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Abstract: Continuous monitoring of complex activities is valuable for understanding human behavior
and providing activity-aware services. At the same time, recognizing these activities requires both
movement and location information that can quickly drain batteries on wearable devices. In this
paper, we introduce Change Point-based Activity Monitoring (CPAM), an energy-efficient strategy
for recognizing and monitoring a range of simple and complex activities in real time. CPAM employs
unsupervised change point detection to detect likely activity transition times. By adapting the
sampling rate at each change point, CPAM reduces energy consumption by 74.64% while retaining
the activity recognition performance of continuous sampling. We validate our approach using
smartwatch data collected and labeled by 66 subjects. Results indicate that change point detection
techniques can be effective for reducing the energy footprint of sensor-based mobile applications
and that automated activity labels can be used to estimate sensor values between sampling periods.

Keywords: time series analysis; machine learning; mobile computing; statistical methods; energy
reduction

1. Introduction

Observing, recognizing, and analyzing human activities form a foundation for scientific fields
such as anthropology, archeology, sociology, and psychology. With the maturing of wearable sensors
and computers, a person’s activities can now be monitored around the clock via mobile sensors.
What is more, given the 127 million smartwatches that were sold last year alone, the volume of
already-collected activity is unprecedented. Researchers can analyze this data to validate theories
of human behavior and practitioners can gain insights that allow them to provide personalized
recommendations and treatment plans. The impacts of this “activity wave” are profound. The earliest
wearable fitness trackers debuted over a decade ago. Building on their foundation, researchers have
applied these mobile technologies to cognitive and physical health monitoring [1–4], activity-aware
recommendations [5], sports evaluation and training [6], lifelogging [7], and behavior intervention [8].

To provide quality activity-aware services [9,10], mobile devices must be worn nonstop and must
be continuously collecting data without interruption. At the same time, frequent sensing and user
localization can quickly drain a smartwatch battery. In this paper, we introduce Change Point-based
Activity Monitoring (CPAM), an algorithm that performs continual monitoring and recognition of
activities of daily living while using change point detection and change point-adaptive sampling to
reduce energy consumption. Adopting the CPAM strategy results in a saving of 74.64% in energy
consumption, extending battery life and thus the usefulness of activity-aware applications.

Energy consumption is a known obstacle to wearable computing in general and to activity
monitoring in particular [11–15]. For complex activities, however, recognition and monitoring may
require an even greater energy footprint. While many approaches use movement sensors to recognize
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atomic movement-based activities (e.g., sit, stand, walk, climb, run, lie down), additional information
such as location is needed to learn activities of daily living that often contain combinations of basic
movements (e.g., cook, watch television, work). Our long-term goal is to recognize such complex
activities, in real time as people perform them. To achieve this goal, we must create new approaches to
sensing that reduce energy consumption and save battery life.

We hypothesize that mobile energy consumption can be dramatically reduced while recognizing
activities of daily living in real time by recognizing natural changes in state (e.g., activity transitions)
and adapting sampling rates to these changes. Here, we describe the CPAM algorithm that performs
energy-efficient activity recognition. CPAM collects sensor and location data, detects activity changes,
adjusts the sampling rate correspondingly, and recognizes activities of daily living in real time.
We evaluate our method for wearable data collected from 66 users, labeling nine basic and instrumental
activities of daily living. We also investigate an enhancement to CPAM that uses activity labels to
estimate sensor values between sampling periods as a strategy to further reduce sampling rates while
maintaining the ability to accurately detect and recognize critical activities.

2. Related Work

Because the need for continuous sensing is juxtaposed with the need for long battery life,
researchers have presented numerous options for reducing energy consumption while performing
activity recognition and context-aware mobile computing. One such paradigm is compressive
sensing [16]. Compressive sensing maintains that a signal does not have to be sensed equally at all
times to achieve a standard of information quality. Instead, when the signal is sparse, the sampling rate
can be reduced and signals can be compressed. Naturally, the resulting information quality depends
on the capability of the signal receiver to reconstruct the original information. Mobile sensors generate
much redundant data that spark unnecessary computation, storage, and transmission [17]. Therefore,
researchers have explored this methodology to improve mobile power efficiency for applications in
biomedical computing. For example, Mamaghanian et al. [10] compress ECG data before transmission,
extending mote lifetime by 37.1%. Elgendi et al. [18] achieve a compression ratio of 6 for ECG data,
while retaining 99.56% reconstruction accuracy.

Compressive sensing has been investigated specifically for mobile activity monitoring by
researchers such as Akimura et al. [11], who reduce power consumption by 16% while maintaining a
recognition accuracy of over 70% for scripted the motion-based activities stay, walk, jog, skip, climb up
stairs, and descend down stairs. Similarly, Jansi and Amutha maintain f-score, specificity, and precision
as well as accuracy for recognition of eight movement-based scripted activities using compressive
sensing with a sparse-based classifier [12]. Hui et al. found that they could directly use the compressed
information to recognize six activities with an accuracy of 89.86% when combining compressive sensing
with strategic placement of the mobile device on the body, and Braojos et al. [19] quantify the precise
relationship between wearable transmission volume and activity recognition sensitivity.

The flipside of reducing the mobile energy footprint is making needed power available through
energy harvesting. Human motion not only reflects current behavior, but it can also be converted
into power. Some researchers such as Khalifa [13] and Lan et al. [20] transform kinetic energy into
mobile power. At the same time, they directly analyze the kinetic energy harvesting patterns to detect
and analyze human activity. In our work, we do not compress and reconstruct the signal, nor do we
harvest energy. Instead, we control how often the signal is sampled. However, our adaptive sampling
could be combined with compressive sensing and energy harvesting to potentially yield even greater
resource savings.

In the same way that distributed computing lightens computational loads for each node,
so distributed sensing lessens the need for energy-consuming sensing for each mobile device.
Kwak et al. [21] share sensed locations between nearby mobile devices, while other groups such
as Guo et al. [22] offload sensor processing to the cloud. To intelligently and fairly assign sensing
efforts among available nodes, Sheng et al. [23] create a separate controller that makes these decisions.
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Based on simulated scenarios, they identify the minimum number of readings that sensors must
provide for successful applications. Our work contrasts from distributed computing approaches in
that we do not rely on multiple devices or external servers. This allows each device to operate as an
independent entity.

One powerful role for mobile devices is to monitor and label user activities. This role places
heavy demands on mobile devices for continuous sensing. Not only is long battery life essential for
continual monitoring, but Alshurafa et al. [24] found that it is also essential for maintaining intervention
adherence. Battery drainage causes interruptions to an intervention plan and thus discourage users
from participating. Uninterrupted intervention thus represents an additional motivation for adaptive
sampling. Alshurafa et al. extended battery life by downsampling when the accelerometer indicated the
user was not in motion. This strategy improved intervention compliance by 53%. Gordon [14] adopted a
similar approach but also predicted future activities. Inferring likely upcoming behavior allows sample
rates to be adjusted in anticipation of the next activities. Yan et al. [25] specifically selected sampling
frequencies based on a formalized trade-off between activity classification and accuracy. Pagan et al. [15]
and Fallahzadeh et al. [26] incorporate insights about activity-specific sensing granularity as well as
compressive sensing to enhance this trade-off.

Other researchers found that low-power activity recognition may rely on more effective use of the
sensing device. Grutzmacher et al. [27] and Elsts et al. [28] relegate the feature extraction work to the
device rather than the server, which lowers the overall energy consumption because of a decreased
need for data transmission. Bhat et al. [29] found that they could achieve activity recognition accuracy
as high as 97.7% even with a low-power IoT device, and Braojos et al. [19] achieved up to 97.2%
accuracy with low-power wearable nodes.

Another noticeable impact on power consumption is the choice of software architecture.
Berrocal et al. [30] demonstrated how dramatically choices of software architecture varied battery
and data traffic consumption. In particular, server-centric architectures become more efficient as
interactions with external entities increase, while mobile-centric architectures may be preferable if the
shared data require frequent updates.

All of these approaches to power-sensitive activity monitoring have been directed toward sensing
of activities that are scripted, evaluated in controlled settings, and are distinguishable based on a single
type of body movement. In our work, the goal is to monitor and recognize complex activities of daily
living with wearable devices from streaming data as activities are performed in everyday, realistic
settings. Not all activities of daily living contain a single atomic type of movement. When activities are
considered that contain combinations of movements and locations, activity transition detection will
play a key role because transitions dictate when sampling rates should be increased and decreased.
French et al. [31] also offer a strategy that is based on this philosophy. In particular, they sample sensors
only at activity transitions. In their experiments with 94 h of collected continuous data for 4 users,
they were able to accurately label 11 activities with only 10%–20% of the available samples using this
technique. However, their work relied on manual identification of activity transitions. We replace this
step with automatic transition labeling via change point detection.

3. CPAM

We hypothesize that sampling sensors at times indicated by change points, or changes in the
process state, can reduce energy consumption while maintaining a high quality of service for mobile
applications. We validate this hypothesis for an activity recognition smartwatch app called CPAM
(Change Point-based Activity Monitoring). Figure 1 provides an overview of CPAM. As shown,
smartwatch users continuously collect sensor data during their normal daily routines, using the app to
provide labels for their current activities. The collected data are stored together with user-provided
labels on the watch. Upon user request, the data can also be securely transmitted to a password-protected
database on a remote server.
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time to train the model or labeled by the model once it is trained. Movement and location data are 
analyzed to find change points and sampling rates are adjusted accordingly. The resulting data are 
fed to a supervised learner to build activity models. 

Two types of sensor data are collected for activity monitoring. Movement sensors generate 
acceleration, gyroscope, compass, and heart rate data. We postulate that location data are critical for 
recognizing complex activities and these are separately collected and stored. However, obtaining 
location data consumes a much greater amount of energy. CPAM acts as a closed-loop system to 
obtain essential data at rates that are sensitive to the current recognition needs. As the data are 
collected, CPAM analyzes data subsequences to find changes in state, or change points. When a 
change point is detected, the sampling rate is increased to support activity recognition. The sampling 
rate is then decreased until the next change point, based on the assumption that the current activity 
persists until the change point. Finally, sampled data are provided together with activity labels to 
train a machine learning classifier. This classifier learns activity models and can use them to label 
new data with the corresponding activity categories in real time. 

3.1. Monitoring Complex Activities 

While CPAM can provide activity-aware energy reduction for many mobile applications, here, 
we focus on an activity recognition application. Human activity recognition is a popular research 
topic [32–35] and forms a critical component of technologies for health monitoring, intervention, and 
activity-aware service provisioning [36–38]. Additionally, activity recognition provides a vehicle for 
us to validate our change point detection methods by comparing detected activities with known 
activity transitions. 

In this work, we propose an algorithm to recognize activities of daily living in real time. Some 
activities of daily living consist of a single type of position and movement (e.g., sleep). In contrast, 
other activities, what we refer to as complex activities, may combine any number of movement types 
(e.g., errands may combine sitting, standing, and walking). Additionally, some activities of daily 
living cannot easily be distinguished based on movement alone. For example, watching television 
and listening to a lecture utilize very similar movements. These activities need additional information 
including date, time, and location to be recognized. Figures 2 and 3 show the diversity of information 
that is provided by the different types of CPAM sensor readings, including both movement and 
location. This diversity of information is essential to distinguish the activity categories. 

Figure 1. Overview of the Change Point-based Activity Monitoring (CPAM) energy-conserving activity
recognition algorithm. Data are continuously collected and are either labeled by users in real time to
train the model or labeled by the model once it is trained. Movement and location data are analyzed
to find change points and sampling rates are adjusted accordingly. The resulting data are fed to a
supervised learner to build activity models.

Two types of sensor data are collected for activity monitoring. Movement sensors generate
acceleration, gyroscope, compass, and heart rate data. We postulate that location data are critical for
recognizing complex activities and these are separately collected and stored. However, obtaining
location data consumes a much greater amount of energy. CPAM acts as a closed-loop system to obtain
essential data at rates that are sensitive to the current recognition needs. As the data are collected,
CPAM analyzes data subsequences to find changes in state, or change points. When a change point
is detected, the sampling rate is increased to support activity recognition. The sampling rate is then
decreased until the next change point, based on the assumption that the current activity persists until
the change point. Finally, sampled data are provided together with activity labels to train a machine
learning classifier. This classifier learns activity models and can use them to label new data with the
corresponding activity categories in real time.

3.1. Monitoring Complex Activities

While CPAM can provide activity-aware energy reduction for many mobile applications, here,
we focus on an activity recognition application. Human activity recognition is a popular research
topic [32–35] and forms a critical component of technologies for health monitoring, intervention,
and activity-aware service provisioning [36–38]. Additionally, activity recognition provides a vehicle
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for us to validate our change point detection methods by comparing detected activities with known
activity transitions.

In this work, we propose an algorithm to recognize activities of daily living in real time.
Some activities of daily living consist of a single type of position and movement (e.g., sleep). In contrast,
other activities, what we refer to as complex activities, may combine any number of movement types
(e.g., errands may combine sitting, standing, and walking). Additionally, some activities of daily
living cannot easily be distinguished based on movement alone. For example, watching television
and listening to a lecture utilize very similar movements. These activities need additional information
including date, time, and location to be recognized. Figures 2 and 3 show the diversity of information
that is provided by the different types of CPAM sensor readings, including both movement and location.
This diversity of information is essential to distinguish the activity categories.Sensors 2020, 20, x FOR PEER REVIEW 5 of 21 
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Modeling, recognizing, and monitoring complex activities is essential for several reasons. First,
health professionals often use a person’s ability (or inability) to perform activities of daily living (ADLs)
as a measurement of their health status. These include basic ADLs such as personal hygiene, moving
independently, and self-feeding as well as instrumental ADLs (iADLs) such as cooking, shopping,
traveling, handling finances, and performing household chores [39]. Assessing a person’s functional
health is critical not only for monitoring changes in health state but also for determining the impact of
interventions [40].

Second, complex activities form a vocabulary that is typically used to express human behavior.
As an example, the American Time Use Survey (ATUS) [41] catalogs the percentage time that people
spend on “typical” activities. Here, activity categories include eating, leisure, sports, sleeping, working,
household activities, and caring for others.

We collected data for a collection of activities that encompass the ADL, iADL, and ATUS categories.
To ensure that we maintained a consistency of label interpretations and collect a sufficient number
of instances for each category, we group some of the specific activities. These groupings are listed
in Table 1 together with the corresponding set of labels provided by our users. To visualize routine
behavior based on these activity categories, Figure 4 shows a sample one-day activity sequence for one
of our users.Sensors 2020, 20, x FOR PEER REVIEW 6 of 21 

 

 
Figure 4. A one-day sequence of activities and corresponding activity durations for one of the users. 
Time on the x axis starts and ends at midnight. 

Table 1. Activity categories. 

Activity Interpretation 
Sleep nighttime sleep (going to bed, waking up, nighttime interruptions), daytime naps 
Work work at office, work on computer, teach, attend class, finances, research, meetings 
Eat cook, eat at home, eat out, snack, drink, clean dishes 

Errands shop, doctor appointment, other appointment 
Exercise exercise machines, run, walk, bike, lift weights, sports 
Travel drive/ride in car, bus, train, airplane 

Hygiene dress, brush teeth, wash, bathe/shower, groom 
Hobby garden, games, care for others, care for house, socialize, entertainment, read 

3.2. Real-Time Activity Recognition 

Activity recognition maps sensor data to corresponding activity labels using supervised 
machine learning. Input to an activity learner is a sequence of sensor events. A sensor event takes the 
form et = <t, r1, rd>, where t denotes the date and time of the set of sensor readings and r1 through rd 
indicate values returned from the collection of d sensors at time t. 

Many activity recognition approaches extract features corresponding to an entire pre-segmented, 
scripted activity and map the feature vector onto a corresponding activity label. In contrast, CPAM 
maps continuously-collected smartwatch data onto activity labels in real time. To accommodate this 
difference in approach, CPAM moves a sliding window over the data. For this paper, the window 
size, w, is set to 5 s motivated by experiments reported from our group and others [42,43]. Features 
are extracted from a window and the supervised learning algorithm maps this feature vector onto an 
activity label, <fstatistical, frelational, ftemporal, fnavigational, fpersonal, fpositional>→A. Table 2 summarizes CPAM’s sampled 
sensors, the extracted features, and the category of sensor data for which the features are derived. 
Activity categories that were reported by a majority of the users are included in the study as listed in 
the table. 

The app samples 3D acceleration and rotation readings together with course, speed, device 
orientation, user heart rate, and the date and time of the sample. Additionally, location services are 
used to collect latitude, longitude, and altitude readings. For each data window, or time-ordered 
sequence of sensor readings, features are extracted. Statistical features are calculated independently 
for each sensor based on the readings within the window. Relational features combine two or more 
sensors. For example, correlations are calculated between the multiple acceleration axes. Rotational 
and locational correlations are calculated in a similar fashion. The navigational features consider the 
number of times a user’s course changes within the window (heading change rate), the number of 
stops and starts within the window (stop rate), the trajectory vector from window beginning to 
ending, and the distance that was traveled during that time. 
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Table 1. Activity categories.

Activity Interpretation

Sleep nighttime sleep (going to bed, waking up, nighttime interruptions), daytime naps
Work work at office, work on computer, teach, attend class, finances, research, meetings
Eat cook, eat at home, eat out, snack, drink, clean dishes

Errands shop, doctor appointment, other appointment
Exercise exercise machines, run, walk, bike, lift weights, sports
Travel drive/ride in car, bus, train, airplane

Hygiene dress, brush teeth, wash, bathe/shower, groom
Hobby garden, games, care for others, care for house, socialize, entertainment, read

3.2. Real-Time Activity Recognition

Activity recognition maps sensor data to corresponding activity labels using supervised machine
learning. Input to an activity learner is a sequence of sensor events. A sensor event takes the form
et = <t, r1, rd>, where t denotes the date and time of the set of sensor readings and r1 through rd indicate
values returned from the collection of d sensors at time t.

Many activity recognition approaches extract features corresponding to an entire pre-segmented,
scripted activity and map the feature vector onto a corresponding activity label. In contrast, CPAM
maps continuously-collected smartwatch data onto activity labels in real time. To accommodate this
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difference in approach, CPAM moves a sliding window over the data. For this paper, the window
size, w, is set to 5 s motivated by experiments reported from our group and others [42,43]. Features
are extracted from a window and the supervised learning algorithm maps this feature vector onto an
activity label, <fstatistical, frelational, ftemporal, fnavigational, fpersonal, fpositional>→A. Table 2 summarizes CPAM’s
sampled sensors, the extracted features, and the category of sensor data for which the features are
derived. Activity categories that were reported by a majority of the users are included in the study as
listed in the table.

The app samples 3D acceleration and rotation readings together with course, speed, device
orientation, user heart rate, and the date and time of the sample. Additionally, location services are
used to collect latitude, longitude, and altitude readings. For each data window, or time-ordered
sequence of sensor readings, features are extracted. Statistical features are calculated independently
for each sensor based on the readings within the window. Relational features combine two or more
sensors. For example, correlations are calculated between the multiple acceleration axes. Rotational
and locational correlations are calculated in a similar fashion. The navigational features consider the
number of times a user’s course changes within the window (heading change rate), the number of
stops and starts within the window (stop rate), the trajectory vector from window beginning to ending,
and the distance that was traveled during that time.

Table 2. Features extracted from smartwatch sensors.

Sensor Data

Acc = <x acceleration, y acceleration, z acceleration>, rot = <yaw, pitch, roll>, course, speed, orientation, loc
= <latitude, longitude, altitude>, heart rate, compass, date, time

Features Data

fstatistical: max, min, sum, mean, standard deviation, mean
absolute deviation, median absolute deviation, variance, zero

crossings, interquartile range, coefficient of variation,
skewness, kurtosis, entropy, discrete Fourier transform, signal

energy, log signal energy, power, autocorrelation

acc, rot, course, speed, compass, heart rate

frelational: total, multidimensional correlation acc, rot, loc

ftemporal: day of week, hours, minutes, seconds past midnight date, time

fnavigational: heading change rate, stop rate, overall trajectory,
distance travelled loc, calculated for each window

fpersonal: frequent cluster membership, frequency/time cluster
membership, distance from center loc, calculated for each user

fpositional: loc_type = <home, restaurant, road, store, work,
attraction, service, other> loc, calculated via reverse geocoding

Activities

A: eat, errands, exercise, hobby, hygiene, sleep, travel, work, other

While we contend that location information is valuable for many mobile services including activity
recognition, reasoning about specific <latitude, longitude, altitude> locations does not allow learned
models to generalize over multiple users. Furthermore, a model built on this information could
jeopardize the privacy of the users on which it was built. Instead of including specific locations in the
model, we extract generalizable location features. For each user, we identify the top 6 overall frequent
locations and most-frequent locations by time of day (midnight to 06:00, 06:00 to noon, noon to 18:00,
18:00 to midnight) using k-means clustering with a Euclidean distance metric. These are created based
on an initial sample of data for each user. For new data, cluster memberships are identified, and the
cluster IDs are added to the feature vectors. We also calculate the geographic center of all locations the
user visits and incorporate a feature that represents the x distance, y distance, and Euclidean distance
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of a given location from the user center. These distances are normalized based on the bounding box
around the user’s frequent locations.

Finally, we extract a feature that represents the location type. Given a sampled location, we use
the Nominatum open street map to generate a corresponding address and the location type. We group
these into the location categories home, restaurant, road, store, work, attraction, service, and other,
then use one hot encoding to include location type in the feature vector. Because accessing the open
street map requires communication that further drains the battery, we learned a separate model that
maps the non-location features from Table 2 onto a corresponding location type. The model achieved
98.1% classification accuracy for 3-fold cross validation on 20,000 reverse geocoded locations previously
collected from individuals living in the same geographical regions as the participants in the CPAM
study. After validating the model, we trained it on all 20,000 locations and employed the learned
model to generate location types on the CPAM smartwatch app.

3.3. App Design

CPAM is implemented in the Apple Watch 3. The app samples data at 100 Hz and provides
an interface through which a user can label their current activity, start and stop data acquisition,
and upload all collected data with activity labels to an offsite server. Figure 5 provides screenshots of
these app functions. Models are updated on the watch periodically (currently once each day) and are
similarly updated on the server to perform sample-wide data analysis and evaluation of activity
recognition performance.Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 
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Figure 5. Screenshots of the CPAM app. These functionalities allow the user to (top left) specify the
sampling rate, (top right) start and stop data acquisition, (bottom left) provide a label for the current
activity, and (bottom right) send collected and labeled data to a server.

Activity recognition is performed on the watch using the CoreML libraries. Earlier experiments
indicated that random forest with 100 trees performs well on activity recognition from wearable
data [42] and we utilize this algorithm for CPAM. The collected features are generalizable, so we build
a model that can be used for any existing or new user. Because the data are not uniformly balanced
among the nine activity categories, training samples are given a weight that is inversely proportional
to the size of their activity class. For future versions of CPAM with more activity categories, sampling
may need to be added to learn a sufficiently robust model for all of the activity classes.
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3.4. SEP Change Point Detection

Change point detection refers to the process of finding points in time series data where the
data-generating process changes. If data before time t reflects a different process state than data after
time t, we can say that time t is a change point. Formally, given a time series stream of elements
X = {x1,..., xi,...}, xi represents a d-dimensional feature vector arriving at time i. Each feature vector
reflects a current state of the underlying process. Two consecutive distinct states appear on either side of
a change point. Thus, the change point represents a transition between the corresponding states. In the
case of activity-driven sensor data, the change point represents a transition between activity classes.
Change point detection offers one method for segmenting time series data, by partitioning data between
change points into separate, non-overlapping, varying-size time series segments. We hypothesize that
activity transitions can be characterized as change points, and there is some evidence in the literature
to support this claim [44,45].

While change point detection (CPD) is a thoroughly-investigated topic, some traditional
approaches to change point detection, shown in Figure 6, are not appropriate for this problem.
Supervised approaches are trained on sample change points [46]. They can be very effective, but they
require training on a sufficient number and diversity of labeled examples, which makes them less
useful for a variety of activity data. These training data may provide examples of change point versus
non-change point sequences (for binary classification) or of transitions between specific process states
for multi-class classification.
Sensors 2020, 20, x FOR PEER REVIEW 9 of 21 

 

 

Figure 6. Recent approaches to change point detection. 

In contrast, unsupervised methods look for changes in data. These changes can be a quantitative 
distance between states as with subspace modeling [47], membership in different clusters [48,49], or 
a distance value generated by a kernel function or a graph [50]. Alternatively, the probability of a 
change point can be computed using Bayes’ theorem [51] or a Gaussian Process prediction [52]. 

One requirement of our proposed method is to detect change points from streaming data. While 
earlier methods perform batch processing, this constraint can be met by density ratio techniques. 
CUSUM [53] and CF [54] identify change points when the probability density of a data sequence before 
the point sufficiently differs from the data sequence after the point. KLIEP [55], uLSIF [56], and RuLSIF 
[57] improve the detection runtime by directly estimating the ratio of the probability densities. Recent 
research in activity segmentation parallels this change point research, including supervised learning of 
activity transitions [58–62], calculation of change point Gaussian probabilities [63], or application of a 
direct density ratio unsupervised method [45,64,65]. 

For our change point approach to mobile energy reduction we propose SEP, a SEParation 
distance strategy, because we showed it to be more sensitive to subtle changes in sensor time series 
data than other unsupervised methods and it is non-parametric [45,66]. Using SEP, time point t is 
considered a change point if the probability density function f created from the subsequences before 
and after t are different in terms of the density function parameters. For a random variable X defined 
on ℜ, function μx calculates the probability density for subsets B of ℜ: 

μx(B) = P(X) (1) 

Here, (ℜ,B,μx) is a probability space and P represents the probability of X Є B. Assuming that 
two probability densities, ft−1(x) and ft(x), correspond to the two subsequences from time series X 
appearing immediately before and after time t, SEP uses a dissimilarity measure to quantify the 
difference between the probability densities. This measure, S*, can be used to determine if t represents 
a change point. Because SEP needs to compare probability densities before and after change points, 
there is a delay between change point detection and the current time. This delay corresponds to the 
length of the subsequences that are considered, n. 

The separation distance S between time series subsequences is calculated using Equation (2). 

∗ = max (1 − ( )( ) ) (2) 

Instead of calculating each term in Equation (1), which is computationally costly, SEP estimates 
the probability density ratio using a Gaussian kernel function g(x), defined in Equation (3). 

Figure 6. Recent approaches to change point detection.

In contrast, unsupervised methods look for changes in data. These changes can be a quantitative
distance between states as with subspace modeling [47], membership in different clusters [48,49], or a
distance value generated by a kernel function or a graph [50]. Alternatively, the probability of a change
point can be computed using Bayes’ theorem [51] or a Gaussian Process prediction [52].

One requirement of our proposed method is to detect change points from streaming data.
While earlier methods perform batch processing, this constraint can be met by density ratio
techniques. CUSUM [53] and CF [54] identify change points when the probability density of a
data sequence before the point sufficiently differs from the data sequence after the point. KLIEP [55],
uLSIF [56], and RuLSIF [57] improve the detection runtime by directly estimating the ratio of the
probability densities. Recent research in activity segmentation parallels this change point research,
including supervised learning of activity transitions [58–62], calculation of change point Gaussian
probabilities [63], or application of a direct density ratio unsupervised method [45,64,65].
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For our change point approach to mobile energy reduction we propose SEP, a SEParation distance
strategy, because we showed it to be more sensitive to subtle changes in sensor time series data than
other unsupervised methods and it is non-parametric [45,66]. Using SEP, time point t is considered a
change point if the probability density function f created from the subsequences before and after t are
different in terms of the density function parameters. For a random variable X defined on<, function
µx calculates the probability density for subsets B of<:

µx(B) = P(X) (1)

Here, (<,B,µx) is a probability space and P represents the probability of X ∈ B. Assuming that
two probability densities, ft−1(x) and ft(x), correspond to the two subsequences from time series X
appearing immediately before and after time t, SEP uses a dissimilarity measure to quantify the
difference between the probability densities. This measure, S*, can be used to determine if t represents
a change point. Because SEP needs to compare probability densities before and after change points,
there is a delay between change point detection and the current time. This delay corresponds to the
length of the subsequences that are considered, n.

The separation distance S between time series subsequences is calculated using Equation (2).

S∗ = max(1−
ft−1(x)
ft(x)

) (2)

Instead of calculating each term in Equation (1), which is computationally costly, SEP estimates
the probability density ratio using a Gaussian kernel function g(x), defined in Equation (3).

gt(x) =
ft−1(x)
ft(x)

=
∑n

i=1
θi

∏n

j=1
K
(
xi

t, xi
t−1

)
(3)

The kernel function parameters are estimated by performing cross validation within the points xi,
.., xi+n comprising the subsequence. The ratio is bounded below by 0 to avoid negative distance values.
The output change point score, S, is defined in Equation (4).

S = max(0, (1−
1
n

∑n

i=1
g(xi))) (4)

Values of S are compared with a threshold α to identify change points. Thresholds vary by data
type and are identified through experimentation with a data sample. Because state (activity) transitions
can trigger several large change point scores in a row, SEP reports only local maxima as detected
change points.

4. Experimental Results

We are interested in answering the following questions.

1. Can SEP accurately find change points in smartwatch sensor data that represent activity
transitions?

2. Are location data essential for recognition of complex activities? To answer this question,
we will compare activity recognition performance using only location data, using only movement
(non-location) data, and using a combination of data sources.

3. How does CPAM compare with baseline methods for activity recognition performance?
4. How does CPAM compare with baseline methods for battery consumption?
5. Can CPD-based activity segmentation and activity recognition be used to infer location information

for use with other context-aware applications?

We address each of these questions experimentally in the following sections.
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4.1. Experimental Conditions

For our experiments, we collected data from 66 volunteer young adult subjects. Subjects wore
Apple watches with identical system settings on their non-dominant arm. No activities were scripted
for these experiments—subjects performed their normal daily routines and used the smartwatch app
interface to record activities in real time. No other apps were used on the watch during data collection.
Figure 7 shows the baseline energy consumption of the watch when no apps, location services, heart
rate/fitness tracking, or information-sharing features are enabled. As the graph shows, consumption is
linear at approximately 2.104% of the total watch charge per hour.

Table 3 provides a breakdown of the collected data into the corresponding activity categories.
Specifically, we list the number of sensor readings that were recorded for each category. We additionally
record the number of activity occurrences for each category, where all sensor readings in a sequence that
are labeled with the same activity are considered part of one activity occurrence. The total number of
transitions is 46,229, computed as the total number of occurrences—1 (the last activity in the combined
sequence).

Table 3. Data sample size for each activity category.

Activity Number of Sensor Readings Number of Occurrences

Eat 72,272 5253
Errands 6475 297
Exercise 48,984 5909
Hobby 29,400 8219

Hygiene 10,832 1455
Sleep 254,939 1038
Travel 25,022 3400
Work 224,012 14,518
Other 31,626 6141
Total 703,284 46,230

SEP algorithm parameters were selected based on a sensitivity analysis performed on a sample
of the data. These parameters include the change point score threshold value as well as the length
of subsequences to consider before and after each change point. As Figure 8 illustrates, a threshold
value of α = 0.4 and a subsequence length of n = 2 were optimal for the data sample and were thus
employed for the experiments.
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4.2. Analysis of SEP for Smartwatch Data

We evaluated the performance of SEP change point detection on our activity-labeled sensor data
using a g-mean score. This metric is a common performance measure for change point detection
algorithms because of the extreme imbalance between change points and points that remain within the
current state. G-mean computes the square root of the product of change point recognition sensitivity
and specificity, where change points represent the positive class. Table 4 summarizes the performance
of SEP on the sensor data. As the table shows, a majority of the actual change points are discovered,
although some changes are also reported that are not due to actual transitions between activity classes.

Table 4. SEP performance on smartwatch data collected for 66 subjects.

SEP

True Positive Rate = 0.875 False Positive Rate = 0.150

G-Mean = 0.862

Baseline

True Positive Rate = 0.003 False Positive Rate = 0.46

G-Mean = 0.002

As a baseline for comparison, we also computed performance for a baseline method that reports a
change every five minutes (the length of the shortest observed activity). SEP performs significantly
better (p < 0.05) than the baseline method.

4.3. Recognition Based on Movement and Location

Second, we consider the importance of movement information and location information for
human activity recognition based on smartwatch data. To analyze the impact of these features,
we perform activity recognition for the 66 subject smartwatch data using the nine activity classes
listed in Table 2. For these experiments, we employ the activity recognition algorithm described
in Section 3.2. Here, we compare performance using only “movement” data (acceleration, rotation,
orientation, heart rate, date, time) with performance using all collected data (movement and location).
Because the data are not uniformly distributed among the multiple activity classes, we report both
recognition accuracy and macro f-score. F-score is computed separately for each activity class as (2 ×
Precision × Recall)/(Precision + Recall) and is averaged over all classes. All results are collected using
3-fold cross validation.

Experiment results are displayed in Figure 9. As the graph shows, recognition of activities of
daily living benefits from sensing both movement and location. This finding is confirmed by both
accuracy and f-score measures. Here, the difference in performance between movement-only sensors
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and movement sensors combined with location information is statistically significant (p < 0.05). Future
work may reveal that the role of movement sensors is more impactful than location sensors for the
recognition gestures and ambulation categories such as sit, stand, lie down, and run.
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Figure 9. Activity recognition performance for 66 subjects based on 3-fold cross validation. Accuracy
and macro f-score performance are reported for movement sensors, location sensors, and all sensors.

Next, we further analyze these two data sources by considering the f-score for each individual
activity category using movement features and combining movement with location features.
These results are plotted in Figure 10. These f-scores highlight which activities depend most heavily
on location information. The activities that are most dramatically impacted (based on difference in
f-scores) are eat, errands, travel, and hobby. The results are intuitive because these activities are easily
distinguishable based on location type (e.g., restaurant, store, highway, movie theater) and movement
alone may not be as distinct for the activity categories. In contrast, sleep is almost as easy to recognize
with movement sensors alone as when all sensors are used. The type of movements and the body
orientation are quite different than for other activity categories, so movement sensors alone are likely
sufficient in this case.
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4.4. Recognition Comparison with Baseline Energy-Reduction Methods

While it is apparent that including location information is important for recognition of activities
of daily living, this information comes at a price of a dramatic increase in energy consumption.
We hypothesize that CPAM can greatly reduce this energy consumption while retaining strong activity
recognition and monitoring performance. In Figure 11, we observe the impact of the CPAM change
point detection (CPD) method and two baseline methods on activity recognition performance.Sensors 2020, 20, x FOR PEER REVIEW 14 of 21 
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Figure 11. (top) Activity recognition accuracy for all times, acc, 5 min, CPD (CPAM), and true change
point sampling strategies. The following accuracy and f-score differences are statistically significant.
(p < 0.05): acc and all times, acc and 5 min, CPD and all times, CPD and 5 min, true cp and all times,
true cp and 5 min. The changes in activity recognition performance between acc, CPD, and true cp are
not statistically significant. (bottom) The number of location samples that are collected for the all times,
5 min, acc, CPD (CPAM), and true cp sampling strategies.

The first baseline method (acc) samples location periodically rather than continuously. Rather
than considering the data itself as an indication of when location is needed, the baseline method collects
user location information every five minutes then turns it off until the next five-minute increment is
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reached. Sensing activity information every five minutes represents a strategy that has been previously
used to monitor activity without draining the battery [42]. Additionally, the shortest monitored activity
is approximately five minutes. Therefore, this selected sampling interval should be sensitive to even
the quickest activity transitions.

The second baseline method (5 min) is based on movement, rather than time. Because a change
in location implies that the user has moved, this baseline approach samples location whenever the
sensed acceleration is a non-zero value. We also report performance for sampling location at ground
truth change points (true change points, actual recorded transitions between activities). Finally,
we record performance when location is sampled at every time interval (all times). As Figure 11 shows,
CPAM performs comparably to the true change point method and superior to the baselines.

4.5. Energy Reduction

The activity recognition experiments in the previous sections highlight the tradeoff between number
of location samples and reliability of models that are learned from the sample data. Our experiments
record energy consumption as a function of percentage of battery that has been consumed. Given
that the smartwatch battery capacity is 1.27 Wh and our experimental continuous observations for a
single user over a two-week period, Table 5 summarizes the energy that is consumed by normal watch
operations, by a single movement sample, and by a single location sample.

From these consumption numbers, we can estimate the percentage decrease in energy consumption
that is offered by all strategies, using continual location samplings as a baseline. Figure 12 plots these
values. The calculations assume that the watch performs normal operations continuously, movement is
sampled at 100 Hz, and locations are sampled as directed by the corresponding method. By comparing
Figures 11 and 12, we see the intuitive relationship between increased sampling, increased recognition
accuracy, and increased energy consumption.
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Figure 12. Percentage reduction in energy consumption in comparison with continuous sampling of
movement and location.

We want to determine which of the methods provides the most activity model value per unit of
energy consumption. For this, we calculate the ratio between percentage increase in f-score recognition
performance and increase in percentage increase in energy consumption, using no location samples as
a baseline. Figure 13 plots these results. This graph provides an indication of the value of the increased
location samples in comparison with not using any location information. Thus, while all location
sampling increases the energy footprint of the app, strategic selection of location values ensures that
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the extra energy consumption is most advantageous for a robust activity model. The figure also shows
that while CPAM’s use of SEP change point detection is effective, there is room to further improve
change point detection for wearable data and offer even greater value when sampling location.

To obtain a practical perspective on energy consumption using CPAM for continual data collection,
one subject wore a smartwatch continually for two weeks. The watch was charged each night and worn
during the day until the battery was completed drained. Data was collected for one week with
continuous sampling of movement data and location data, together with activity labeling. Data was
collected for a second week using CPAM-based data sampling. Figure 14 graphs the averaged battery
consumption using the two methods. Using continuous sensing, the battery drains in approximately
5 h. Using CPAM, data can be collected and labeled for almost 15 h without needing to charge
the smartwatch.

Table 5. Energy consumption per second by normal watch operations, movement sampling, and location
sampling.

Operation Energy Consumption

Normal (1 s) 1.1430 × 10−5 Wh
Movement (1 sample) 1.3716 × 10−5 Wh

Location sample (1 sample) 7.6454 × 10−5 WhSensors 2020, 20, x FOR PEER REVIEW 16 of 21 

 

 

Figure 13. Comparison of value per sample between the no location, continuous location, 
acceleration-based location, every 5 min location, change point location (CPAM), and true change 
point location sampling strategies. 

 

Figure 14. Average battery consumption using continuous and CPAM-based sampling of movement 
and location. 

4.6. Location Estimation from Activity Information 

The experiments in this paper analyze the impact of change point detect-based location sampling 
on activity recognition performance and on battery consumption. In this final experiment, we turn 
the analysis around and use activity information to estimate location data. While we have focused on 
activity recognition as an application that can benefit from CPD, we posit that other location-based 
applications can improve their information reliability using activity recognition. When we 
downsample location, we assume that the location remains constant between samples. This 

Figure 13. Comparison of value per sample between the no location, continuous location, acceleration-
based location, every 5 min location, change point location (CPAM), and true change point location
sampling strategies.



Sensors 2020, 20, 310 17 of 21

Sensors 2020, 20, x FOR PEER REVIEW 16 of 21 

 

 

Figure 13. Comparison of value per sample between the no location, continuous location, 
acceleration-based location, every 5 min location, change point location (CPAM), and true change 
point location sampling strategies. 

 

Figure 14. Average battery consumption using continuous and CPAM-based sampling of movement 
and location. 

4.6. Location Estimation from Activity Information 

The experiments in this paper analyze the impact of change point detect-based location sampling 
on activity recognition performance and on battery consumption. In this final experiment, we turn 
the analysis around and use activity information to estimate location data. While we have focused on 
activity recognition as an application that can benefit from CPD, we posit that other location-based 
applications can improve their information reliability using activity recognition. When we 
downsample location, we assume that the location remains constant between samples. This 

Figure 14. Average battery consumption using continuous and CPAM-based sampling of movement
and location.

4.6. Location Estimation from Activity Information

The experiments in this paper analyze the impact of change point detect-based location sampling
on activity recognition performance and on battery consumption. In this final experiment, we turn the
analysis around and use activity information to estimate location data. While we have focused on
activity recognition as an application that can benefit from CPD, we posit that other location-based
applications can improve their information reliability using activity recognition. When we downsample
location, we assume that the location remains constant between samples. This assumption can lead to
application errors. On the other hand, increasing the sample rate may drain the battery too quickly.

In this final experiment, we analyze the accuracy of location estimation using activity recognition.
Specifically, we combine the location information sampled at a previous change point with the activity
information (activity label and related activity features) to estimate location values between the sampled
times. We compare this with location estimation that assumes the location remains constant between
change points. Figure 15 plots the performance of these two location estimation approaches using
normalized mean absolute error.
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In this experiment, we did not utilize the ground truth activity labels provided by subjects. Instead,
we used the activity labels that we created by the learned activity models. We did this to demonstrate
an interesting synergy that exists between the learned concepts. Namely, smartwatch data can be input
to a supervised learner to predict the activity class. At the same time, the predicted activity can be
used to estimate location information for the remainder of the activity occurrence. This type of joint
inference could strengthen predictions of other types of contextual information as well that are used by
mobile applications.

5. Conclusions

In this paper, we introduce CPAM, an algorithm that detects change points in wearable sensor data
to control data sampling rates. By strategically finding transitions between activity states, we support
our hypothesis that change point-based sampling can support recognition of complex activities in real
time while simultaneously reducing energy consumption. This work is vital because of the role that
continual activity monitoring plays in health assessment and intervention as well as the design of
activity-aware services.

Because location sampling is a large consumer of smartwatch battery resources, we focused
on controlling location sampling in this paper. In future work, we can extend CPAM to control
sampling rates for all of the collected information based on detected change points. The approach
could potentially be further improved by predicting the duration of a detected activity and increasing
sample rates when the end of an activity is near. We would also like to further explore the use of
joint inference to improve the performance of related learning tasks including recognition of related
activities, forecasting of activities and estimation of smartwatch and user state based on inferred
activity contexts.
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