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Abstract: Diabetes is a high-prevalence disease that leads to an alteration in the patient’s blood
glucose (BG) values. Several factors influence the subject’s BG profile over the day, including meals,
physical activity, and sleep. Wearable devices are available for monitoring the patient’s BG value
around the clock, while activity trackers can be used to record his/her sleep and physical activity.
However, few tools are available to jointly analyze the collected data, and only a minority of them
provide functionalities for performing advanced and personalized analyses. In this paper, we present
AID-GM, a web application that enables the patient to share with his/her diabetologist both the raw
BG data collected by a flash glucose monitoring device, and the information collected by activity
trackers, including physical activity, heart rate, and sleep. AID-GM provides several data views for
summarizing the subject’s metabolic control over time, and for complementing the BG profile with the
information given by the activity tracker. AID-GM also allows the identification of complex temporal
patterns in the collected heterogeneous data. In this paper, we also present the results of a real-world
pilot study aimed to assess the usability of the proposed system. The study involved 30 pediatric
patients receiving care at the Fondazione IRCCS Policlinico San Matteo Hospital in Pavia, Italy.

Keywords: flash glucose monitoring; temporal data analysis; temporal abstraction; patient-generated
health data; telemedicine; activity tracker

1. Introduction

According to the report presented by the World Health Organization (WHO) in 2016, diabetes is
a high-prevalence disease, affecting 8.5% of the global population [1]. Diabetes may either prevent
the pancreas from producing insulin or prevent the body cells from responding to insulin properly.
In both cases, diabetes leads to an alteration in the patient’s blood glucose (BG) level, which needs to
be controlled through a combination of diet, physical activity, and medication [1,2].

To optimize therapy for individuals, diabetologists need to monitor their BG values over time.
Recently, new devices for continuous glucose monitoring (CGM) have been proposed. This reduces
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the need to perform BG tests using the traditional glucometer, while providing deeper insight on the
patient’s BG trends by monitoring the BG value around the clock [3]. Intuitively, deeper understanding
of the patient’s glycemic profile results in a better ability to maintain the BG value in a target range, thus
reducing the number or duration of the episodes of hypoglycemia and hyperglycemia experienced by
the patient [4,5]. Several wearable devices for CGM are available on the market. Usually, such devices
exploit a subcutaneous sensor, which detects BG concentration in the interstitial fluid. While CGM
devices return the BG value continuously, other devices apply flash glucose monitoring (FGM), which
means they require a scanner to periodically collect the BG values from the sensor. Generally, FGM
and CGM systems are complemented with proprietary software, which allows visualizing reports over
a pre-defined time interval (e.g., latest 2 weeks), such as the daily glycemic profiles and the ambulatory
glucose profile (AGP), an internationally recognized visual representation that combines BG data from
multiple days and collates them into a single 24-h period [6].

It is well known that the BG profile over the day is influenced by multiple factors related to the
patient’s daily routine, which alter the glucose metabolism and/or the body response to insulin [6].
Besides the consumption of meals and the therapy intake, such factors include, for example, physical
activity and sleep, in terms of both quality and quantity. In fact, low sleep quality may cause
hyperglycemic effects up to several hours after the awakening. Physical activity may lead either to
hypoglycemic episodes or to hyperglycemic episodes up to 48 h afterwards [7]. Since their effects
on the BG value do not run out immediately, it is fundamental to keep track of the patient’s sleep
and activity over time. Nowadays, this is possible thanks to the use of activity trackers that can be
comfortably worn by the patient around the clock. Several brands of activity trackers are available,
including Fitbit [8], Polar [9], and Garmin [10]. Regardless of the brand, activity trackers usually
record multiple parameters related to the user’s sleep, including start time, end time, and number of
night-time arousals. They also distinguish deep sleep from light sleep, although the accuracy of this
classification is not high [11]. With regard to physical activity, they record start time, end time, and
intensity for each detected workout (i.e., activity lasting more than a threshold duration, which may be
brand-specific). They also provide a summary of the overall daily activity, including the total number
of steps. In addition, most trackers also monitor the subject’s heart rate (HR) continuously. Collecting
data from diabetic patients wearing both a BG monitoring device and an activity tracker may help to
better understand the relationship between BG values and HR, which is a debated research topic in the
literature [12-14].

The importance of providing innovative approaches, able to take into account the most recent
technological solutions and to promote integrated care by involving both patients and care providers,
has been recently identified as one of the main points of action by the European Diabetes Forum [15].
The need to complement the glycemic profile with information on the subject’s lifestyle has been
recently discussed by Rodriguez-Rodriguez et al. [7]. In their work, the authors monitored a diabetic
patient (male, 25 years old) for 2 weeks, using both the Abbott FreeStyle Libre system and a Fitbit
activity tracker, which collected information on the subject’s sleep and physical activity. The subject
was also asked to report meals and insulin intake. The graph integrating all the collected data helped
interpreting BG values in relation to the patient’s lifestyle factors, which are known to influence the
subject’s status.

Since the interest in integrating the BG profile with lifestyle information has been increasing, smart
applications to facilitate data integration are needed. For example, the web-applications presented
in [16,17] allow the patients to autonomously report performed physical activity, insulin intake, and
details on the consumption of carbohydrates. The collected data can be accessed both by the patient and
by his/her diabetologist, who can remotely monitor the progress of the patient in diabetes management.
Using the web-application developed by Hidalgo et al. [16], the patient can also share with the clinician
the results of a set of clinical tests (e.g., eye examination) that are usually carried out to identify the
onset of possible complications due to diabetes. However, rather than continuous BG monitoring, these
systems consider data collected using a glucometer and a manual data entry is required for the other
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parameters. Such manual daily data collection can fatigue the patients, who, in the long run, might
stop providing this data [18,19]. Thus, since the use of wearable sensors has intensified in recent years,
the most recent applications designed for chronic patients aim to automatically collect as much data as
possible from such devices. For example, several commercial platforms focus on supporting patients
affected by Type 2 diabetes [20-24] by tracking both BG measurements collected using glucometers and
activity data collected by trackers. Such applications usually provide dashboards for the integrated
visualization of the collected information, and sometimes allow the patient to share the data with
the physician. Recent applications intended for Type 1 diabetes collect and visualize CGM or FGM
monitoring data [3]. Such applications usually provide daily reports, including the number and the
duration of hypoglycemic and hyperglycemic episodes, possibly filtered by time of occurrence (e.g.,
nighttime or daytime). They also provide other summaries, such as AGPs. However, few applications
integrate BG monitoring (either CGM or FGM) with activity and sleep tracking. One of the first
solutions proposed in this area was Nightscout [25], an open source project developed by volunteers in
2014 to help the patient, or his/her family, set up a custom system for collecting and visualizing both
BG monitoring data and activity tracking. However, this solution was not suitable to all patients, since
it required the ability to build and maintain such a system, which includes a website and a database.
Other solutions [26,27] include commercial (integrated) systems, which include a sensor for CGM
and proprietary software to process the collected data. Such systems gather information on physical
activity using proprietary insulin pumps [27], or commercial activity trackers [26]. To our knowledge,
such systems provide an integrated visualization of data, but do not provide any tool for performing
advanced analyses that combine data from both the sources. The same consideration holds for recent
applications, such as the M:Diabetes mobile application [28], which was not developed by the same
companies that produce the sensors, and aims to be compatible with multiple brands of sensors, insulin
pumps, and wearable devices for activity tracking.

Recently, we have developed AID-GM (Advanced Intelligent Distant—Glucose Monitoring), a web
application that allows diabetic patients and their clinicians to share and analyze FGM data [29,30].
In this work, we describe the extended version of AID-GM, providing advanced data analyses that
combine FGM data with the information collected by Fitbit activity trackers (i.e., HR profile, activity,
and sleep tracking). We also evaluated the usability of our application in a real-world pilot study
involving 30 pediatric patients receiving care at the Fondazione IRCCS Policlinico San Matteo Hospital
in Pavia, Italy.

2. Materials and Methods

AID-GM is a web application mainly developed in Java (AID-GM is a web application mainly
developed in Java, and integrated with JavaServer Faces, Hibernate, and MySQL technologies. We chose
to develop the system as a web application to make it accessible from any device with an internet
connection and a browser, regardless of its type and operating system. We integrated the JavaServer
Faces framework since it facilitates the development of the components in the user interface, while
we used MySQL as the database manager system since it is designed for web applications, it is open
source, and it offers detailed documentation for configuring the service. We integrated the Hibernate
framework since it facilitates converting the java objects manipulated by the AID-GM system into
the tabular contents stored in database, and vice versa.). The system architecture, shown in Figure 1,
includes a data repository integrating the heterogeneous data collected from different sources, which
we call PGHD (Patient-Generated Health Data), and three main components, which will be described
in the following paragraphs.
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Figure 1. The AID-GM architecture.

2.1. Data Integration Module

AID-GM manages several kinds of PGHD. The patient’s glycemic profile can be collected using
FGM or CGM systems. Although AID-GM is designed to be independent of the specific glucose
monitoring device, in this work we show an application on the Abbott FreeStyle Libre FGM system [31].
This system has been approved for use in pediatric patients, who represent the target of our study [32].
Like all FGM devices, the FreeStyle Libre system includes a reader, that must be used to scan a sensor
positioned on the upper arm of the patient. Such sensor must be scanned at least every 8 h and provides
one BG measure every 15 min. The reader can also be used to store details on insulin intake, meals, and
physical activity. The system includes a proprietary application, recently made available also as a web
portal (https://www2.libreview.com/), to download data from the scanner, visualize it, export it to a
text file, and produce a PDF summary report. To collect information on the subject’s HR, daily activity
and sleep, AID-GM uses a Fitbit activity tracker. The tracker is connected to a mobile application that,
upon synchronization, transfers the collected data to the Fitbit cloud. Any application can retrieve
data from the cloud through HTTP requests, provided that it has been authorized by the data owner
through the Oauth2 Protocol (https://dev.fitbit.com/build/reference/web-api/oauth2/). In AID-GM, data
coming from Fitbit are automatically retrieved from the cloud every night. A daily summary of the
measured activity, reporting the total amount of time in which the patient has been moving, is stored.
For each workout, we store start time, intensity, and duration. For each sleep record, we memorize
when a subject falls asleep, the time he/she wakes-up, the amount of time in which the subject was
awaken in bed, and the amount of time in which the subject’s sleep was restless. The subject’s HR
profile, which includes one HR measurement per minute, is also stored. Finally, information on the
subject’s habits, including the meal schedule on each day of the week, is collected directly through the
AID-GM system interface.


https://www2.libreview.com/
https://dev.fitbit.com/build/reference/web-api/oauth2/

Sensors 2020, 20, 128 5 of 23

The Data Integration Module is the component responsible for acquiring and pre-processing the
described data. Data acquisition requires the patient’s collaboration, with a level of commitment that
depends on the type of data. Patients” habits are collected at registration and can be modified if the
patient thinks it is necessary. After registering, the patient is asked to fill in a form to provide, for
each day of the week, his/her usual time schedule concerning primary meals, snacks (i.e., snack after
breakfast, after lunch, and after dinner), and sleep (Figure 2). BG data from the FreeStyle Libre system
should be periodically uploaded into AID-GM by the patient, using a dedicated form that takes as
input the text file produced by the Abbott software. Each row in this file describes one event, which can
be a BG measurement (automatically measured or manually scanned by the patient using the reader),
a bolus of insulin, a health-related issue, or a meal. Each event is defined by its time of occurrence and
by other attributes that depend on the event type. For BG events, the measured BG value is specified,
while for insulin events the bolus dosage, inserted by the patient, is reported. A health-related event
includes a textual description of the issue, while the meal event has no additional attributes. The Data
Integration Module stores the events in a MySQL database (DB).

Please input your daily habits.

Your daily habits

Awakening Breakfast Snackl Lunch Snack2 Dinner Snack3 Bedtime

& Copy

Sunday 08:00 08:30 13:00 20:00 22:00 s
O Paste
® Copy

Monday 07:00 07:30 13:00 20:00 22:00 s
© Paste
& Copy

Tuesday 07:00 07:30 13:00 20:00 22:00 s
© Paste
@ Copy

Wednesday 07:00 07:30 13:00 20:00 22:00 s
© Paste
& Copy

Thursday 07:00 07:30 13:00 20:00 22:00 s
© Paste
. ® Copy

Friday 07:00 07:30 13:00 20:00 23:00 s
O Paste
@ Copy

Saturday 08:00 08:30 13:00 20:00 23:00 #;
© Paste

Figure 2. Form to provide, for each day of the week, patient’s usual time schedule concerning
daily habits.

One of the most important tasks of the Data Integration Module is tagging each BG and HR
measurement to contextualize them within the day of the subject. This can be done both by considering
the profile information provided by the patient and, for patients wearing an activity tracker, by using
information about workout and sleep. We will refer to tags defined using patient profile as profile
tags, and to tags defined using Fitbit data as Fitbit tags. Figure 3 shows the process of computing the

profile tag.

Daily routine

AWAKENING BREAKFAST SNACK1 LUNCH SNACK2 DINNER SNACK3 BEDTIME
] | ] ] |

T G Y Y U NS A WY

Tag value Night  Awakening After breakfast Before lunch After lunch Before Dinner  After Dinner Night

Time

Figure 3. Assigning the profile tag to BG events. The tag value (bottom) is assigned by comparing the
time of occurrence of the considered event to the usual time of the patient’s daily activities (top).
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The set of possible values for the profile tag includes awakening, after breakfast, before lunch, after
lunch, before dinner, after dinner, and night. The night tag value is assigned when the time of occurrence
is between the usual bedtime and awakening time.

The Fitbit tag can assume the following values: sleep, workout, routine, and NA. The sleep and
workout values are assigned when an event (BG or HR) occurs during a tracked sleep session or during
a tracked workout, respectively. The routine value is assigned when the event occurs in an instant
in which the patient is not sleeping and is not training. The NA value is assigned to each BG event
occurring when the patient is not wearing the Fitbit tracker. In particular, we assume that the subject
was not wearing the tracker at time t; if no HR measurements are available in the interval [¢; — 5 min;
t; + 5 min].

For each event, both the profile tag and the Fitbit tag are stored into the database. When the
BG data is analyzed, only one tag is considered to contextualize the measurements during the day.
When patients do not wear the Fitbit tracker, the Fitbit tag value is NA, and the profile tag is used.
When both tags are available, the user can decide which of the two tags has to be considered. In this
case, the Fitbit tag may be preferable, since it provides more accurate contextualization of the events.

2.2. Analytics Module

As described in our previous work [29], AID-GM is integrated with the Java Time Series Abstractor
(JTSA) library [33], a framework recently developed at the Department of Electrical, Computer and
Biomedical Engineering of the University of Pavia, Italy, by some of the authors of this paper. JTSA
extracts qualitative patterns from time series of measurements using Temporal Abstractions (TA) [34-38].
In agreement with diabetologists, in [23] we defined a set of 6 knowledge-based patterns that are
relevant for evaluating the diabetes outcome (i.e., Hypoglycemia, Hyperglycemia, BG Increasing, BG
Decreasing, Rebound Effect, and Down Effect, as described in Table 1). While the patterns described
in our previous work aimed to detect trends of interest in the subject’s glycemic profile, in this work
we focus on integrating the patient’s lifestyle into the analysis, by exploiting the data collected by the
Fitbit tracker. This was achieved by extending the set of implemented patterns and by providing new
visualization options, that complement the patient’s glycemic profile with information on sleep and
physical activity. In addition, in the new version of the AID-GM system it is possible to contextualize
the search for glycemic patterns within the patient’s day, thanks to the Fitbit tag. For example, it is
possible to search for the occurrence of hypoglycemic events specifically during the subject’s sleep or
during the workout.

The set of patterns was extended with 2 univariate patterns on HR (i.e., bradycardia and
tachycardia) and 2 multivariate patterns that combine HR and BG trends. Table 1 lists all the patterns
currently available in the AID-GM system. We distinguish between basic patterns, extracted from
one single time series, and complex patterns, which consist of a combination of patterns, potentially
extracted from different time series. For each pattern, the table reports the input data and a graphical
representation of the behavior of interest. For Hypoglycemia, Hyperglycemia, Bradycardia and
Tachycardia, the threshold value is patient-specific and personalized by the clinician using the system
graphical user interface.

The algorithms for pattern detection were tested and validated on simulated data sets in our
previous works [33,39,40].
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Table 1. Patterns of interest to evaluate the diabetes outcome. Red dots represent BG measurements;

blue dots represent HR measurements.
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2.3. Graphical User Interface

The AID-GM graphical user interface (GUI) allows the patient and the physician to take
advantage of the functionalities provided by the two modules described above. Figure 4 shows
the physician’s home page, on which a summary of the patients’ activities (last BG data upload, last
tracker synchronization, last week BG summary, etc.) and relevant information are provided.

/4(2‘\/0"’?52(?!l fnfe”ﬁgenf Dlsfcnf

A iD-.ulGM

Glucose Moniforing

#Home PData~ #Analysis~ OTherapy management < Patients management~ ¢ Logout

Physician Home Page
Last login: 03/12/2019 07:11

S =
(10f2) > [ = [20-]
Available BG
Patient ¢ & . Last glycaemia Last Fitbit Vaocal Physical data trend REGdata
Patient Info Clincal Info = e 5 Visualization
upload Y activity during last 7 R i
days equest *
2018-10-13 2018-10-15
halz ks = 18:59:00.0 21:46:46.0 2 2 =
2018-10-19 2018-10-20
PAT-68 2 = 19:06:00.0 00:44:11.0 =] o el No request
2018-10-20 2018-10-19
RaT60 = z 01:04:000 | 17:41:330 | = | 2 2 Ho Teduest
2018-10-05 2018-10-14
PAT-75 2 = 18:50:00.0 23:21:31.0 Cl 2 o No request
2018-10-12 2018-10-15
EATZS 4 Z 17:58:00.0 08:56:05.0 2 & & Nojrequsst
PAT-77 2 [= R | ERS | SR . » |2 No request

Figure 4. Physician’s home page.

Table 2 lists all the available system functionalities, specifying to which user/s they are addressed.
The status column identifies new and upgraded features with respect to the previous version [29].

As shown in Table 2, one of the most interesting new features is the possibility of accessing several
reports that integrate BG and activity tracker raw data, summarizing both the BG levels and the
patient’s lifestyle. It is also possible to get a synthetic overview of the metabolic control through the
visualization of the temporal patterns described in Table 1. All these data views are meant to support
patients and physicians in taking decisions about timely changes of lifestyle, diet, or therapy and, more
generally, in a more informed disease management. In particular, the system provides four main types
of visualizations: Daily profile, Lifestyle summary, Physical activity summary, and Pattern visualization.
First, AID-GM provides a Daily profile, combining BG and HR daily profiles with additional events like
sleep start, sleep end, workout, insulin dosage, and meals (Figure 5).

Thu 4 October

150

Glycaemia (mg/dl)
Heart rate (bpm)

wiypoglycaemia

0 “}"@ o @ 0

00:00 03:00 06:00 09:00 1z2:00 15:00 18:00 21:00

Figure 5. Daily profile, complemented by information on the subject’s sleep and workout.
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Table 2. AID-GM functionalities grouped by type of action. For each functionality, we provide the
corresponding users, i.e., patient (P) or clinician (C), and the implementation status compared to the
previous version.

. . User
Action Functionality ———  Status

Access through secure authentication . .

Request to be enrolled in the clinical center .

View and approval of enrollment request .

Set up of the Set-up and update of daily habits (i.e., time of meals,
AID-GM account wake-up and bedtime for each day of the week)

and access Set-up and update of patient-specific thresholds to
identify glycemic alterations (i.e., hypoglycemia .
and hyperglycemia)

Set-up and update of patient-specific thresholds to
identify HR alteration (i.e., tachycardia . New
and bradycardia)

Upload of BG monitoring data . . Upgraded

Data upload
Consent to download the Fitbit data ° New

Visualization of BG overall time series, daily trends,

and AGP of one patient * ° Upgraded

Visualization of a summary of the most recent

hyperglycemic and hypoglycemic episodes * * New

Visualization of combined BG and HR daily profiles,
complemented with information on sleep, workout, . . New
meal, and insulin intake

Visualization of a summary of the physical activity

. . N
in a selected period * * ow

Visualization of a timeline that shows if the patient is
Data analysis and regular in terms of sleep and activity
visualization

. . New

Detection and visualization of patterns (Table 1) for

one patient * ° Upgraded

Detection and visualization of patterns (Table 1) for a
group of patients

Drill-down to the BG and HR profiles related to the
time intervals in which a selected pattern occurred

. Upgraded

. . Upgraded

Visualization of statistics related to pattern detection
for a group of patients

Visualization of the patients’ list, and list of the

recently uploaded data ® Upgraded

Visualization of patient’s information (e.g.,
demographics, contact information, onset date, . Upgraded
weight, and thresholds for BG and HR)

Communication Request for data visualization °

between patient Notification of data visualization request in the
and physician home page

In Figure 5, the BG profile is represented in blue, and the HR profile is represented in red. On the
BG chart, the red dots represent the BG values shown to the patient by the FreeStyle Libre reader when



Sensors 2020, 20, 128

11 0f23

used to scan the sensor. On the timeline, colored icons represent the previously described additional

events. The legend of the supported additional events is shown in Figure 6.

A Insulin P
% injection @

B

o @

Manually detected

®
Awakening V‘ T,

Sleeping
time

Automatically detected

workout

Figure 6. Legend of the additional events related to the patient’s lifestyle.

The application also provides a Lifestyle summary, consisting of several charts that give an overview
of the activities and lifestyle of the patient over a selected period (Figures 7 and 8). The time frame of
the summary can cover one day, one week, one month, or a user-defined period. A section of particular
interest is the patient timeline (highlighted in red), where the different activities registered by the
tracker related to a specific day are shown on a single timeline with different colors. The visualization
of the timelines related to a specific period can easily point out if the patient lifestyle was regular in
terms of sleep and physical activity. For example, Figures 7 and 8 report the timelines of a patient
in two different weeks, the first one during holidays and the second one during the school period.
The timelines in Figure 7 show irregular activities and sleep habits coherent with the vacation context.
During the school period, the patient shows more regular habits during school days than in the

weekend (Figure 8).

Percentage of routine, sleep and workout

I Sleep
Routine
Warkout

Mo data

Hours

Sleep details ( 61 h 56.0 m total )

24

18

60-¥0

60-50
60-90
60-£0

28 g
2 g

asleep (mean : 8h 16.0m )

I restless sleep (mean : 0 h 35.0m )

awake (mean : 0h 36.0m )

2018-09-01 Sat

2018-09-02 Sun |

2018-09-03 Mon

2018-09-04 Tue

2018-09-05 Wed |

2018-09-06 Thu

2018-09-07 Fri

Figure 7. Example of a subject’s Lifestyle summary recorded during holidays.
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Percentage of routine, sleep and workout

12 0f 23

Sleep details ( 56 h 55.0 m total )

asleep (mean : 7 h 39.0m )

restless sleep (mean : 0h28.0m ) |
awake (mean : 0 h 28.0m ) |

2018-09-15 Sat

2018-09-16 Sun

2018-09-17 Mon

2018-09-18 Tue

2018-09-19 Wed

2018-09-20 Thu

2018-09-21 Fri

Figure 8. Example of a subject’s Lifestyle summary recorded during the school period.

The Physical activity summary visualization (Figure 9) shows an overview of the HR measurements
(top) and the workouts performed by the subject (bottom) in a selected period.

Heart rate (bpm) in the week

Heart rate (bpm):
rest:

75.0 by

sleep:

MAX = 113.0 bpm
MIN = 57.0 bpm
routine:

MAX = 132.0 bpm
MIN = 58.0 bpm
workout:

MAX = 138.0 bpm
MIN = 102.0 bpm

Mean frequency (workout) :
115,89 bpm

Mean frequency (routine) :
96,43 bpm

200
150 10 1 2 m STy 120 o7y
E i = u ’.‘ 3 5 % 3 "
50 L = . - =i
) At rest
q
&5 B 8 8
§ 3 2 2 2 g g
Day
Workout of the week
Workout activities Trend of minutes / steps during workout
120 ) 7000
100 000
Workout information s 2
Number of workouts: B ot regisered £ 4000
5 R £
Total duration (min): bt = Sa] o T e W Mt
173.0 e w - 2000 B s
Steps: 1 Madiom mtensty o e
9229.0 B High interaity 0 2 e
[ o

Figure 9. Physical activity summary visualization with the subject’s HR profile and workouts.
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The last type of visualization is the Pattern visualization. The GUI helps the user through the
process of selecting patients, patterns and the period of interest for the analyses, and then visualizing
the obtained results, i.e., the time intervals at which the selected patterns occurred, presented in the
form of colored bars. Two examples of this visualization are shown in Figures 10 and 11. In Figure 10,
all the patterns of a single patient are displayed, while in Figure 11 a single type of pattern for a group
of patients is shown. For each pattern occurrence, the corresponding colored bar links to the Daily
profiles charts related to the time interval of that pattern occurrence (Figure 12), supplemented by
information on the subject’s activities in that time interval (e.g., sleep, workout, and insulin intake).
This combined visualization can help the physician to quickly evaluate and identify the problems in
the metabolic control of a patient, or a group of patients.

Pattern
IncreasingBG & 8 1 ' - s "nou

Hyperglycemia s = = -

Severe
Hyperglycemia

Normal BG

Decreasing BG
Hypoglycemia =] = = I =

Rebound Effect

Dawn Effect

00:00 12:00 00z 00 12:00 0000 12:00 G
Time

Figure 10. Pattern visualization for the single patient.

Patient ID

Patient 1 1

Patient 4

Patient 5 1 m I .
Patient 10 I

Patient 16 & [ i m B

12:00 00:00 1200 o0:00 12:00 D000 12:00
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Figure 11. Pattern visualization for a group of patients.
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Figure 12. BG and HR profiles related to a selected pattern occurrence. On the timeline, the blue line
represents the time interval in which the selected pattern (in this case, decreasing BG value) occurred.

3. Results

The usability of the system was evaluated in a 6-month pilot study carried out in collaboration
with the Pediatric Diabetology outpatient service of the IRCCS Policlinico San Matteo hospital in Pavia,
Italy. The study was approved by the Institutional Review Board (IRB) of the hospital. The subjects
enrolled in the study were already being followed by the center and were already using the FreeStyle
Libre device for monitoring their BG. The patients involved in the study were asked to use the system
to periodically upload their BG data and, if they wanted to, for visualizing information related to BG
profiles. Some of the patients were wearing a Fitbit tracker, and provided their consent to download
their Fitbit data and analyze it together with their BG data. After 2 and 6 months from enrollment,
patients were asked to fill in the System Usability Scale (SUS), a well-known 10-item questionnaire that
asks users to assess the perceived ease of use of the system and their willingness to continue using
it in the future [41]. For patients aged less than 18 years, the questionnaires were filled in by their
parents, whereas patients older than 18 filled in the questionnaires themselves. Patients were then
treated following the usual practice. In addition to patients, 3 doctors were also asked to fill-in the SUS
questionnaire at the end of the study. Of the 30 patients originally enrolled in the study, 3 dropped out
at the beginning of the study, leaving us with a sample of 27 subjects, whose characteristics are shown
in Table 3. As shown by the statistics on the duration, not all the patients were continuously using the
monitoring devices.

Table 3. Characteristics of the sample. To describe the distributions of the subjects” age and of the
duration of the monitoring, we provided the median value for each variable and, in brackets, the
interquartile range.

Sex Female: 14 (51.85%), Male: 13 (48.15%)
Overall (N = 27):11 [7.5-12.5]
Age (years) Age <18 (N =23):9 [7-12]
Age > 18 (N = 4):20 [18.75-22]
Duration of BG monitoring (days) (N = 27) 97 [65-167]

To further characterize the patients’ population, we used AID-GM to perform an analysis of the
BG profiles through pattern detection. Table 4 provides a snapshot of the total number of BG patterns
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detected in the dataset using the system. The patterns were computed on all the patients taking part
in the study. As already stated, thresholds for defining hypoglycemic and hyperglycemic episodes
are patient-specific and are defined by the diabetologists through the system. Severe Hypoglycemia is
defined as an episode of at least one measurement of BG < 50 mg/dL, whereas Severe Hyperglycemia is
defined as an episode of BG > 250 mg/dL. BG Increasing and BG Decreasing episodes are defined as
a variation of the BG level of at least 15 mg/dL every 15 min, lasting for at least 35 min. The values
of the parameters needed to compute the patterns were agreed with the physicians and validated
on a sample of the available time series. Table 4 shows that there are some patterns that happen
more frequently than others in our population, and that different patterns have different durations.
In particular, Increasing and Decreasing BG trends are the most frequent of the considered patterns, but
the episodes that last longer are the Hyperglycemia ones.

Table 4. Snapshot on the patterns found in the dataset.

Episode Duration in Minutes.

Pattern Total Number of Episodes Median [Interquartile Range]
BG Decreasing 10,570 75 [45-105]
BG Increasing 10,892 60 [45-91]
Hyperglycemia 8799 165 [60—-404]
Severe Hyperglycemia 5842 135 [46-315]
Hypoglycemia 2555 30 [15-60]
Severe Hypoglycemia 516 31 [15-75]
Normal BG 11,631 120 [46-240]

The patterns on BG can also be used as indicators of glycemic control in our patients. As an
example, Figure 13 shows the percentage of time spent in Normal BG range, Hyperglycemia, and
Hypoglycemia for 3 representative patients in the study. From this picture it is possible to easily
identify a subject who spends the majority of time with high BG values and less than 1% of time in
hypoglycemic episodes (Patient 9), a subject who has long periods of normal BG values (Patient 22),
and a patient who experiences several hypoglycemic episodes (Patient 1). This type of analysis could
allow diabetologists to quickly divide the patients in groups, which can be managed with different
interventions or treatment strategies.

100%
.
80%
70%
60%
50%
40%
30%
20%

Percentage of time

10%
0%
1 9 22

Patients

B Hypoglycemia Normoglycemia B Hyperglycemia

Figure 13. The computation of percentages of time spent in Normal BG range, Hyperglycemia, and
Hypoglycemia can easily identify different types of patients.
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To be able to fully exploit the potential of the TA framework, it is interesting to analyze data for
the six patients who were wearing both the FGM and the Fitbit devices simultaneously (Patients 1, 2, 5,
6, and 10). In this case, it is possible to extract several additional patterns, involving multiple variables
(BG, HR, and tracked sleep).

As an example of a pattern involving BG and sleep, it is possible to compare the patients in terms
of episodes of nighttime hypoglycemia. This is very important, especially for children, since it is crucial
to quickly identify who are experiencing this pattern more frequently than others. Table 5 presents
the number of nights with at least one hypoglycemic episode and the total number of nights, for the
six patients. Thanks to the advanced analysis functionalities offered by AID-GM, it was easy for the
physician to identify the patients who were more prone to a specific type of episode. For example,
comparing Patient 5 to Patient 10, it is possible to see that the first one has used the Fitbit for less nights
than the second (56 vs. 165), but the proportion of nights with at least one hypoglycemic episode
is higher.

Table 5. Number of nights with at least one hypoglycemic episode compared to the total number

of nights.
Patient Number of Nights with Hypoglycemic Episodes Total Number of Nights
1 13 110
2 7 41
5 12 56
6 9 50
10 10 165
16 3 26

Another interesting analysis, which makes it possible to understand the importance and usefulness
of integrating different devices, is the comparison between the patterns extracted by the system when
using the profile tag or the Fitbit tag. Table 6 shows this comparison for the six patients wearing a
Fitbit tracker. The Table reveals that, for patients with irregular sleep habits, such as Patient 1, the
difference between the number of hypoglycemic episodes can be significant. For critical episodes,
such as those of low BG levels during sleep, a proper monitoring is of crucial importance. Moreover,
excluding Patient 1, for the other patients the algorithm is not able to detect Dawn Effect without the
sleep information detected by Fitbit.

Table 6. Number of nighttime episodes of Hypoglycemia and Dawn Effect detected using the profile

tag and the Fitbit tag.
P Number of Nighttime Episodes of Hypoglycemia Number of Episodes of Dawn Effect
atient
Fitbit Tag Profile Tag Fitbit Tag Profile Tag
1 16 128 1 7
2 10 17 1 0
5 17 25 2 0
6 10 12 1 0
10 12 18 4 0
16 3 3 1 0

To evaluate the system use, we analyzed the log files of AID-GM. These files include information
about the type of action performed by the user, together with the date and the time of execution.
The available types of actions are Login, Logout, Data visualization, Modify, Upload BG data, and Find pattern.

Figure 14 shows the frequency of each action, distinguishing patients and physicians as user
types. As shown by the bar chart, besides the Login, the most frequent action performed by both
users is the Data visualization action. This action refers to the several types of visualization available
in AID-GM, which include the visualization of BG profiles and summaries, and the visualization
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of patients” demographic and clinical information. As regards Find pattern, each occurrence of this
type of action may concern the search for single or multiple patterns over a single patient or a group

Data Find pattern Login Logout Modify Upload BG
data

of patients.

450
400
350

w
o
o

250
20

o

15

Number of actions
o
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(=]
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o
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B Physician M Patient

Figure 14. Frequency of actions performed by the AID-GM users in the pilot study.

Figure 15 illustrates the detailed distribution of the available visualization actions, indicating that
patients are mostly interested in checking their daily BG trends. For doctors, we registered several
visualizations of the patients’ information (Patient info), and visualizations of daily BG trends.
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Figure 15. Distribution of the visualization action.
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In addition to the overall number of actions, we also considered the weekly trend, computed as
the total number of actions for each week of enrollment. This analysis, reported in Table 7, showed
that the average number of actions in the first week was higher than the average number of actions in
all the following weeks, both for patients and for physicians. Doctors use the system more during
weekdays and in the morning, whereas patients have a more uniform distribution of usage throughout
the week and during the day, with an almost equal number of actions in the morning, afternoon, and
in the evening.

Table 7. Mean and standard deviation of the number of actions in the first week compared to all the
other weeks.

User Average Number of Actions in Average Number of Actions in
the First Week (SD) All the Other Weeks (SD)
Physician 67.00 (47.51) 8.61 (7.42)
Patient 21.26 (8.18) 1.17 (0.66)

Table 8 shows the average session and training durations. The duration of sessions was computed
as the time interval between a login and a logout when the latter was available, and as the time interval
between a login and the last action before the next login, when logout was not available. In fact, when
the user does not use the application for more than 30 consecutive minutes, the work session expires
automatically, and no logout activity is recorded in the AID-GM system log. Furthermore, since the
first access to the system is performed by the patient together with the physician, who trains the new
user by illustrating the functionalities of the system, we finally evaluated the duration of the first
session for each patient to have an estimate of the training time.

Table 8. Mean and standard deviation of session and training duration.

User Average Session Duration in Average Training Duration in
Minutes (SD) Minutes (SD)
Physician 9.5(1.2) -
Patient 7.3(3.6) 20.1 (13.5)

As anticipated, the system usability was assessed using the SUS questionnaire, which was
delivered both to physicians and patients. For patients, we carried out an assessment at 2 months
from the beginning of the study and one at the end of the study. The average SUS score at 2 months
was 82.6, whereas at 6 months, we registered a slight decrease in the average score, which was 76.4.
Even though both scores are considered above average with respect to the threshold of 68 [41], we
investigated the obtained results to better explain the reasons for this decrease. First of all, from the
analysis of the system logs, we observed that, even though all the patients filled in the questionnaire at
the end of the study, 8 of them never used the system after two months. Considering only the patients
who performed at least one access after two months of usage, the average SUS score at 6 months was
81.3. For 11 patients belonging to this group, the SUS score increased or remained stable, whereas
for 8 patients we registered a decrease in the score. Analyzing the individual questions, the one
that we found most critical was the following: “I found the various functions in this system were
well integrated”. For this question, 7 patients gave a lower score after 6 months than at 2 months.
Perhaps this question was not entirely understood by the patients, because of its technical formulation.
Three physicians completed the questionnaire at the end of our study. In this case, we had the maximum
SUS scores for all three (100). The motivation for such high scores could partially be due to the fact
that 2 out of 3 users also participated in the development of the system. The third user instead started
to use the system at the beginning of the study, without any previous knowledge.
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4. Discussion

In this paper, we presented AID-GM, a web application for managing patients with diabetes
that enables the integration of BG and activity data, provides advanced temporal data analysis
functionalities, and encourages communication between patients and their care providers.

Thanks to the Data Integration Module, AID-GM is able to jointly analyze data coming from
different sources. This offers several advantages and novelties. First, Fitbit data are used to complement
BG measurements providing information about the actual lifestyle of a patient in terms of sleep and
physical activity. As shown in Figures 5 and 6, the availability of such information also allows the
identification of irregularities in the habits, which could be an important factor not usually included
in applications for monitoring diabetic patients, for interpreting the metabolic response. In addition,
the availability of HR data offers the possibility to perform multivariate analysis to investigate the
relation between the reaction of HR to variations in BG levels. To our knowledge, AID-GM is the
first application that uses Fitbit data to contextualize BG data and carry out advanced multivariate
temporal analysis. To fully appreciate the novelty of the AID-GM application, it should be compared
with the other tools available for collecting and analyzing CGM or FGM data, rather than tools that
consider data collected using glucometers. As anticipated in the introduction, few applications are
available for analyzing CGM or FGM data, and fewer applications integrate it with information on the
subject’s sleep and activities collected automatically from wearable devices. Among these applications,
some solutions [25] are not ready to use, while others [27] are not applicable to all patients, since they
gather activity data from proprietary insulin pumps. We believe that collecting data from widely
used activity trackers, instead of specific insulin pumps, may make the solution accessible to a higher
number of patients. Several efforts are converging towards this goal. For example, we are aware
that Fitbit and Medtronic reached an agreement, that resulted in a mobile application for visualizing
both Fitbit data and BG data collected by a professional device for CGM monitoring, iPro™2 [42,43].
However, the iPro™2 device is only intended for diagnostic purposes, and not for long-term remote
monitoring. We are aware of another application that is aiming to integrate FGM data with Fitbit
data [28]. However, this feature is not yet listed among the functionalities available in the current
version of the system. To the best of our knowledge, there are no available long-term solutions that
offer multiple data views combining both BG and activity data, and that allow both the patient and
the clinician to perform multivariate analysis through pattern detection. Thus, we believe that the
integrated view offered by AID-GM opens a new perspective on the exploitation of PGHD, which can
be used to perform, in a realistic day-by-day setting, analyses that have traditionally been limited to
clinical studies. In particular, for adolescents and for parents of children, AID-GM can guide clinical
decisions regarding therapy and could represent an interactive system to learn diabetes self-monitoring
potentially enhancing patient care, especially immediately after the disease onset. Moreover, the
automatic collection of BG and lifestyle data ensures an objective picture of the real patient’s behavior
and metabolic response, preventing from errors that can occur when manually reporting the daily
diary both in paper and electronic form.

AID-GM includes an Analytics Module designed to carry out advanced data analytics through
Temporal Abstractions. Thanks to this technique, it is possible to formalize the qualitative patterns
that clinicians frequently already have in mind, and automatically extract the behaviors of interest
from the available data. The patterns that can be extracted range from basic and univariate to complex
and multivariate, like the Dawn Effect. Despite its clinical relevance, the Dawn Effect is difficult to
manually detect in a large amount of data without accurate information on the sleep and wake up
time. Thanks to AID-GM, it is possible to formally define the pattern, and automatically extract it from
the available data.

In addition to the flexibility offered by JTSA for patterns definition, another convenient feature of
AID-GM is related to the temporal filtering functionalities available for data exploration and analysis.
In fact, differently from other available tools that provide a view on data over fixed time ranges, the
patterns can be dynamically extracted on user defined time-windows or on specific days of the week,
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which can be selected over the complete follow-up of the patient. Moreover, for each detected pattern,
it is possible to inspect the raw data it was generated from (Figure 10), thus offering complete control
over the obtained results. These features enable the users to dynamically perform their analyses,
potentially exploiting the tool to discuss the progression of the disease together during encounters or
comparing the metabolic control in different periods and day or week slices (working days/weekend,
sleep, routine, workout).

Finally, differently from other tools, AID-GM enables the extraction of temporal patterns over
a group of patients. This can be useful in two ways. First of all, considering a single pattern, the
tool can be used to highlight those patients who experience it more frequently. Second, considering
multiple patterns, this feature allows the detection of the groups that need closer attention. In this
paper, we have shown several examples of how the analysis results can be used to identify groups of
critical patients. In the future, a careful analysis of the occurrence of the patterns over a larger cohort of
patients could be used to propose some pattern-based indicators to quickly characterize patients based
on their metabolic control.

As shown by the results of the SUS questionnaires, the AID-GM system was considered to
be user-friendly both by patients and physicians during the real-world pilot study. This result is
particularly positive, considering that the tool introduces a change in the workflow related to the
FreeStyle Libre data management for both user types. Before the introduction of the system, patients
used to download their BG summary report from the FreeStyle system only before periodic face-to-face
encounters, in order to discuss their BG profile with the diabetologist. During the visit, the diabetologist
would consider those reports in order to plan future interventions and treatment. Even though the
FreeStyle software offers the possibility of downloading the time series of the collected BG measures
from the patient’s sensor, this was rarely performed during encounters because of the lack of tools for
data analysis. During the pilot study, the possibility of remotely sharing BG data with the clinician
motivated the patients to download their data frequently, and to upload it into the AID-GM system
on a regular basis. The obtained SUS scores and the analysis of the actions performed by the users
point out that patients believe it is worth investing time in uploading data to the system to facilitate
remote monitoring of their health condition, and possibly to receive better care. The advantage derived
from the use of the AID-GM system is even more evident when considering health care personnel,
who are able to gain deeper insights into how the patient’s condition has evolved between visits and,
potentially, during the entire follow-up of the patient. While the data stored within the FreeStyle Libre
device include only the most recent three months, the AID-GM system maintains the complete history
of BG data uploaded by the patients, of the Fitbit data, and any other information that was provided
through the FreeStyle system’s BG reader, like insulin intake and meals. This allows the collection
of long histories, which may be used in the future to train and personalize data-driven systems for
supporting decision making in the context of Type 1 diabetes.

The work presented in this paper describes ongoing research, which still has some limitations that
will be addressed in future work. First of all, AID-GM currently works on a set of temporal patterns
that is predefined on the basis of clinical knowledge. Even though this set might be arbitrarily and
easily extended, the inclusion of a new pattern would need to be hypothesis-driven. Using only this
approach prevents the system from discovering potentially unknown behaviors. Given the peculiarities
of the data being considered, which have only recently started to be collected and jointly analyzed, the
possibility of mining unknown multivariate patterns is a desirable feature. For example, it is widely
acknowledged that lifestyle habits have an impact on metabolism, but evidence on how this reflects
subjective parameters such as HR, BG, and sleep is still lacking. Considering our previous work on
temporal association rules mining [39], we are planning to include a module with this functionality in
the AID-GM system.

Currently, the Data Integration Module retrieves data from the sensors by using the Application
Programming Interfaces (APIs) made available by Fitbit, and dedicated readers specifically designed
for storing the data in the AID-GM DB. Even though this custom solution fits well with the system
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deployed for the pilot study, we are aware of the importance of devices interoperability, especially in
remote patient monitoring scenarios. Such importance has been acknowledged by several international
projects, such as the open mHealth to FHIR project promoted by HL7 [44], or the Remote Patient
Monitoring supplement to the Technical Framework developed by the IHE Patient Care Coordination
domain [45]. Taking into account these initiatives, future work will be devoted to the development of a
standardization component within the Data Integration Module, responsible for making the exchanged
data available in a standardized format to promote interoperability among devices and other systems.

An additional aspect to be considered is that, in order to have a complete picture of a patient’s
condition, it is important to also consider those events, usually reported in paper diaries, which cannot
be automatically monitored. Up until now, AID-GM has supported the inclusion of some events (meals,
insulin intake, health related issues) that could be recorded manually by the patient using the FreeStyle Libre
reader. Our experience, though, is that patients do not frequently enter data through the reader, probably
due to the time it takes to access the functionality and store the information. To overcome this limitation
and motivate the patients to provide the necessary information, we are working on a mobile app where the
patient could record a voice message reporting any relevant event. The system will then automatically
process and store the information, integrating it with the rest of the data available for that subject.

Finally, in this study we focused on the assessment of the system from a usability perspective,
without analyzing the impact of the introduction of the system from a clinical viewpoint. To this end,
a larger study, possibly including both children and adult patients, should be planned. Depending
on the study duration, it will be possible to evaluate outcomes such as the time in range, the time in
target [46—48], or the variations of glycated hemoglobin.

5. Conclusions

In this work we developed and tested AID-GM, an application that allows better interpretation of
the glycemic profile of an individual suffering from diabetes by analyzing the BG monitoring data
contextualized according to the patient’s activities, monitored by a fitness tracker. Although the interest
in integrating the BG profile with activity data is shared by the scientific community, to the best of our
knowledge, to date, no solution has enabled advanced analyses of time series of BG data taking into
account the patient’s daily context.

AID-GM proved to be user-friendly in a 6-month pilot study, in which a group of patients, who
were already using both the FGM device and the Fitbit tracker, used our system for sharing monitoring
data with their diabetologists. Thanks to its multiple data views, we believe that AID-GM may be a
useful support for diabetologists in understanding the patient’s glycemic profile and, consequently,
in personalizing the care process for the individual. Moreover, as anticipated in the discussion, the
possibility of analyzing a group of patients simultaneously may facilitate the identification of subjects
in need for closer attention, favoring prompt intervention.
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