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Abstract: Deep learning has proven itself to be able to reduce the scanning time of Magnetic
Resonance Imaging (MRI) and to improve the image reconstruction quality since it was introduced
into Compressed Sensing MRI (CS-MRI). However, the requirement of using large, high-quality,
and patient-based datasets for network training procedures is always a challenge in clinical
applications. In this paper, we propose a novel deep learning based compressed sensing MR
image reconstruction method that does not require any pre-training procedure or training dataset,
thereby largely reducing clinician dependence on patient-based datasets. The proposed method is
based on the Deep Image Prior (DIP) framework and uses a high-resolution reference MR image as
the input of the convolutional neural network in order to induce the structural prior in the learning
procedure. This reference-driven strategy improves the efficiency and effect of network learning.
We then add the k-space data correction step to enforce the consistency of the k-space data with the
measurements, which further improve the image reconstruction accuracy. Experiments on in vivo
MR datasets showed that the proposed method can achieve more accurate reconstruction results
from undersampled k-space data.

Keywords: reference-driven; compressed sensing; magnetic resonance imaging; deep image prior;
deep learning

1. Introduction

Magnetic Resonance Imaging (MRI) is an important non-invasive procedure that can provide
critical structural, functional, and anatomical information about a patient. Nevertheless, the long
time required for the scanning procedure may result in motion artifacts that can degrade image
quantity and lead to misinterpretation of data, as well as sometimes cause discomfort for the patient.
Accelerating the process of data acquisition without degrading the image reconstruction quality has
always been one of the goals of MRI technology research. Compressed Sensing MRI (CS-MRI) [1–4]
is an effective approach to reconstructing high-quality MR images from undersampled k-space data.
CS-MRI utilizes the sparsity (or compressibility) of the MR image as prior information and builds the
reconstruction model as the combination of the data fidelity term in k-space and the regularization
constraint under some sparsifying operation. The available prior used in classical CS-MRI can be the
sparsity in specific transform domains (e.g., gradient and wavelet) [2,5,6], as well as a more fixable
sparse representation obtained from data via dictionary learning [7–10]. In addition, the structural prior
information is drawing increased attention, because it can be acquired from a known high-resolution
reference image [11–13] and introduces support information [14,15] or structural sparsity (e.g., group
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sparsity and block sparsity) [16–18] into the reconstruction model based on the union of subspaces
theory [19,20].

Over the past several years, deep learning has attracted a great deal of attention in the medical
imaging field, because it achieves better performance than conventional model based methods in
terms of denoising, segmentation, classification, and accelerated MRI tasks [21–31]. Due to its ability to
learn from data, deep learning based CS-MRI also shows superior image reconstruction performance.
However, the network training procedure usually requires large datasets, which is a challenge in
clinical applications because large, high quality, and patient-based datasets can be difficult to obtain
due to patient privacy concerns.

Recently, Ulyanov et al. proposed a Deep Image Prior (DIP) framework [32], which performs
very well in solving imaging inverse problems without pre-training. In DIP, no pre-training dataset
is needed, a convolutional neural network (CNN) is initialized with random parameters, and only
random noise is prepared as the network input. Research related to DIP has focused on natural
image denoising, inpainting, super-resolution reconstruction [33,34], PET image reconstruction [35,36],
and even compressed sensing recovery problems [37].

Leveraging the key concept of DIP, to overcome the difficulty of MR dataset acquisition and to
improve learning efficiency, we used the DIP framework and introduced a structural prior provided
by a high-resolution reference MR image with the same anatomical structure (which usually can be
obtained by being fully sampled in advance) and proposed a reference-driven compressed sensing MR
image reconstruction method. Our proposed method can achieve more accurate MR reconstruction
than DIP. Our contributions can be summarized as follows.

(1) We propose a novel deep learning based compressed sensing MR image reconstruction
method that does not require any pre-training procedure. This significantly reduces the dependence
of traditional deep learning methods on datasets, which has always been a challenge in
clinical applications.

(2) The proposed method utilizes high-resolution reference images as the input for CNNs, so that
the structural similarity between the target and the reference MR image can be introduced as prior
information into the network, which improves the efficiency of learning.

(3) The k-space data correction step is added to force the final reconstructed k-space data to be
consistent with the prior measurement, which further improves the reconstruction accuracy.

The rest of this paper is organized as follows. Section 2 describes the proposed method in detail.
Section 3 shows experimental results from three groups of in vivo MR scans, and data acquisition,
undersampled masks, and network setup details are also included. Finally, conclusions are drawn in
Section 4.

2. Methodology

2.1. Proposed Method

An overview of our proposed method is depicted in Figure 1. The reconstruction for the target MR
image can be achieved in two steps: (1) reference-driven network training with DIP framework; and (2)
data correction. In the first step, we learn the network’s parameters by solving an optimization
problem and obtain the output MR image of the trained network. In the data correction step,
we replace the k-space data of the output MR image with the original undersampled measurements
and finally reconstruct the target MR image. The following sections will provide further explanation
of this method.
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Figure 1. Overview of our proposed method. DIP, Deep Image Prior.
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A. Reference-driven network training with DIP framework
Let It ∈ CN×N denote the target MR image desired to be reconstructed and Ir ∈ CN×N denote a

high-resolution reference MR image with similar anatomical structure to the target image acquired
in advance. The proposed reference-driven network training with DIP can be formulated as the
following optimization:

θ̂ = argmin
θ
‖y− Fuf(θ | Ir)‖2

2 (1)

where y ∈ CN×1 is the k-space measurements of the target MR image, Fu denotes an undersampled
Fourier transform operator, and ‖·‖ is the l2 norm. f(θ | Ir) is an untrained deep CNN parametrized by
θ and with the fully known reference image as input. The objective function employed in Equation (1)
restricts the data consistency between the CNN output and k-space measurements. In other words, the
parameters of CNN are iteratively optimized so that the output of the network is as close to the target
MR image as possible.

Then, we obtain the output Îout of the trained CNN such that:

Îout = f(θ̂ | Ir) (2)

With our proposed reference-driven method, the patient’s own MR image (the reference image) is
utilized as the CNN input instead of as random noise. Due to the structural similarity between the
target and reference MR images, this strategy efficiently introduces the structural prior to the target
image to the network training procedure.
B. Data correction

Applying data correction operator Cor(·) to the output of the network Îout, we obtain new k-space
data as follows:

ynew = Cor(Îout) = (FÎout)U

⋃
y (3)

Here, F denotes the Fourier transform, y is the measurement of the target MR image collected
at spatial locations corresponding to the undersampled mask U, and U denotes the complementary
set of U. The k-space data correction operation shown in Equation (3) enforces consistency with the
priori acquired measurements, so that the reconstruction error will focus on the missing k-space data.
Experiments show that this strategy is highly effective. The final reconstruction can then be obtained
through the inverse Fourier transform of ynew:

Ît = F−1(ynew) (4)

2.2. Network Architecture

Figure 2 depicts the CNN architecture employed in our proposed method, which is an
encoder-decoder (“hourglass”) architecture with skip connections, the same as in [32]. The skip
connections (marked by yellow arrows) link the encoding path (upper side) and decoding path
(bottom side) and allow the integration of features from different resolutions. The network consists of
repetitive applications of the convolutional (Conv) layer, batch normalization (BN) layer, leaky rectified
linear unit (LeakyReLU) layer, downsampling with stride, and upsampling with bilinear interpolation.
For simplicity, we denote the number of filters at depth i for downsampling, upsampling, and skip
connections as nd[i], nu[i], and ns[i], respectively, and the corresponding kernel sizes are kd[i], ku[i],
and ks[i], respectively. The variable L is the maximal depth of the network.
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Figure 2. Network architecture [32] used in the proposed method.

3. Experiments and Results

In this section, we compare our proposed method with the state-of-the-art DIP method presented
in [32] to confirm the former’s better performance. To ensure a fair comparison, the same network
architecture was used for both methods. In addition, to show the effectiveness in increasing
reconstruction quality from highly undersampled measurements, the zero-filling image is also shown
for comparison.

3.1. Experimental Setup

A. Data acquisition
To demonstrate the performance of the proposed method, we performed the simulations on three

groups of compressible in vivo MR images, as shown in Figure 3. To simulate the data acquisition,
we undersampled the 2D discrete Fourier transform of the MR images that were from in vivo MR
scans. The first group of scanned data (Brain A) was acquired from a 3T Siemens MRI scanner using
the GR sequence with a flip angle of 70◦ and TR/TE = 250/2.5 ms. The Field Of View (FOV) was
220 mm × 220 mm, and the slice thickness was 5.0 mm. The reference and target images were of
size 512 × 512, as shown in Figure 3a,b. The second and third groups of scanned data (Brain B and
Brain C) were also acquired from the 3T Siemens scanner, but using the SE sequence (120◦ flip angle,
TR/TE = 4000/91 ms, 176 mm × 176 mm field of view, 5.0 mm slice thickness). The MR images in
Brain B and Brain C were of size 256 × 256 and are shown in Figure 3c–f, respectively. Three different
undersampling masks were used in our experiments: a radial mask, Cartesian mask, and variable
density mask. These are shown in Figure 4.
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Figure 3. The MR images. Brain A: the reference image (a) and target image (b); Brain B: the reference
image (c) and target image (d); Brain C: the reference image (e) and target image (f).

Figure 4. The different undersampled masks with a sampling rate of 15%. From left to right: radial
mask, variable density mask, and Cartesian mask.

B. Network training
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The network architectures were given above. The network parameters θ0 were initialized
randomly at the first iteration. Table 1 shows the hyperparameters for the experiments conducted on
Brain A, Brain B, and Brain C.

Table 1. Hyperparameter setting for the experiments.

Hyperparameters Images

Brain A Brain B Brain C

L 5 6 6
nd [8, 16, 32, 64, 128] [6, 32, 64, 128, 128, 128] [6, 32, 64, 128, 128, 128]
nu [8, 16, 32, 64, 128] [6, 32, 64, 128, 128, 128] [6, 32, 64, 128, 128, 128]
ns [8, 8, 8, 8, 8] [4, 4, 4, 4, 4, 4] [4, 4, 4, 4, 4, 4]
kd [3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3]
ku [3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3] [3, 3, 3, 3, 3, 3]
ks [1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1]

Number of iterations 5000 5000 5000
Learning rate 0.01 0.01 0.01

The models were implemented on the Ubuntu 16.04 LTS (64 bit) operating system, running on an
Intel Core i9-7920X 2.9 GHz CPU and Nvidia GeForce GTX 1080Ti GPU (11 GB memory) in the open
framework Pytorch with CUDA and CUDNN support.
C. Performance evaluation

To evaluate the quantitative performance of the proposed method, we measured the relative error,
Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) [38], which is more often
typically used in the imaging field for consistency with human eye perception:

Relative error =
x̂− x

x
(5)

PSNR = 10 lg
NN(MAXx)

2

∑N
i=1 ∑N

j=1[x̂(i, j)− x(i, j)]
(6)

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(7)

where x̂ and x denote the reconstructed image and the ground truth with the same size of N × N and
MAXx is the largest value in x. Moreover, in Equation (7), µx, µx̂, σx, and σx̂ represent the means and
standard deviations of x and x̂, respectively, and σxx̂ denotes the cross-covariance between x and x̂ and
constants c1 = 0.01 and c2 = 0.03.

3.2. Results

A. Reconstruction under different sampling rates
Table 2 shows the quantitative performance of our proposed method, the classic DIP method and

zero-filling reconstruction on three groups of in vivo MR images at different sampling rates under
the Cartesian mask. Due to the randomness involved in the training procedure (the initial network
parameters for our method; both initial network parameters and network input for DIP), all results
were the average values of 30 times of running. It can be seen that the proposed method achieved
better performance with fewer relative errors and higher PSNRs and SSIMs (marked by red), which
means that the proposed method can reconstruct the target MR image more accurately.
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Table 2. Relative errors, PSNR, and SSIM values of reconstruction by different methods under the
Cartesian undersampled mask.

Images Methods 10% 20%

Relative Error (%) PSNR (dB) SSIM Relative Error (%) PSNR (dB) SSIM

Brain A
Zero-filling 23.19 21.2991 0.6658 16.96 24.0131 0.7340

DIP 17.76 23.6856 0.8169 6.59 32.4196 0.9505
Proposed method 7.50 31.1077 0.9443 3.69 37.2870 0.9793

Brain B
Zero-filling 39.71 18.3797 0.5671 20.79 23.9985 0.7116

DIP 34.94 19.5328 0.6738 13.86 27.5478 0.9023
Proposed method 19.37 24.6170 0.8443 9.43 30.8447 0.9516

Brain C
Zero-filling 33.65 18.9034 0.5874 17.02 24.8250 0.7216

DIP 31.13 19.5803 0.6770 13.28 27.0063 0.8877
Proposed method 20.93 23.0289 0.8027 10.15 29.3177 0.9317

Images Methods 30% 40%

Relative Error (%) PSNR (dB) SSIM Relative Error (%) PSNR (dB) SSIM

Brain A
Zero-filling 5.92 33.1598 0.8215 4.27 35.9904 0.8409

DIP 4.08 36.6919 0.9734 3.82 37.3045 0.9768
Proposed method 2.31 41.3355 0.9900 2.02 42.5144 0.9918

Brain B
Zero-filling 20.93 23.9418 0.7185 10.70 29.7719 0.8024

DIP 9.67 30.6624 0.9455 7.45 32.9221 0.9644
Proposed method 7.39 32.9747 0.9665 5.58 35.4324 0.9781

Brain C
Zero-filling 16.42 25.1364 0.7408 8.94 30.4097 0.8071

DIP 10.26 29.2226 0.9287 8.05 31.3531 0.9513
Proposed method 7.83 31.5733 0.9559 5.83 34.1343 0.9718

Figures 5–7 show a visual comparison of the reconstructions under Cartesian undersampling.
From these figures, it is obvious that our proposed method reconstructed the higher quality image
with more structural details and fewer artifacts. The corresponding error maps show that the images
reconstructed by our proposed method were closer to the target image than the classic DIP method.

Table 3 shows the computational time at different sampling rates under the Cartesian mask for
DIP and the proposed methods on Brain B and Brain C. Here, the computational time was the total
time cost of 5000 iterations. Compared to the DIP method, our proposed method did not save time
because the output of the network needed to be undersampled after each iteration so as to update
the loss function. In spite of this, the significant improvement in reconstruction accuracy made the
proposed method attractive.

Table 3. The computational time at different sampling rates under the Cartesian mask for DIP and the
proposed methods.

Images Methods Computational Time

10% 20% 30% 40%

Brain B DIP 3 m 12 s 3 m 9 s 3 m 14 s 3 m 4 s
Proposed method 3 m 21 s 3 m 8 s 3 m 14 s 3 m 12 s

Brain C DIP 3 m 7 s 3 m 19 s 3 m 9 s 3 m 8 s
Proposed method 3 m 14 s 3 m 19 s 3 m 6 s 3 m 16 s
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Figure 5. Comparison of the reconstruction results of the target MR image: (a) in Brain A using
the Cartesian undersampled mask with 20% sampling rate; (b) zero-filling reconstruction; (c) DIP
reconstruction; (d) the proposed method reconstruction and corresponding error maps (e)–(g).

Figure 6. Comparison of the reconstruction results of the target MR image: (a) in Brain B using
the Cartesian undersampled mask with 30% sampling rate; (b) zero-filling reconstruction; (c) DIP
reconstruction; (d) the proposed method reconstruction and corresponding error maps (e)–(g).
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Figure 7. Comparison of the reconstruction results of the target MR image: (a) in Brain C using
the Cartesian undersampled mask with 30% sampling rate; (b) zero-filling reconstruction; (c) DIP
reconstruction; (d) the proposed method reconstruction and corresponding error maps (e)–(g).

B. Reconstruction under different undersampled masks
To further demonstrate the effectiveness of the proposed method under different undersampled

masks, we also used the radial undersampled mask and variable density undersampled mask to
compare the reconstructed performance. The quantitative results of three groups of MR data are
presented in Table 4. It is clear that the proposed method still showed significantly improved
performance under different sampling masks.

Table 4. Relative errors, PSNR, and SSIM values of reconstruction by different methods at 20% sampling
rates under the radial undersampled mask and variable density undersampled mask.

Images Methods Radial Undersampled Mask (20%) Variable Density Undersampled Mask (20%)

Relative Error (%) PSNR (dB) SSIM Relative Error (%) PSNR (dB) SSIM

Brain A
Zero-filling 6.03 33.0053 0.8902 8.61 29.9079 0.8346

DIP 3.98 36.8254 0.9754 5.08 34.6761 0.9638
Proposed method 2.23 41.6545 0.9897 2.93 39.2628 0.9830

Brain B
Zero-filling 17.61 25.4440 0.7424 22.49 23.3150 0.6674

DIP 9.43 30.8724 0.9492 11.09 29.4899 0.9250
Proposed method 3.98 36.8254 0.9754 5.08 34.6761 0.9638

Brain C
Zero-filling 14.57 26.1770 0.7744 18.41 24.1433 0.7102

DIP 9.18 30.1892 0.9355 11.01 28.6124 0.9077
Proposed method 7.27 32.2166 0.9597 8.13 31.2440 0.9458

C. Convergence analysis
Here, we detect the convergence of the proposed method by conducting experiments on Brain A

at different sampling rates under the Cartesian undersampled mask. The curves in Figure 8a,b present
the relative errors and PSNR values (average values of 30 times of running) at every 100 iterations.
From the curves, we see that the proposed method gradually and stably converged to low/high values
as the number of iterations increased.
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Figure 8. Results of the convergence for the proposed method at different sampling rates under the
Cartesian undersampled mask: relative error curves (a) and PSNR curves (b).

D. Anti-noise performance analysis
In order to evaluate the robustness against measurement noise of the proposed method,

we performed experiments on Brain B with additive Gaussian noise. Figure 9 shows the comparison of
the reconstructed images under the radial undersampled mask with a 30% sampling rate. The additive
Gaussian noise is complex-valued because the MRI data in k-space is complex-valued, with the mean
µ = 0 and standard deviation σ = 1. The reconstructed target images by the classical DIP method
and the proposed method were both acceptable, and the proposed method achieved more accurate
reconstruction and fewer artifacts. The quantitative results shown in Table 5 further support the
improved performance of our proposed method in the presence of measurement noise.
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(b) (c) (d)

(e) (f) (g)

(a)

Figure 9. Comparison of the reconstruction results of the target MR image: (a) in Brain B at a 30%
sampling rate under the radial undersampled mask with additive Gaussian noise; (b) zero-filling
reconstruction; (c) DIP reconstruction; (d) the proposed method reconstruction and corresponding
error maps (e)–(g).

Table 5. Relative errors, PSNR, and SSIM values of reconstruction for Brain B by different methods at
30% sampling rates under the radial undersampled mask.

Methods Relative Error (%) PSNR (dB) SSIM

Zero-filling 11.28 29.3139 0.8694
DIP 8.61 31.6610 0.9339

Proposed method 6.98 33.4717 0.9490

4. Conclusions

In this paper, we proposed a novel deep learning based method, which did not require
patient-based training datasets, for MR image reconstruction from undersampled k-space data. First,
our proposed method reconstructed the target MR image using the DIP framework so as to reduce the
dependence of the learning on training datasets. Next, we used the known high-resolution reference
MR image with a similar anatomical structure as the input of the CNN. This strategy introduced
the structural information and improved the efficiency of the learning. The final k-space data
correction step further increased the accuracy of the reconstruction by enforcing the data consistency.
The experimental results demonstrated that the proposed method could successfully reconstruct the
MR image without pre-training and also further improve the reconstruction quality on preserving
texture details and removing artifacts compared with the conventional DIP method.
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