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Abstract: The human eye is a vital sensory organ that provides us with visual information about the
world around us. It can also convey such information as our emotional state to people with whom we
interact. In technology, eye tracking has become a hot research topic recently, and a growing number
of eye-tracking devices have been widely applied in fields such as psychology, medicine, education,
and virtual reality. However, most commercially available eye trackers are prohibitively expensive
and require that the user’s head remain completely stationary in order to accurately estimate the
direction of their gaze. To address these drawbacks, this paper proposes an inner corner-pupil center
vector (ICPCV) eye-tracking system based on a deep neural network, which does not require that the
user’s head remain stationary or expensive hardware to operate. The performance of the proposed
system is compared with those of other currently available eye-tracking estimation algorithms,
and the results show that it outperforms these systems.

Keywords: eye tracking; deep neural network; inner corner-pupil center vector

1. Introduction

The human eye is a vital sensory organ that receives external visual information about the world
around us. However, it can also convey emotion-related information, such as by the direction of
the gaze or how wide the eyelids open or close, as well as imply how we experience the world,
to some degree (environmental brightness, for example). Eye-tracking has thus become a hot
research topic as technological developments have enabled more accurate measurement of various
vectors. Such eye-tracking technology is extremely valuable in many fields. For example, people
with disabilities, such as partial paralysis, but who are still able to move their eyes, can use eye
tracking-based systems to communicate and interact with computers and even robotic devices and are
thus afforded increasingly more comprehensive methods of interacting with their environment and
communication with every new advance in eye-tracking technology. Thus eye-tracking technology
is highly sought-after in the medical field. In recent years, eye tracking has been applied in a much
wider variety of fields, especially in virtual reality, allowing users to wear head-mounted devices.
These devices increase the immersive nature of the virtual space by using eye-tracking to create visual
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focus. In the rapidly growing field of digital learning, some experts have proposed using eye-tracking
to determine what learners most focus on during the digital learning process.

Eye-tracking has great potential for development, and eye-tracking technology will soon be
available in everyday life. Currently, available eye-tracking products are expensive, however, and
require that users’ heads remain stationary. This study, therefore, aims to use a web camera (webcam)
in conjunction with a deep neural network to measure a user’s point of gaze coordinates on the screen
of an eye-tracking system.

In the proposed system, the webcam captures the features of the face and eyes as the user looks at
the correct points on the screen, and the available feature information is then calculated. This study then
uses these features in combination with neural network models to train an eye-tracking system that
can estimate the user’s point of gaze. This study achieves the following objectives and contributions:

• When a user looks at the screen, the system can accurately estimate the point of gaze coordinates.
• The proposed system does not require a fixed head apparatus, and can still accurately estimate

the point of gaze when the users move their head.
• Our system is a low-cost eye-tracking system that can just run on the user’s PC and webcam,

without the need for other commercial equipment.
• Our system can be easy for users to operate or set up the system and more comfortable for some

disabled users.

2. Related Works

Eye-tracking refers to the tracking of eye movements by measuring the gaze direction or gaze
point of the user, by using hardware devices and algorithms. An eye tracker is a hardware device that
measures eye movement information.

The application analysis of eye-tracking is currently divided into two categories: eye movement
trajectories, and hot maps. Eye movement trajectory may be analyzed when users move their eyes
to view an object, while hot maps analyze how a user looks at an object over a period of time.
For example, when a user browses a shopping website, eye tracking can be used to identify the
area that is of most interest to the user. Early optical eye-tracking studies predominantly used
head-mounted devices to capture eye and screen information [1,2]. Head-mounted devices are
available commercially today as wearable eye-tracking devices. As eye tracking is being used more
widely in commercial applications, these wearable devices have become more lightweight, with such
models as SMI Eye-Tracking Glasses [3] and Tobii Pro Glasses 2 [4].

In addition to head-mounted eye-tracking devices, remote eye trackers, such as the Tribe [5] and
Tobii Eye Tracker Pro X3-120 [6] have also been developed. Most telemetry eye trackers use infrared
light to capture image information. However, the price of most eye trackers is around 30 million Taiwan
dollars [7], greatly beyond the means of the general public. Therefore, methods of making such devices
more efficient, and thus requiring less expensive hardware, have been the focus of a number of recent
studies. Zhang et al. [8] proposed gathering the dynamic areas of interest (AOI) and combining them
with eye movement data. The study [9] focused on capabilities for quantitative, statistical, and visual
analysis of eye gaze data, as well as the generation of static and dynamic visual stimuli for sample gaze
data collection. Kurzhals et al. [10] demonstrated their approach with eye-tracking data from a real
experiment, and compared it to an analysis of the data by manual annotation of dynamic AOI. Zhang
and Yuan [11] proposed the assessment of advert element-related eye movement behaviors in order to
predict the traditional high-order advertising effectiveness for video advertising. The research [12]
focused on determining the effects of data density, display organization, and stress on visual search
performance and associated eye movements (obtained via eye-tracking). Yan et al. [13] proposed an
eye-tracking technology to record and analyze a user’s eye movement during a test, in order to infer
a user’s psychological and cognitive state. Wu et al. [14] proposed a system based on Kinect 2.0 to
improve life quality for people with upper limb disabilities. With recent advances in deep learning,
many new methods based on convolutional neural networks (CNNs) have been proposed, and have
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achieved good performances on salient benchmarks [15,16]. For gaze detection on a 2D screen [17,18],
the screen used for detecting the gaze is placed in a fixed location. Such methods are certainly useful
for HCI (human–computer interaction). Ni and Sun [19] proposed leveraging deep learning theory to
develop a remote binocular vision system for pupil diameter estimation. Our proposed eye-tracking
system is not mounted on the device on the head, and the user can feel free to the human-machine
interface design without the mounted the head device. Also, nowadays the commercial eye-tracking
device is high cost and the user must be trained to operate the eye-tracking system. Fortunately, our
proposed system is low cost and the low-cost RGB camera or webcam can easily be built to integrate
into our system. The user adopting our system can easily learn to operate the eye-tracking action.

3. The Proposed Method

In order to train a neural network, the information collection phase first retrieves the feature
information, and then the required characteristic values are calculated. Any information containing
errors is filtered out, and the remaining data are then used to train the neural network model. Figure 1
shows the workflow of our proposed system.

Eye Data 
Collection 

Eye Image 
Extraction 

Pupil Center 
Extraction 

Feature 
Extraction 

Deep Neural 
Network 

The Coordinate 
of x and y on 

Screen 

Figure 1. The workflow of our system.

3.1. Data Collection

In order to train neural networks, training resources must first be collected. These are collected in
two ways. The first is to use a head holder fixing the position of the user’s head ( the experiment in
this paper places the user’s face at a distance of 40 cm from the screen) while the camera takes pictures
focusing on the middle of the positions. The second collection method does not limit the position of
the user’s head, which can move freely while data are collected. The training data collection method
employs nine-point calibration, points on the screen, as shown in Figure 2. The users focus on each
point in sequence, with about 1.5 s intervals in between, allowing them to focus on the correct point.
Each correct point sampling is made up of 40 frames, so there will be a total of 360 calibration data.

Figure 2. The calibration point map.

In order to collect test data, this study uses the point distribution shown in Figure 3. The point
positions are collected as 9 calibration points made up of 80 pixels, in sequence from top to bottom,
left to right, totaling 36 calibration points. As with the training data collection, the user focuses on
each calibration point in sequence, yielding a total of 360 data.
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Figure 3. The test data collection.

3.2. Eye Image Extraction

Our system will first detect the eyes existing or not. If the eyes are not found, the system will
stop all action until the eyes will be found. This instruction will control the system to avoid the
eyes disappearing.

This study captures images of the user’s eyes using the webcam image and the Haar feature-based
cascade classifier. However, this method may not completely and accurately capture the eye images,
so this study also adopts the concept of region of interest (ROI). In the field of computer vision,
ROI refers to a specific area in a complete image; calculating this area can reduce processing time and
increase accuracy.

In this paper, the image of the user’s face is divided into four regions, with the eyes falling within
the second region from the top of the image. The first two zones are for the eye ROI, followed by
the ROI detection in the left and right eyes. This paper divides the successfully captured face image
vertically into five regions. Of these, the left eye falls within the second region, and the right eye falls
within the fourth region, as shown in Figure 4.

Figure 4. Eye regions.

3.3. Pupil Center Extraction

If the eye region is successfully captured, the eyebrows are then excluded from the captured
image region, so that the pupils can be accurately identified. Therefore, this study divides the captured
eye images into 3 regions. The second region is the ROI. The eyebrows can then be cropped from
the image, and the image can be more accurately processed, with the focus on the ROI, as shown
in Figure 5.
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Figure 5. The red region is the ROI after removing the eyebrows.

In order to extract the eye image converted to HSV and extract the Value channel, this study
binarizes the grayscale image of the Value channel. The resulting black area is the pupil. By filtering
out incomplete data or noise, morphological image processing such as erosion and dilation can be used.

To estimate the center of the pupil, this study calculates the center of gravity by processing the
black portion of the image, using Equations (1) and (2), respectively, to calculate the x and y coordinates
of the center of gravity. This allows the estimation of the position of the center of the pupil (Cx, Cy),
as shown in Figure 6:

Cx =
∑ xBx

∑ Bx
, (1)

Cy =
∑ yBy

∑ By
. (2)

Figure 6. The position of the pupil center.

3.4. Capturing Eye Corners

After estimating the corner of the eye, the contour of the eye can be obtained. This study takes
the leftmost and rightmost points of each eye as the corners of both eyes. Figure 7 shows the result of
projecting the original image after finding the corners of the eyes.

Figure 7. The position of the corners of the eye.

3.5. Feature Extraction

This study uses two features: the pupil center-eye corner vector, and the proposed method,
called the inner corner-pupil center vector.
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3.5.1. Pupil Center-Eye Corner Vector

The pupil center-eye corner vector (Equation (3)) point of gaze detection algorithm is as follows:

(
PoRx

PoRy

)
= C



1
ϑNx

ϑNy

ϑ2
Nx

ϑ2
Ny

ϑNx ϑNy


, (3)

where PoRx and PoRy represent the point of regard x and y coordinates (1, ϑNx , ϑNy , ϑ2
Nx

, ϑ2
Ny

, ϑNx ϑNy)
T

of feature vectors. C is a gazing feature coefficient matrix. The eigenvector is the Pupil Center-Eye
Corner Vector (ϑN). Using the quadratic equation transformation, the following equation is defined as:

ϑN0eye
i

=
PCeye − ECeye

i
ECDeye , (4)

where PCeye is Equation (4) of the pupil center coordinates. eye ∈ {le f t, right} is the left eye or right
eye corner coordinates. ECeye

i is the inner or outer corner of the eye. The Euclidean distance is ECDeye,
as shown in Figure 8. Equation (5) ϑN0eye

inner
and ϑN0eye

outer
is obtained and substituted into Equation (6)

ϑN1le f t and ϑN1right ; thereby, ϑN2 is obtained:

ϑN1eye =
1
2
(ϑN0eye

inner
+ ϑN0eye

outer
), (5)

ϑN2 =
1
2
(ϑN1le f t + ϑN1right). (6)

This study uses ϑN2 instead of ϑN , that is ϑN = ϑN2. Eigenvectors (1, ϑNx , ϑNy , ϑ2
Nx

, ϑ2
Ny

, ϑNx ϑNy)
T

are used as the feature vector.

Figure 8. Pupil center-eye corner vector [20].

3.5.2. Inner Corner-Pupil Center Vector

Inner corner-pupil center vector defines the inner corner of the eye and the center of the pupil
center vector, and ICPCVeye represents the mathematical expression of Equation (7):

ICPCVeye = PCeye − ICeye, (7)
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where PCeye is the pupil center position and ICeye is the position of the inner corner of the eye, as shown
in Figure 9.

Figure 9. The inner corner-pupil center vector.

To calculate the inner corner-pupil center vector features, this study defines several notations,
as shown in Figure 10. The CES is the average position of the center of the two inner corners, and the
DES is the distance between the two inner corners, while the TA is the angle between the vector and
the horizontal.

Figure 10. Other features.

Combining the above features yields the (CESx, CESy, DES, TA, ICPCV le f t
x , ICPCV le f t

y , ICPCVright
x ,

ICPCVright
y )T feature vectors.

3.6. Deep Neural Network

Deep neural networks (DNN) is from the neural network, but its hidden layer must be at least
five layers. It is similar to the multi-layer neural network and the difference is as follows:

1. The DNN is focused on the neural network’s deep structure.
2. The features are transformed into other feature spaces between the hidden layers and it can help

the prediction accuracy.

Our proposed system has 5 layers structure and the learning optimize method is Adamoptimizer.
The cost function is the mean square error (MSE). The activation function of the hidden layer is rectified
linear unit (ReLU) and the activation function of the output layer is sigmoid function.

4. Experimental Results

The features were adopted as pupil center-eye corner vector (PCECV) and inner corner-pupil
center vector (ICPCV). These features are the input of DNN or multi-layer perceptron (MLP). It is
important to extract the features as input because it can improve the performance without large data
size. The YOLO [21] algorithm was adopted to detect the eyes to test the performance without the
crafted features. The YOLO experiment was 10 users and each user was captured the 20 images.
The 15 images were used as the training sample and the other five images were used as the testing
sample. The average correct rate of training was 80% and the average correct rate of testing was 60%.
The YOLO result is not better than our crafted features result, because it is hard to collect enough data
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size to tune the YOLO architecture. In addition, we provide various experiments as described in the
following subsections. In all experiments, the unit of average error is the pixel.

4.1. Multilayer Perceptron Experiment Results

The performance of the proposed system was tested using a MLP. The MLP set the learning rate
at 0.4, with 10,000 training iterations, and one hidden layer. This study tested two datasets, including a
fixed head position dataset, and one in which the user’s head was free to move, using different hidden
neuron numbers and different input feature vectors, as shown in Tables 1 and 2.

Table 1. The fixed head position data set by the multi-layer perceptron (MLP).

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 3 47.34 59.39
y 9 52.87 78.43

ICPCV x 6 33.61 41.43
y 25 41.82 58.42

PCECV x 4 55.43 75.83
y 50 48.17 72.37

Table 2. Free head movement data set by the MLP.

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 5 77.86 75.81
y 3 49.95 70.21

ICPCV x 15 70.15 60.47
y 8 29.88 48.94

PCECV x 9 55.74 65.96
y 6 39.91 49.58

4.2. Radial Basis Function Network Experiment Results

This study also tested the proposed method using a radial basis function network (RBFN).
An RBFN is a single-layer hidden layer architecture, using different neurons. The same two data sets
used for the MLP test were used for the RBFN test, and the results are shown in Tables 3 and 4.

Table 3. The fixed head position dataset experiment result by the radial basis function network (RBFN).

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 10 47.66 103.20
y 2 72.45 94.40

ICPCV x 2 59.90 57.12
y 2 62.11 78.93

PCECV x 5 50.81 77.44
y 10 41.25 73.31
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Table 4. The free head movement dataset experiment result by the RBFN.

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 7 79.99 95.42
y 9 62.40 84.23

ICPCV x 7 53.54 68.60
y 15 37.02 53.92

PCECV x 10 45.24 66.26
y 5 44.14 50.46

4.3. Deep Neural Network Experiment Results

The proposed system was then tested using a DNN, with the DNN learning rate set to 0.01, and
100 training iterations, while the cost function was the MSE, and the optimizer was AdamOptimizer.
This study also set five hidden layers, and used the fixed head position and free head movement
datasets with different numbers of hidden layer neurons to test the DNN performance, as shown in
Tables 5 and 6 .

Table 5. The fixed head position dataset experiment result of the deep neural network (DNN).

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 10,20,20,20,10 25.81 43.28
y 5,10,10,10,5 12.96 104.66

ICPCV x 5,10,10,10,5 5.27 41.33
y 5,5,5,5,5 20.02 63.65

PCECV x 10,20,20,20,10 25.81 43.28
y 5,10,10,10,5 12.96 104.66

Table 6. The free head movement dataset experiment result of the DNN.

Feature Coordinate Number of Neurons Training Average Error Test Average Error

ICPCV-6D x 5,5,5,5,5 68.57 79.98
y 5,10,10,10,5 35.56 60.35

ICPCV x 10,20,20,20,10 11.39 54.71
y 10,20,20,20,10 15.01 51.76

PCECV x 5,10,10,10,5 20.60 57.41
y 5,5,5,5,5 18.29 50.16

4.4. Eye Tracking Experiment

This experiment used three feature vectors (ICPCV-6D, ICPCV, and PCECV) as MLP feature
vectors to track the trajectory of the eyes. This eye movement experiment is shown in Figure 11.
The users started from the leftmost point, and focused sequentially on consecutive points, moving
to the right in a diamond-shaped trajectory. When the test point appeared on the screen, the users
focused on the point for 10 frames. These 10 frames were then used to estimate the gaze point of
an average position. The ICPCV-6D, ICPCV and PCECV feature vectors were used to test the MLP
performance. Figures 12–14 show the results of the head movement trajectory by MLP. Table 7 shows
each average error distance between the gaze point and the actual point. From Table 7, the average
error of the method using the ICPCV feature combined with the MLP is the lowest using the free head
movement dataset. This experiment shows that the testers can move their heads as they wish, and we
also sample the 10 frames to calculate the average distance of the focus point. Therefore, we calculated
the average error distance between the gaze point and actual point, and then the overall average is
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calculated from three experiments. In addition, to test the DNN performance, we did the fixed-head
experiments to compare the different DNN structures, as shown in the following Tables 8–13.

2 
3 

4 
5 

6 
7 

8 1 & 9 

  

Figure 11. Eye movement trajectories experiment.

ICPCV-6D feature 

Figure 12. The trajectory of the head movement by MLP of inner corner-pupil center vector (ICPCV)-6D.

ICPCV feature 

Figure 13. The trajectory of the head movement by MLP of ICPCV.

PCECV feature  

Figure 14. The trajectory of the head movement by MLP of pupil center-eye corner vector (PCECV).

Table 7. The average error distance of the eye movement trajectory using each feature of the head
movement model.

ICPCV-6D ICPCV PCECV

Average error distance of experiment 1 105.92 81.65 75.21
Average error distance of experiment 2 106.64 84.38 102.45
Average error distance of experiment 3 124.40 66.36 110.13

Average of the average error distance of 3 experiments 112.32 77.46 95.93

Table 8. The DNN average error of x-coordinate in ICPCV-6D features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 18.39 8.34 25.81
Testing average error 67.66 44.06 43.28
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Table 9. The DNN average error of y-coordinate in ICPCV-6D features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 15.46 12.96 25.12
Testing average error 118.38 104.66 127.54

Table 10. The DNN average error of x-coordinate in ICPCV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 59.26 5.27 14.10
Testing average error 63.50 41.33 41.41

Table 11. The DNN average error of y-coordinate in ICPCV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 20.02 13.97 12.75
Testing average error 63.65 64.92 67.92

Table 12. The DNN average error of x-coordinate in PCECV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 11.38 12.17 43.76
Testing average error 62.29 62.75 82.22

Table 13. The DNN average error of y-coordinate in PCECV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 7.53 18.05 8.38
Testing average error 68.23 74.24 69.97

For testing PCECV performance, we calculated the average error of x- and y-coordinate.
The fixed-head experiment is tested by the PCECV features with different layers (MLP), as shown
in Figure 15.
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Figure 15. The average error of the PCECV features.

For testing the head movement, the following experiments were evaluated to test the DNN
performance of PCECV features, as shown in Tables 14 and 15.

From Tables 14–19, we can make some head movement discussions to compare the three features
with the DNN model. If the ICPCV-6D feature with DNN is adopted, the performance is not better
than the PCECV or ICPCV features. However, compared with the PCECV and ICPCV-6D functions,
the performance of the ICPCV features with DNN can improve the system accuracy of x-y coordinates.
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Table 14. The head movement of x-coordinate dataset using DNN of PCECV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 37.56 25.47 36.12
Testing average error 62.93 65.18 70.22

Table 15. The head movement of y-coordinate dataset using DNN of PCECV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 42.62 37.58 50.11
Testing average error 65.17 57.81 55.71

Table 16. The head movement of x-coordinate dataset using DNN of ICPCV-6D features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 62.38 36.25 58.16
Testing average error 73.16 80.40 84.21

Table 17. The head movement of y-coordinate dataset using DNN of ICPCV-6D features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 74.01 35.56 38.93
Testing average error 71.89 60.35 79.16

Table 18. The head movement of x-coordinate dataset using DNN of ICPCV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 26.09 15.15 11.39
Testing average error 55.21 60.40 54.71

Table 19. The head movement of y-coordinate dataset using DNN of ICPCV features.

Number of Neurons 5,5,5,5,5 5,10,10,10,5 10,20,20,20,10

Training average error 26.65 9.72 15.01
Testing average error 53.77 53.78 51.76

Our eye detected method was first adopted the Haar feature-based cascade classifier algorithm
to detect the face. Then secondly, after detecting the face, we also adopted the Haar feature-based
cascade classifier algorithm to detect the eye region. Thirdly, the image processing morphology was
adopted to detect the pupil of the eye. The image processing morphology was proposed to binarized
the image, and then we adopted the connected component method to find the maximum region that is
the pupil of the eye. After finding the pupil of the eye, the canny method was adopted to detect the
corner of the eyes. The experiment to detect eye existing or not was done as the following Table 20.
We tested the 10 users and each user was captured the 9 images and their angle of the face is between
−10◦ ∼ 10◦, as shown in Table 20. From this experiment, we can find our system to detect the eyes
perfectly between −2.5◦ and 2.5◦.
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Table 20. The effects of different angles.

−10◦ −7.5◦ −5◦ −2.5◦ 0◦ 2.5◦ 5◦ 7.5◦ 10◦

User 1 × © © © © © © × ©
User 2 × © © © © © × © ×
User 3 © × © © © © © © ×
User 4 © © © © © © © × ©
User 5 × × © © © © © © ×
User 6 × © © © © © © © ©
User 7 × © © © © © × × ×
User 8 © × × © © © © © ×
User 9 © © © © © © © × ×

User 10 × © © © © © © © ©
40% 70% 90% 100% 100% 100% 80% 60% 40%

We compared our system with other references based on the eye-tracking user system and we
described three factors based on the desktop under different operating situations, as shown in Table 21.

Table 21. Comparison with other reference systems.

Paper Reference Setup (Camera, LED) Accuracy/Metrics Operating Condition

[22] Commercial tracker, 1 camera 61.1% User dependent
[23] Commercial tracker, 1 camera Error rate 15% None
[24] Commercial tracker, 1 camera Completion time, no. of hits/misses None
[25] 1 camera Mean error rate 22.5% None

Our system 1 camera 100% (−2.5◦ ∼ 2.5◦) None

5. Conclusions

The system proposed in this study allows user head movement during the eye-tracking process.
The inner corner-pupil center vector feature vectors were combined with neural networks (MLP, DNN)
to improve accuracy. By so doing, the neural model is not only able to more accurately estimate the
fixation point, but also allows for free movement of a user’s head, making the fixation point more
accessible to the target.

Future work will use more different types of correction point numbers and distributions, collecting
a greater number of different head positions or gaze angle data to train the neural network model.
In addition, the model estimation accuracy can be improved in order to reduce the error caused by
a change of light source, which results in unstable feature points. Future work will also explore the
possibility of running eye-tracking on tablets and phones. We will test our system by the functional
neuromusculoskeletal and movement-related functions/structures because the disabled users cannot
easily control the computer using the mouse. Therefore, the future eye-tracking system will assist most
disabled users to operate the computer.
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