating PSMs from secondary users’ PS measurements is actually
a regression task. Generative adversarial networks (GANs) are recently introduced as a powerful
framework to handle regression problems in deep learning [21]. There are two main components in the
generative adversarial networks: the generator (G) and the discriminator (D). The strategy of GANs is
defining a game between the generator and the discriminator [22]. The generator is trained to generate
a high-accuracy estimation of the PSMs and fool the discriminator; the discriminator is trained to
decide if the generated PSMs are true or false. Generative adversarial networks are widely used in
computer vision and have achieved good performance in object detection, image super-resolution and
so on. However, using GANs to estimate power spectrum maps has not been reported until now.

In this paper, we propose a novel GANs-based power spectrum maps estimation algorithm named
maps estimation GANs (MEGANs) for underlay CR networks. First, we analyze and construct the
PSMs model of the target region as a regression model in deep learning. Once the power spectrum
maps matrices have been normalized and transformed by color mapping, the colored PSMs images
are constructed. Through the color mapping process, we convert the PSMs estimation task into
an image reconstruction task. We fulfill the above task through constructing an image generator and
an image discriminator in the proposed MEGANs. We design the generator based on the analogy
of auto-encoders, which is used to exploit the training data set and learn abstract radio propagation
features of the target region. Regarding the discriminator, we utilize a deep convolutional structure
to identify the generated PSMs images and help the generator to improve the PSMs estimation
performance. Finally, as verified by simulations, the proposed MEGANs algorithm provides a more
accurate PSMs estimation performance than the conventional methods.

The original contributions of our work are as follows:

• Through the process of color mapping, we converted the PSMs estimation task into an image
reconstruction task and accomplished it by generative adversarial networks. Utilizing GANs for
the PSMs estimation task has not been reported until now.

• With the analogy of auto-encoders and the deep convolutional structure, we designed the
generator and the discriminator of the proposed MEGANs to estimate the PSMs and enhance the
estimation accuracy.

• We extracted and utilized the radio environment features of the target region from the training
process by the proposed MEGANs algorithm rather than the traditional methods, which
make direct biased or imprecise assumptions about the spatial propagation characteristics.
The MEGANs algorithm provides a more accurate estimation performance than the traditional
methods, as verified by simulations.

The rest of the paper is organized as follows. In Section 2, we analyze and construct the power
spectrum maps model. In Section 3, we propose a PSMs estimation algorithm for underlay CR
networks based on MEGANs. In Section 4, we describe simulation experiments and analyze the results.
Finally, we conclude the research findings in Section 5. In addition, the summary of acronyms used in
our paper is listed in Table 1.
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Table 1. The list of acronyms.

Abbreviation Full Name

CR cognitive radio
CRNs cognitive radio networks
PUs primary users
SUs secondary users
QoS quality of service

PSMs power spectrum maps
PS power spectrum

IDW inverse distance weighted
AI artificial intelligence

GANs generative adversarial networks
WGAN-GP Wasserstein GAN with gradient penalty
MEGANs maps estimation GANs

RBPa random-block-patches
RBPx random-block-pixels

RBPax random-block-patches-pixels
CNN convolutional neural network

TV total variation
AIREs average image reconstruction errors
Adam adaptive moment

2. Power Spectrum Maps Model

We suppose that there are NR receiving SUs and NT transmitting PUs, which are uniformly
distributed in the square target region S. The receiving SUs are willing to cooperate in estimating
power spectrum maps of the target region under an additive white Gaussian noise with a known
variance. Let {Φi( f )}NR

i=1 denote the receiving power spectrum of SUs located at positions {(xi, yi)}NR
i=1.

Let {Ψi( f )}NT
i=1 denote the transmitting power spectrum of PUs located at positions {(pi, qi)}NT

i=1.
Suppose that NR, {(xi, yi)}NR

i=1, {Φi( f )}NR
i=1 are known but NT , {(pi, qi)}NT

i=1, {Ψi( f )}NT
i=1 are unknown.

Let g(p,q)→(x,y) be the unknown radio propagation function from the primary user’s location (p, q) to
the secondary user’s location (x, y). The known power spectrum relations are shown in Equation (1):

Φ1( f ) =
NT
∑

i=1
g(pi ,qi)→(x1,y1)

Ψi( f )+σ2

Φ2( f ) =
NT
∑

i=1
g(pi ,qi)→(x2,y2)

Ψi( f )+σ2

...

ΦNR( f ) =
NT
∑

i=1
g(pi ,qi)→(xNR ,yNR )

Ψi( f )+σ2,

(1)

where σ2 denotes the variance of the additive white Gaussian noise of the target region.
Let FPS( f ; x, y) denote the power spectrum at location (x, y). It represents the aggregate

distribution of the powers across space corresponding to the frequency. The power spectrum maps
model is as follows:

FPS( f ; x, y) =
NT

∑
i=1

g(pi ,qi)→(x,y)Ψi( f )+σ2 , ∀(x, y) ∈ S. (2)

As shown in Equation (3), our task is the following: using the above-known power spectrum
relations (Equation (1)) and parameters to estimate the power spectrum maps model (Equation (2));
i.e., the power spectrum maps of region S.
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FPS( f ; x, y) =
NT

∑
i=1

g(pi ,qi)→(x,y)Ψi( f )+σ2 , ∀(x, y) ∈ S

s.t. Φj( f ) =
NT

∑
i=1

g(pi ,qi)→(xj ,yj)
Ψi( f )+σ2 , j = 1, 2, ..., NR.

(3)

The above task is actually undetermined. In fact, there is an infinite number of PSMs functions
which can satisfy Equation (1). To reduce the solution space of the estimation task (i.e., Equation (3)),
we need to utilize the prior information of the radio environment in the target region. Estimating PSMs
from secondary users’ PS measurements is actually a regression task. Generative adversarial networks
are powerful frameworks to handle regression problems in deep learning. In this paper, we extract the
essential characteristics of the radio environment and utilize them as the prior information to estimate
the PSMs based on the proposed MEGANs algorithm.

3. MEGANs-Based Power Spectrum Maps Estimation Algorithm

3.1. Color Mapping

Divide the target region S into N×N grids and suppose each grid has at most one user (a primary
user or a secondary user). To facilitate the presentation and the analysis of the MEGANs model,
we suppose N = 48 and divide region S into 48× 48 grids. We normalize the receiving power spectrum
of SUs and color the grids of region S according to the power values at different frequencies; i.e., map
the power components of different frequencies to different colors uniformly, as shown in Figure 3.

Figure 3. The colored, incomplete power spectrum maps.

The colors of the grids indicate the power value of each location in power spectrum maps.
The brighter the color, the bigger the power value is. White squares represent the grids where there are
no receiving SUs. The power components in these white squares are exactly our targets that need to
be estimated.

Through the process of color mapping, we convert the power spectrum maps estimation task
into an image reconstruction task in deep learning. Thus, we can use the powerful regression
framework—generative adversarial networks, to handle the PSMs estimation task; i.e., we train
the GANs to regress for the missing pixels of the incomplete power spectrum maps images.

3.2. Maps Estimation GANs Model

To circumvent the estimation errors from the inaccurate direct assumptions about the prior radio
environment information in the conventional methods (Kriging spatial interpolation algorithm, IDW
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algorithm, etc.), we propose a novel GANs algorithm named maps estimation GANs to estimate the
power spectrum maps without any direct spatial characteristic assumptions, as shown in Figure 4.

Figure 4. Maps estimation GANs model.

Throughout, we use superscript “r” to denote the real or true power spectrum distribution of the
target region, superscript “g” for the generated or reconstructed power spectrum distribution from the
generator, “X” for complete power spectrum maps images and “Y” for incomplete power spectrum
maps images. Thus, we define the real complete PSMs images as Xr and reconstructed complete PSMs
images as Xg, as shown in Figure 4. Let pr

x be the underlying distribution of the real complete PSMs
images; i.e., Xr ∼ pr

x. Let pg
x be the underlying distribution of the generated complete PSMs images

from the generator; i.e., Xg ∼ pg
x.

We use Fθ(·) to denote the measurement function that samples lossy measurements from pr
x.

Let pr
y be the underlying distribution of the real incomplete PSMs measurements performed on

samples from pr
x; i.e., Fθ(Xr)=Yr ∼ pr

y. There are many types of measurement functions to sample
incomplete images from pr

x. We list some of them as follows.

• Random-block-patches (RBPa): We set pixels inside of θ randomly chosen patches to zero. Each
patch is with the size of n× n. We can also set the size of each patch according to the target region.

• Random-block-pixels (RBPx): We independently set each pixel of the input PSMs image to zero
with probability θ. We assume that θ is uniformly distributed; i.e., pθ ∼ U(α, 1). α should be equal
to or less than the proportion of white squares in each incomplete power spectrum map in the
testing data set.

• Random-block-patches-pixels (RBPax): This measurement function is the superposition of the
RBPa and the RBPx.

The principle that we use in the selection of the measurement functions Fθ(·) depends on the
shape of the white grids in the colored incomplete PSMs images; i.e., the distribution of receiving
SUs in the target region. For example, we choose the RBPx measurement function if the receiving
SUs are uniformly distributed in the target region S; we choose the RBPax measurement function if
there are buildings and streets in the region S. The receiving SUs are uniformly distributed in the
streets. The color pixels stand for receiving SUs and the patches stand for buildings where there are no
receiving SUs. In fact, we can change and design the measurement functions according to the actual
environment and the distribution of the receiving SUs in the target region.

Let G denote the generator. We suppose G(Yr) = Xg and pg
x be the distribution of Xg. Our

goal is to learn a generator that pg
x is equal to or extremely close to pr

x. The strategy of MEGANs is
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defining a game between the generator and the discriminator. The generator is trained to generate
a high-accuracy estimation of the PSMs and fool the discriminator; the discriminator is trained to
decide if the PSMs generated are true or false. Let D denote the discriminator. It measures the gap
between the real complete PSMs and the reconstructed PSMs from the generator. With the training
process of the MEGANs model, the abilities of the generator and the discriminator are enhanced
continually until achieving a balance, which means the discriminator cannot tell the reconstructed
PSMs images from the real PSMs images; i.e., pg

x is an extremely close match to pr
x.

3.3. The Structure of MEGANs

The generative adversarial networks are powerful frameworks to handle the regression problems
in deep learning. The two main components of the proposed GANs are the generator and
the discriminator.

As for the generator, we designed its structure on the analogy of auto-encoders [23] (Figure 5),
which was used to exploit the training data set and learn more abstract radio environment features
of the target region. We trained the generator to regress for the missing pixels of the incomplete
power spectrum maps images. The generator of the MEGANs is closely related to the auto-encoders,
as the generator’s structure shares a similar encoder-decoder architecture with them. The proposed
generator consists of an encoder to capture the characteristics of an image into latent feature
representations and a decoder, which utilizes the representations to produce the missing PSMs’
contents. The generator takes the incomplete PSMs images and tries to reconstruct them by
passing through the low-dimensional layer or “bottleneck” layer, with the aim of obtaining feature
representations of the input images. The proposed generator not only compresses the image contents
but also learns the semantically meaningful representations. We call our model maps estimation GANs,
as it can estimate the power spectrum maps from the incomplete PSMs images.

Figure 5. The structure of the generator.

Regarding the discriminator, we utilize a deep convolutional neural network (CNN) to identify
the PSMs images generated and help the generator to improve the PSMs estimation performance,
as shown in Figure 6. The convolutional structure is an important structure in deep learning and has
unique advantages in image feature learning [24]. By learning and adjusting the network’s structure,
CNN can achieve infinite approximations of any complicated functions. The proposed discriminator
directly uses the image as the input of the model without any other image processing, such as the
wavelet transformation, high order statistics and so on. The discriminator avoids the complex process
of feature extraction and image reconstruction, which overcomes the shortcomings of traditional image
processing algorithms. Furthermore, the procedure of weights sharing in CNN significantly reduces
the number of training parameters and also decreases the computational complexity [25]. At the
same time, the convolution process of the discriminator helps to extract the essential characteristics of
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images from the training data set and enhances the identification ability towards the reconstructed
PSMs images.

Figure 6. The structure of the discriminator.

The MEGANs model is an incomplete connected neural network, which consists of the input layer,
convolutional layer, activation function, fully connected layer and the output layer. The explanations
of the above modules are as follows.

• Input layer: As for the generator, we set the incomplete power spectrum maps images Yr as the
input layer; i.e., the input of G(·). Regarding the discriminator, we set the complete PSMs images
(Xr and Xg) as the input layer; i.e., the input of D(·).

• Convolutional layer (CONV layer): The CONV layer is composed of multiple filters, which
are used to implement convolution operations. Every convolution kernel can be regarded as
a feature recognizer. The feature map contains the “features” extracted by each filter from the
original images. We set several convolutional layers to extract more abstract and deeper features
progressively. For example, front convolutional layers can extract low-level features; middle
convolutional layers can extract middle-level features; rear convolutional layers can extract
high-level features. We extract and compress the features continuously to obtain higher-level
features. In short, the original features are condensed step by step and the final features are more
reliable. After processing by the activation function fact(·), the convolutional layers result in the
new feature map, as shown in Equation (4).

Xl = fact(W ∗ Xl−1 + b), (4)

where X represents the feature matrix and l represents the index of the convolutional layer. We use
W to denote the weights of the convolution kernel and b to denote the convolution offset.

• Activation function: The main effect of the activation function is to provide the nonlinear ability
of the network. The neural network can only express linear relationships without the activation
function, which makes the whole deep neural network equivalent to the single-layer neural
network. Therefore, the deep neural network gets the nonlinear mapping ability only when we
use the activation function.

• Fully connected layer (FC layer): The FC layer plays the role of classification and feature
combination in the discriminator network. Unlike the CONV layer, which maps the original
image data to the local hidden feature space, the FC layer can classify and combine the local
features to the globe feature space. After processed by activation functions, the FC layers result in
the new feature map, as shown in Equation (5).

xl = fact(WTxl−1 + b), (5)
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where x represents the feature vector and T denotes the matrix transposition.
• Output layer: We set the reconstructed complete power spectrum maps images Xg as the output

layer of the generator; i.e., the results of G(Yr). The discriminator’s outputs are the identification
scores of the complete PSMs images (Xr and Xg). The closer the latent distribution pg

x of Xg is to
the real PSMs’ latent distribution pr

x, the higher identification score the discriminator outputs.

3.4. Training Process of MEGANs Algorithm

The MEGANs algorithm includes two processes: the training process and the testing process.
In the training process, the real, complete power spectrum maps images Xr in the training data set

are sampled by the measurement function Fθ(·), and then we get the real, incomplete PSMs images Yr.
We put Yr into the generator to complete the lossy measurements and get the reconstructed complete
PSMs images Xg. Finally, we input Xr and Xg to the discriminator and get their corresponding
identification scores.

During the training process, the generator is trained to generate a high-accuracy estimation of
the PSMs and fool the discriminator; i.e., the generator tries to increase the identification scores of
Xg. However, the discriminator is trained to decide if the input images are real or generated; i.e., the
discriminator tries to decrease the identification scores of Xg and increase the identification scores of Xr.
With the training process of the MEGANs model, the abilities of the generator and the discriminator
are enhanced constantly until achieving a balance, which means the discriminator cannot tell the
reconstructed PSMs images from the real PSMs images; i.e., pg

x is an extremely close match to pr
x.

The most commonly used training method of the deep neural network is the back-propagation
algorithm [26]. We can divide the process of the back-propagation algorithm into two steps: forward
data propagation and backward error propagation. In the forward data propagation process, the input
layer is used as the initial value, and then the data are pushed forward from the first layer to the last
layer. In the backward error propagation process, we correct the weights and offsets of the network
according to the errors from the objective function through the supervised learning method.

As mentioned above, the objective function is the key function for the back-propagation algorithm
in the training process. To speed up the MEGANs’ training process and enhance the PSMs estimation
performance, we consider the white squares in each incomplete PSM’s image as the image noise
or redundant information. We use the image denoising regularization (i.e., total variation (TV)
norm [27]) as a penalty term to modify the objective function of Wasserstein GAN with gradient
penalty (WGAN-GP) [28] as follows:

min
G

max
D

E
Xr∼pr

x

[D(Xr)]

− E
Xr∼pr

x

[D(G(Fθ(Xr)))]

−β · E
Xi∼pi

x

[
(
∥∥∥∇Xi D(Xi)

∥∥∥
2
− 1)2

]
+λ · E

Xr∼pr
x

[‖G(Fθ(Xr))‖TV ] .

(6)

The third term in Equation (6) is the gradient penalty term in WGAN-GP, which enhances the
stability in the training process [28]. β is the coefficient of the gradient penalty term. Xi denotes the
random linear interpolation of generated samples Xg and real samples Xr.

The fourth term in Equation (6) is the total variation penalty term. ‖·‖TV and λ are the total
variation norm and its coefficient. The discrete version of the total variation norm for image M is
defined as follows.

‖M‖TV = ∑
i,j

((
mi,j+1 −mi,j

)2
+
(
mi+1,j −mi,j

)2
)

, (7)
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where M and mi,j are the input image and the pixel in the ith row and jth column of the image.
The TV regularization, also known as the total variation denoising, is a process mostly used

in digital image processing. It is based on the fact that images with excessive and possibly false
details have a high TV norm. Based on the above principle, reducing the TV norm of the images
removes unwanted details and preserves important details, such as edges. Therefore, we add the TV
regularization to the loss function for searching for a close match to the original PSM images.

In the supervised deep learning method, we use the known paired data in the training set (e.g.,
the images and their corresponding labels) to train the deep neural network for the classification or the
regression task. The proposed MEGANs algorithm is a supervised deep learning method. Estimating
PSMs from secondary users’ PS measurements is actually a regression task. The incomplete PSMs’
images and their corresponding, complete PSM images are the known paired data in the training set.
In our MEGANs training process, we regard the complete PSM images as the labels in the supervised
deep learning. As for the PSM images in the training set, they should be independent and identically
distributed as the images in the testing set. Therefore, we should collect the training complete PSMs’
images from the same or similar radio propagation environment as the PSM images in the testing
region S in advance. For example, as discussed in Section 3.1, we can divide a region, which shares the
same or similar underlying radio environment characteristics as the target region, into N × N grids
and collect the power spectrum measurements in each grid to construct our training set. Furthermore,
we can also set the spectrum sensing equipment on the vehicles for collecting the region’s power
spectrum measurements to build our training set.

In fact, collecting the training PSMs images or collecting enough PSMs images from the same
or similar radio environment is not always an easy task. We should acknowledge that the goal of
estimating the high-accuracy power spectrum maps is admittedly very ambitious. However, the PSMs
estimation results do not need to be super accurate, but precise enough to identify the spatial “white
holes” and the unused bands. This relaxed objective motivated us to choose one or more suitable
radio propagation models (the Okumura–Hata model, the inverse polynomial law model, etc.) to
generate the training data according to the radio environment in the testing region S. For example,
if the testing region S is the urban area with the quasi smooth terrain, we can use the Okumura–Hata
model and/or other similar radio propagation models to generate the training data. In order to help the
MEGANs to learn the real underlying radio propagation characteristics and improve the generalization
performance, we should use multiple sets of different parameters in the radio propagation models to
generate the training data. Furthermore, if we have already collected a small number of real power
spectrum maps, adding the generated data into the collected data set to extend our training set is also
a good choice.

3.5. Testing Process of MEGANs Algorithm

To examine the effectiveness of the MEGANs-based algorithm, it is necessary to test the
performance of the proposed method through some testing indicators. We chose three indicators to
test the proposed algorithm:

1. The direct visual observation of the PSM images’ reconstruction performance.
2. The power spectrum estimation performance for PUs.
3. The average image reconstruction errors (AIREs) over different numbers of receiving SUs.

The testing process for the direct visual observation of the reconstruction performance was
relatively easy. We input the testing incomplete PSM images into the trained generator and then
observed the reconstruction performance. It was an intuitive and qualitative testing method.

As for the power spectrum estimation performance, we compared the MEGANs-based estimated
power spectrum with the real power spectrum of PUs. The testing result demonstrated the estimation
performance for the unused bands based on the proposed algorithm.
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Regarding the average image reconstruction errors over different numbers of receiving SUs,
we randomly chose q frequency points within the transmitting bands of PUs and defined the average
image reconstruction errors as shown in Equation (8).

Aerr =
1
q

q
∑

i=1

∥∥∥Mi
real −Mi

gen

∥∥∥
2

(8)

where Mi
real and Mi

gen are the real complete power spectrum map and the reconstructed complete
power spectrum map at the i th frequency point. The PSMs are estimated based on the power spectrum
measurements from SUs. The more measurements from SUs, the better estimation results from the
proposed algorithms. Therefore, the average image reconstruction errors are related to the numbers
of receiving SUs. We need to evaluate the Aerr over different numbers of receiving SUs based on the
MEGANs algorithm.

4. Simulations

In this section, we describe the test of the estimation performance of the proposed algorithm on
the above three indicators in Section 3.5. The simulations were run under the Windows 10 operating
system based on Visual Studio Code software. The training and testing of samples was done using
a basis of the Pytorch framework. We used the Intel Core i7-8750H processor, and the corresponding
graphics card was RTX 2080.

4.1. Simulation Settings

In the practical radio environment, the signal is attenuated in a random fashion. The attenuation is
mainly caused by the radio propagation loss, the shadow fading, the multi-path effects, etc. We usually
construct the radio propagation loss as the deterministic model, e.g., the Okumura-Hata model,
the inverse polynomial law model, etc. In addition, the shadow fading and the multi-path effects are
estimated by random models, i.e., the log-normal distribution for the shadow fading and the Rayleigh
distribution for the multi-path effects, etc. In our simulations, we use the same deterministic radio
propagation model as used in [19] rather than random models. The reasons are as follows.

The core purpose of the simulations was to test whether the proposed MEGANs algorithm could
learn the accurate radio propagation features from the training process rather than making direct
imprecise or biased propagation assumptions, as in the traditional methods. In order to exclude the
influence of stochastic factors and intuitively show the propagation features learned from MEGANs,
we used the deterministic radio propagation model for the propagation features, which can be easily
expressed by a formula. Furthermore, the deterministic propagation model was employed for ease
of the comparison experiments with the traditional methods. As for the random attenuation models,
the MEGANs can also achieve good estimation performance if the training set and the testing set share
the same random distribution of the radio propagation features.

Divide region S into 48 × 48 grids and choose the inverse polynomial law model γtr =

min
{

1, (d/d0)
−α
}

as the radio propagation model for region S in the simulations [19]. γtr denotes the
propagation loss from the transmitter to the receiver. d denotes the distance between the transmitter and
the receiver. α and d0 are the preselected constants depending on the radio propagation environment.

As for the testing set, we supposed α = 2 and d0 = 2 for region S. Suppose there are two active
transmitting PUs located at grids (20,18) and (40,35) in the presence of an additive white Gaussian
noise with known variance σ1

2. The receiving SUs uniformly distribute in region S, accounting for
about 15 percent of all grids. Suppose the primary users transmit random signals. We can estimate
their corresponding power spectra based on the periodogram method after sampling the PUs’ signals.
In our simulation, we directly set the power spectra of PU1 and PU2, as shown in Figure 7, which are
centered at 25 and 75 MHz.
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Figure 7. The power spectrum of PU1 and PU2 in the testing data set.

As for the training set, we emploedy the same radio propagation model but different preselected
constants from the testing set. We generated 30,000 training samples from three sets of environmental
propagation parameters: α = 3 with d0 = 1, α = 1 with d0 = 3, and α = 1 with d0 = 2. Each type generated
10,000 PSMs images in the presence of an additive white Gaussian noise with known variance σ2

2.
The number of PUs transmitters in each map was independently selected from one to five randomly,
and the transmitting power was normalized to 1 W. Suppose the receiving SUs uniformly distribute in
region S and use the random-block-pixels measurement model with α = 0.15. It should be noted that
the training data set does not contain the images in the testing data set.

For the training process, we summarize the learning parameters as follows: the adaptive moment
estimation (Adam) algorithm was used for the MEGANs training; the learning rates of the generator
and the discriminator were 0.0001; the total variation coefficient was 0.005; the gradient penalty
coefficient was 10 [28]; the batch size was 32.

The maximum training epoch in our simulations was set to 600, and it produced sufficient
convergence on the training data set. The convergence curves of the generator and the discriminator
in the training process are shown in Figure 8.

Figure 8. The convergence curves of the generator and the discriminator in the training process.
The curve of the generator’s training loss is depicted by the blue solid line. The curve of the
discriminator’s training loss is depicted by the orange solid line.

We define the Euclid distance dEuc (i.e., the l2 norm) between the generated complete PSMs and
the real complete PSMs of the training data set in Equation (9).
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dEuc =
1
b

b
∑

j=1

∥∥∥Mj
r −Mj

g

∥∥∥
2

(9)

where Mj
r and Mj

g are the jth real complete PSM and the jth generated complete PSM in every training
batch. b stands for the batch size. The convergence curve of dEuc in the training process is shown in
Figure 9.

Figure 9. The convergence curve of the Euclid distance dEuc between the generated, complete power
spectrum maps (PSMs) and the real, complete PSMs in the training process.

As shown in Figure 8, the training loss of the discriminator converges at around 100 epochs, which
means that the discriminator learns the latent distribution of the real PSMs images and gets a strong
ability to differentiate between the artificially-generated PSMs images and the real PSMs images.
The image reconstruction ability of the generator is weak at this training phase. However, with the
training process of MEGANs, the training loss of the generator converges at around 500 epochs, which
means that the reconstruction ability of the generator is enhanced constantly until achieving a balance
with the discriminator. At this training phase, the discriminator cannot tell the reconstructed PSMs
images from the real PSMs images; i.e., pg

x is an extremely close match to pr
x.

The convergence curve of the Euclid distance also proves the above convergence analysis about
the training process of MEGANs. As shown in Figure 9, the reconstruction ability of the generator is
enhanced constantly and the gaps between the real and generated PSMs images are getting smaller
and smaller along with the MEGANs training.

To verify the estimation performance of the proposed algorithm, we compared the MEGANs
algorithm with the conventional Kriging interpolation algorithm and the IDW interpolation algorithm
on the testing set. As for the simulation of the Kriging algorithm, we denote the Kriging with the linear
variogram as L-Krig and the Kriging with the exponential variogram as E-Krig. Additionally, we set
the power value pv = 2 of the inverse distance in IDW interpolation. We did not test the estimation
performance of the basis expansion algorithm because the assumptions in BP algorithm are beyond
practice and hard to achieve in the actual complex radio environment; e.g., the assumptions of the
known radio propagation model, the primary users’ candidate locations and the sparsity in frequency
and space [19].

4.2. Simulation Results

We tested the estimation performance of the proposed MEGANs algorithm in three aspects:
(1) the direct visual observation of the reconstruction performance; (2) the power spectrum estimation
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performance for PUs; (3) the average image reconstruction errors over different numbers of
receiving SUs.

(1) The direct visual observation of the PSMs images reconstruction performance.

After 600 training epochs, we input incomplete PSMs images of the testing data set into the
trained generator. The PSMs estimation results for PU1 at 25 MHz and PU2 at 75 MHz are shown in
Figures 10 and 11.

Compared with the real, complete PSMs images, the MEGANs algorithm outperforms the Kriging
algorithm and the IDW algorithm from the direct visual observation in the estimation results of PU1
and PU2, especially in the area near the PUs. Furthermore, the exponential Kriging algorithm performs
poorly for PU1 at 25 MHz because the variogram assumption is of significant deviation from the
real data distribution. Furthermore, the reconstructed PSMs images from the proposed MEGANs
algorithm are smoother because of the total variation penalty term that we added into the training
objective function in Equation (6).

Figure 10. The incomplete PSMs images, MEGANs, IDW interpolation, linear Kriging, exponential
Kriging PSMs estimations and the real, complete PSMs images for PU1 at 25 MHz.

Figure 11. The incomplete PSMs images, MEGANs, IDW interpolation, linear Kriging, exponential
Kriging PSMs estimations and the real, complete PSMs images for PU2 at 75 MHz.
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(2) The power spectrum estimation performance for PUs.

The power spectra transmitted by PU1 and PU2 are centered at 25 and 75 MHz. They are
depicted by the black solid line in Figure 12. Compared with the real power spectrum 1 and power
spectrum 2, Figure 12 shows that the MEGANs algorithm has a better estimation performance than
IDW interpolation algorithm, linear Kriging and exponential Kriging.

Figure 12. The power spectrum estimation results for PU1 and PU2.

The IDW interpolation algorithm assumes that the power spectrum only depends on the distance
dt between the interpolation node and the receiving SU. The power value pv of the inverse distance
(i.e., ( 1

dt
)pv ) controls the influences of the known nodes on the interpolation node. Inaccurate settings

of the power value pv lead to imprecise PSMs estimation results, as shown in Figure 12. In fact, it is
quite difficult to determine whether the specific power value pv is appropriate or not.

As for the above two Kriging algorithms in Figure 12, the gap between the real power spectrum
and the estimation results from Kriging algorithm can be explained by the fact that there will always
be inaccurate or biased spatial characteristics assumptions (i.e., the variogram assumptions of Kriging)
for the complex radio environment of the testing region. However, the spatial characteristics of the
radio propagation environments are the key factor for the PSMs estimation.

The proposed MEGANs algorithm has a better estimation performance because we do not directly
assume the prior information of the radio environment but train a generator network to learn the
power distribution characteristics in region S from the training data set. It should be noted that the
training set does not contain the testing set images, as mentioned in Section 4.1. Thus, the trained
MEGANs has a good generalization performance for the testing data set, as verified in our simulations.

(3) The average image reconstruction errors (AIREs) over different numbers of receiving SUs.

As defined in Section 3.5, the average image reconstruction errors (AIREs) Aerr measures the gap
between the real and reconstructed complete power spectrum maps images. The PSMs are estimated
based on the power spectrum measurements from SUs. Therefore, the AIREs are related to the number
of receiving SUs. We randomly chose reconstructed PSMs images at 15 different frequency points
within the transmitting frequency bands and computed the AIREs of the PSMs images over different
numbers of receiving SUs. The simulation result is shown in Figure 13.
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Figure 13. The average image reconstruction errors over different numbers of receiving SUs.
The percentages of the SUs’ grids accounting for the whole target region are shown on the horizontal
axis. The average image reconstruction errors Aerr are shown on the vertical axis.

As shown in Figure 13, the Aerr of the MEGANs decreases gradually with the increase of the
number of SUs. The MEGANs algorithm outperforms the Kriging method and the IDW interpolation
algorithm in the range of 15% to 90% of the SUs’ grids accounting for the whole target region.
However, the performance of the proposed algorithm is not good enough at 10% of the SUs’ grids.
The above simulation result of MEGANs verifies that the more power spectrum measurements from
the receiving SUs, the better the estimation results from the proposed algorithms. The degradation
performance of MEGANs at 10% of the SUs’ grids is mainly because there are not enough power
spectrum measurements to activate the network of the generator in the forward data propagation
process. We can handle this by adjusting the parameters of random-block-pixels measurement function
to a smaller value (e.g., α = 0.05) in the MEGANs training process. The generator will then get a more
powerful reconstruction ability.

As for the Aerr curve of the IDW interpolation algorithm, it decreases gradually with the increase
of the number of SUs, which verifies that the more power spectrum measurements from the receiving
SUs, the better estimation results from the IDW algorithm. However, the IDW interpolation algorithm
performed the worst of all algorithms tested in the AIREs simulation. The imprecise PSMs estimation
result of the IDW algorithm comes from the inaccurate settings of the power value pv, which controls
the influences of the known nodes on the interpolation node.

Regarding the Aerr curve of the Kriging interpolation algorithm, the curves of the linear Kriging
and exponential Kriging increase after an initial decrease for the reasons:

(a) The measurements data contains little information for the Kriging method in the beginning.
The AIREs of the curves decrease from 10% to 20% of the SUs’ grids because of the increase of the
measurements data from SUs.

(b) The real distribution of the power spectrum measurements shows a relatively big difference
from the imprecise variogram assumptions with the increase of the measurements data from 20%
to 90% of the SUs’ grids. The AIREs of the curves rise because the more measurement data from
SUs, the larger the deviation between the features of real complex radio environment and the Kriging
variogram assumptions.

5. Conclusions

In this paper, we proposed a novel power spectrum maps estimation method named maps
estimation GANs algorithm for underlay CR networks based on deep learning. On the analogy of
auto-encoders and the deep convolutional structure, we designed the generator and the discriminator
of the proposed MEGANs to estimate the PSMs and enhance the estimation accuracy. The MEGANs
algorithm learns and utilizes accurate radio environment features from the training process, rather
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than making direct imprecise or biased radio propagation assumptions, as the traditional methods
do. Simulation results demonstrate that the MEGANs algorithm provides a more accurate estimation
performance than the conventional methods. In our future research, we will focus on the extension
of the MEGANs-based power spectrum maps estimation to more practical radio environments; e.g.,
the shadowing and small-scale fading environment.
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