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Abstract: Rolling bearings are the core components of rotating machinery. Their health directly
affects the performance, stability and life of rotating machinery. To prevent possible damage, it is
necessary to detect the condition of rolling bearings for fault diagnosis. With the rapid development
of intelligent fault diagnosis technology, various deep learning methods have been applied in fault
diagnosis in recent years. Convolution neural networks (CNN) have shown high performance in
feature extraction. However, the pooling operation of CNN can lead to the loss of much valuable
information and the relationship between the whole and the part may be ignored. In this study,
we proposed CNNEPDNN, a novel bearing fault diagnosis model based on ensemble deep neural
network (DNN) and CNN. We firstly trained CNNEPDNN model. Each of its local networks was
trained with different training datasets. The CNN used vibration sensor signals as the input, whereas
the DNN used nine time-domain statistical features from bearing vibration sensor signals as the input.
Each local network of CNNEPDNN extracted different features from its own trained dataset, thus we
fused features with different discrimination for fault recognition. CNNEPDNN was tested under
10 fault conditions based on the bearing data from Bearing Data Center of Case Western Reserve
University (CWRU). To evaluate the proposed model, four aspects were analyzed: convergence
speed of training loss function, test accuracy, F-Score and the feature clustering result by t-distributed
stochastic neighbor embedding (t-SNE) visualization. The training loss function of the proposed
model converged more quickly than the local models under different loads. The test accuracy of
the proposed model is better than that of CNN, DNN and BPNN. The F-Score value of the model is
higher than that of CNN model, and the feature clustering effect of the proposed model was better
than that of CNN.

Keywords: bearing fault diagnosis; convolutional neural network; deep neural network; feature
fusion; dynamic ensemble

1. Introduction

Rolling bearings have been widely applied in various rotating devices, which are used to support
the rotating bodies and transmit torque and power in transmission systems [1,2]. A bearing failure can
lead to unnecessary downtime, serious economic losses and even casualties [3]. Therefore, reliable
bearing condition monitoring is required.

Recently, deep learning has been widely applied in pattern recognition [4–6]. Deep learning
is a new field of machine learning. It is a multi-level feature learning method which uses simple
but non-linear components to transform the features of each layer (from the original data) into more
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abstract higher-order hierarchical features [7]. Therefore, deep learning has a good feature learning
ability. DNN, deep belief network (DBN), CNN, and deep auto-encoder are the main models of
deep learning.

Among various deep-learning models, CNN [8] originally used in image recognition has been
successfully applied in extracting feature. Their unique modeling characteristics can help to discover
local structures or configurable relations in observations, thus CNN is now the main model in image
analysis, video analysis, and speech recognition. CNN-based fault diagnosis methods have been
investigated in recent years. Chen et al. [9] used CNN to identify and classify gearbox faults. Firstly,
statistical measurements in time domain and frequency domain were extracted manually from vibration
signals as CNN’s input. Then, CNN learned and extracted features automatically from these statistical
measurements. Janssens et al. [10] used CNN model in bearing fault detection with vibration signals.
CNN model worked on the frequency spectrum obtained from vibration data by Discrete Fourier
Transform. Zhang et al. [11] converted the vibration signal into an image and used it as a CNN input
for bearing fault diagnosis. Han et al. [12] proposed a dynamic ensemble convolutional neural network
(DECNN) model based on CNN and wavelet transform to identify gearbox faults under variable
speed. The DECNN model consists of several parallel CNNs and the model input is a multi-level
wavelet coefficient matrix constructed by wavelet packet transform. To solve the non-stationary
characteristics, Xie et al. [13] studied the feature extraction method of bearing based on empirical
mode decomposition (EMD) and CNN. The effective intrinsic mode functions obtained by EMD
are selected and reconstructed and the spatial information is extracted from frequency spectrum by
CNN. Then, the features extracted from both methods are combined together to realize non-stationary
signal feature extraction and fault diagnosis. Xia et al. [14] combined the rolling bearing vibration
signals collected by multiple sensors as the input of CNN to achieve the higher and more robust
diagnostic performance. Guo et al. [15] studied and improved the CNN structure and proposed a new
hierarchical learning rate adaptive deep convolutional neural network, which can not only diagnose
bearing failure but also determine its severity. Based on the different signal characteristics of bearing,
Wang et al. [16] used particle swarm optimization algorithm to determine the main parameters of
the CNN model. In the above studies, a two-dimensional convolution structure is used in image
processing, thus the two-dimensional convolution structure is selected for mechanical fault diagnosis.
One-dimensional (1D) CNN has been successfully applied in the classification of bearing fault detection
since most of the measured data of mechanical faults are time-varying one-dimensional parameters.
Turker et al. [17], Levent et al. [18] and Jing et al. [19] successfully used 1DCNN in the classification of
bearing failure detection.

Although CNN have made great achievements in fault diagnosis, CNN pays more attention to
local features [20–22]. When data dimension is reduced, the pooling layer of CNN may lose a lot of
valuable information and ignore the relationship between the whole signal and a part of the signal.
For the same kind of failures with different degrees of severity, target descriptions based on details are
ambiguous, thus affecting the accuracy of fault diagnosis. In previous studies on mechanical fault
diagnosis based on CNN, mechanical vibration signals were converted into two-dimensional matrices
or images, thus increasing the work load and leading to the wrong expression of information.

Time domain statistical features can reflect the signal amplitude fluctuation, impact intervals
and energy distribution law, and have been approved as simple and effective features for fault
diagnosis [23–25]. For example, square root amplitude value and absolute mean amplitude value can
measure the vibration amplitudes and energy of time domain signals. Peak-to-peak amplitude is the
distance from the top of the positive peak to the bottom of the negative peak. Kurtosis reflects the degree
to which the signal deviates from the normal distribution. Skewness and shape factor indicate the degree
to which the center of the signal probability density function deviates from the normal distribution.
With DNN, global features can be efficiently extracted from time-domain statistical features of signals.

Since CNN shows defects in fault diagnosis, we attempted to integrate different deep learning
models to improve the prediction accuracy. It is reported that integrating various models can increase
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the prediction accuracy [26–29]. We proposed a CNNPEDNN model for DNN parallel ensemble CNN
based on feature fusion. In CNNEPDNN model, a fusion layer is added to integrate DNN with CNN
and the global features extracted by DNN from time-domain statistical features are combined with the
local features extracted by CNN from vibration signals. These abstract features can further enhance the
identification ability among different fault states. The proposed model was verified with the bearing
data of Case Western Reserve University (CWRU) under different load conditions and compared
against CNN.

The rest of this paper is organized as follows. Section 2 elaborates the basic knowledge of DNN
and CNN. Section 3 presents the proposed CNNEPDNN model with detailed description. Section 4
describes the experimental setup and time-domain statistical features and presents the evaluation
results on four sets of experiments. The advantages of the CNNEPDNN model were demonstrated.
Finally, the conclusions are drawn in Section 5.

2. Fundamental Theories

2.1. DNN Model

Similar to the shallow neural network layer, the neural network layer inside DNN is divided into
three categories: input layer, hidden layer and output layer. DNN has a deep structure composed
of a number of hidden layers. It is generally believed that a deep network contains at least three
hidden layers, whereas a very deep network should contain at least 10 hidden layers [30]. Through
multiple hidden layers, DNN can learn more complex functional relations. Goodfellow et al. [31]
indicated that, in certain problems, the more hidden layers of the network there were, the higher the
accuracy was. DNN structure is shown in Figure 1. The number of neurons in the input layer is
determined by the characteristics of sample data. Each hidden layer contains multiple neurons and the
number of neurons can be obtained from an empirical formula [31]. The output of each hidden layer is
nonlinear transformed through an activation function and common nonlinear activation functions
include sigmoid, Rectified Linear Unit (ReLU), etc. The number of neurons in the output layer is
determined by the number of sample labels. The output layer and the last hidden layer are connected
to logistic regression.
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Figure 1. Structure diagram of DNN.

x1, x2, . . . , xn and o1, o2, . . . , oc represent the input and output of the network, respectively. The
feature extraction operation of DNN is expressed as:

f (x) = ϕ(wL
ijx + bL) (1)
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where wi j is the connection weight between the L− 1 hidden layer neural cell i and the L hidden layer
neural cell j; bL is the bias of L hidden layer neurons; ϕ is denoted as activation function; and f (x) is
the output of the L hidden layer neural cell j.

2.2. CNN

CNN has two network layers with a special structure, namely convolution layer and pooling
layer. The convolution layer is so named because it uses convolution operation instead of matrix
multiplication. Convolution layer and pooling layer are the core modules for realizing the CNN feature
extraction function. In general, alternating connection means that a convolution layer is connected to a
pooled layer and a pooled layer is then connected to a convolutional layer. Both convolutional layer
and pooling layer are composed of multiple two-dimensional planes and each feature map is a plane.
The numbers of convolutional layer and pooling layer can be determined according to actual demands.
Generally, CNN is composed of input layer, convolution layer, pooling layer, fully connected layer and
output layer. A typical CNN model is illustrated in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 20 

 

where ijw  is the connection weight between the 1L−  hidden layer neural cell i  and the L  
hidden layer neural cell j ; 

Lb  is the bias of L hidden layer neurons; ϕ  is denoted as activation 
function; and ( )f x  is the output of the L  hidden layer neural cell j . 

2.2. CNN 

CNN has two network layers with a special structure, namely convolution layer and pooling 
layer. The convolution layer is so named because it uses convolution operation instead of matrix 
multiplication. Convolution layer and pooling layer are the core modules for realizing the CNN 
feature extraction function. In general, alternating connection means that a convolution layer is 
connected to a pooled layer and a pooled layer is then connected to a convolutional layer. Both 
convolutional layer and pooling layer are composed of multiple two-dimensional planes and each 
feature map is a plane. The numbers of convolutional layer and pooling layer can be determined 
according to actual demands. Generally, CNN is composed of input layer, convolution layer, pooling 
layer, fully connected layer and output layer. A typical CNN model is illustrated in Figure 2. 

 
Figure 2. A typical architecture of CNN. 

Each convolution layer contains multiple convolution kernels, which are weight matrices. 
Different convolution kernels have different weights. The convolutional layer extracts features 
through the convolution kernel, which slides on the feature map of the previous layer and performs 
convolution operation on the local region corresponding to the feature map. After the sliding is 
completed, the convolution transformation is carried out on the feature map from the previous layer 
and then the convolution result is nonlinearly changed to obtain the feature map of the convolution 
layer. Different convolution kernels correspond to different feature maps. A convolution layer has 
the characteristics of weight sharing and local connection and the convolution operation is defined 
as: 

1( )
j

L L L
k kk k kk M
x w x bϕ −

′ ′ ′∈
= ∗ +  (2) 

where 
1L

kx
−

 is defined as the output of the k  feature map at the 1L−  layer; w  is defined as the 

convolution kernel; 
l
kkw ′  is defined as the kernel from the k′  feature map at L  layer to the k  

feature map at 1L−  layer; ∗  is defined as the convolution operation; 
L
kb ′  is defined as the bias of the 

k′  at L  layer; ϕ  is defined as the nonlinear activation function; 
L
kx ′  is defined as the k′  feature 

map at L  layer; and jM  is defined as the number of input feature maps. 
The pooling layer is introduced to reduce the dimension of the feature map representation. In 

the pooling operation, a matrix window is used to scan the feature map and then a statistic is selected 
from the rectangular region as the output of the rectangular region to reduce the number of elements. 
The pooling operation is defined as: 

Figure 2. A typical architecture of CNN.

Each convolution layer contains multiple convolution kernels, which are weight matrices. Different
convolution kernels have different weights. The convolutional layer extracts features through the
convolution kernel, which slides on the feature map of the previous layer and performs convolution
operation on the local region corresponding to the feature map. After the sliding is completed, the
convolution transformation is carried out on the feature map from the previous layer and then the
convolution result is nonlinearly changed to obtain the feature map of the convolution layer. Different
convolution kernels correspond to different feature maps. A convolution layer has the characteristics
of weight sharing and local connection and the convolution operation is defined as:

xL
k′ = ϕ(

∑
k∈M j

wkk′ ∗ xL−1
k + bL

k′) (2)

where xL−1
k is defined as the output of the k feature map at the L− 1 layer; w is defined as the convolution

kernel; wl
kk′ is defined as the kernel from the k′ feature map at L layer to the k feature map at L− 1 layer;

∗ is defined as the convolution operation; bL
k′ is defined as the bias of the k′ at L layer; ϕ is defined as

the nonlinear activation function; xL
k′ is defined as the k′ feature map at L layer; and M j is defined as

the number of input feature maps.
The pooling layer is introduced to reduce the dimension of the feature map representation. In the

pooling operation, a matrix window is used to scan the feature map and then a statistic is selected
from the rectangular region as the output of the rectangular region to reduce the number of elements.
The pooling operation is defined as:

xL
k = φ(xL−1

k ) (3)

where xL−1
k is the k feature map at L− 1 layer; φ is pooling operation; and xL

k is the k feature map at
L layer. The pooling operations generally include maximum pooling and mean pooling. Maximum
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pooling looks for the maximum value in each matrix window and average pooling is to take the average
value of each matrix window. Pooling operations are invariant under small shifts and distortions and
can avoid overfitting.

Convolution layers and pooling layer are often followed by several fully connected layers.
The fully connected layers usually transform the output of two-dimensional feature map of convolution
layer or pooling layer into one-dimensional vectors. All neurons of the fully connected layer are fully
connected to neurons in the previous and subsequent layers, which can be regarded as the hidden
layer in the DNN.

2.3. Forward Transmission Process and Back Propagation of CNN and DNN

In this study, the training methods of CNN and DNN are supervised training methods, which
require training samples (i.e., known data and their corresponding labels) to obtain an optimal model.
The forward transmission processes of CNN and DNN are to input samples into the network, process
them through each network layers, and finally obtain the output. The output layer and the last hidden
layer are connected through Softmax logical regression. In a C-class classification problem, as for the
training set D = {X, Y}N, where N is the number of the training sample; X ∈ RN×1×L is the input data;
Y ∈ RN×1 is the health condition label of the X; and the forward transmission processes of CNN and
DNN are denoted as:

f (x) = fL−1( fL−2(. . . f1(x,θt
1),θ

t
L−2),θ

t
L−1) (4)

OL = so f tmax( f (x,θt
L)) =

exp fL(x,θt
L, c)

C∑
j=1

exp fL(x,θt
L, j)

(5)

where θt
1,θt

2, . . . ,θt
L−1,θt

L are defined as the learnable parameters of each L network layer in the training
t stage, such as weight w and biases b; f1, f2, . . . , fL−1, fL are operations at each network layer, such
as convolution operation and pooling operation of CNN and dot product operation of DNN; x is
the sample data provided by the input layer; fL(x,θt

L) represents the output of L network layer with
parameters on input x; and OL is the classification result of the output layer.

CNN and DNN fine-tune network parameters based on the loss function between the minimized
network output and the expected output and cross entropy loss is widely used as the loss function of
network. The error between the network output and the expected output is distributed to each layer by
backpropagation on m batches of the dataset D. CNN and DNN optimization problems are expressed as:

OL = so f tmax( f (x,θt
L)) =

exp fL(x,θt
L, c)

C∑
j=1

exp fL(x,θt
L, j)

(6)

The CNN and DNN continue to perform the processes of forward propagation and back
propagation until the loss function converges or reaches the specified iterative termination condition,
thus realizing the network supervision training.

3. CNNEPDNN Model

The architecture of the CNNEPDNN model is shown in Figure 3. DNN is connected with CNN
through a fusion layer to construct a global model. The CNN consists of an input layer, two convolutional
layers and two pooling layers and adopts 1D convolution structure with the vibration signal as the
input. The DNN consists of an input layer and multiple hidden layers with the time domain statistical
features of the vibration signal as the input. Then, the fusion layer is used to connect the two local
networks together for feature fusion and Softmax logical regression is used for classification. To avoid
overfitting, dropout [32] is used in the fusion layer. The detailed parameters of the network structure of
model CNNEPDNN are shown in Table 1.
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Table 1. CNNEPDNN parameters.

Layers CNN DNN Training Parameters

1 Input layer Input layer 9 Adam Batch size = 100
Learning rate = 0.0015

Epoch = 100
(ks is kernel size;

kn is kernel number;
s is sub-sampling rate)

Dropout = 0.5

2 Convolution layer 1 Ks = 5 × 1, Kn = 20, Stride = 1 Hidden layer 1 20
3 Pooling layer S = 2 Hidden layer 2 40
4 Convolution layer 2 Ks = 5 × 1, Kn = 40, Stride = 1 Hidden layer 3 80
5 Pooling layer S = 2 Hidden layer 3 160
6 Fusion layer Relu activation function
7 Softmax 10 outputs
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The CNNEPDNN model also iteratively implements forward propagation and back propagation,
similar to other training methods of DNN and CNN. The fault diagnosis process of CNNEPDNN
model is shown in Figure 4. The forward propagation of CNNEPDNN local network is the same as
that of a single network model. It processes and extracts features successively from the input layer to
the hidden layer, and then integrates the features extracted from the two local networks through a fully
connected layer. Assuming that a training set D = {X, X′, Y} has N samples, where N represents the
training sample of vibration sensor signal; X ∈ RN×1×K represents the time-domain statistical feature
training sample extracted from the vibration sensor signal X; and Y ∈ RN×1 represents the training
sample labels. At iteration t, the forward propagation process of CNNEPDNN model can be defined
as follows:

f (x, x′) = fL−1( fc,L−2(. . . fc,1(x,θt
c,1),θ

t
c,L−2), fd,L−2(. . . fd,1(x′,θt

d,1),θ
t
d,L−2),θ

t
L−1) (7)

OL =
exp fL(x, x′,θt

L, c)
C∑

j=1
exp fL(x, x′,θt

L, j)
(8)

where θt
c,1,θt

c,2, . . . ,θt
c,L−1, θt

d,1,θt
d,2, . . . ,θt

d,L−1, and, respectively, represent the learnable parameters of

the local networks and the fusion layer in the CNNEPDNN model; fc,L−1 and f L−1
d are the operations

at each network layer of CNN and DNN; x and, respectively, represent the input samples of CNN and
DNN; fL(x, x′,θt

L) represents the output of L network layer with parameters on input x and x′; and OL

is the classification result of the output layer.Sensors 2019, 19, x FOR PEER REVIEW 9 of 20 
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For convenience, all network parameters of CNNEPDNN are defined as θ and the loss of the
CNNEPDNN model f (θ) on the data D is denoted as L( f (x, x′,θ), y). For the feature fusion, the global
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model sends the loss back to the local worker through the fusion layer, and then the parameters of the
local models are broadcasted to each local network on m batches of the dataset D.

L( f (x, x′,θ), y) = −
1
m

m∑
i=1

c∑
c=1

yc ln f (x, x′,θ, c) (9)

4. Fault Diagnosis Based on CNNEPDNN

To verify the CNNEPDNN model in fault diagnosis, the proposed model was used to diagnose the
health of rolling bearings. The experimental setup and process are described in the following sections.

4.1. Experimental Setup

The experiment was carried out with the rolling bearing data collected by the Bearing Data
Center of CWRU [33]. As shown in Figure 5, the test platform was composed of 2-hp (1.5 kw) motor
(1797–1722 rpm), torque sensor, accelerometer sensor, power tester, etc. The motor shaft was supported
by 6205-2rs JEM SKF type bearings. In the experiment, the acceleration sensors were installed at
12 o’clock position above the motor drive end (DE) and fan end (FE) through a magnetic base. Motor
bearings were artificially seeded with a single point fault, respectively, on the outer race (OR), the
inner race (IR), and the ball by electric discharge machining (EDM). The fault diameters were 7, 14,
and 21 mil and the depth was 11 mil. Vibration signals under four motor loads (0, 1, 2 and 3 hp) were
collected with a 16-channel DAT recorder and the sampling frequencies were 12 kHz. The vibration
signals of ten conditions under 2-hp load from one sensor are shown in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 10 of 20 
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Figure 5. Experimental platform for acquiring vibration signals from rolling bearings.

Vibration signal datasets collected under four loads (3, 2, 1 and 0 hp) are represented by A, B, C
and D, respectively. Under each load, the fault conditions included normal, the inner race fault, the
outer race fault and the ball fault, wherein the inner race, the outer race and the ball faults were further
categorized by the fault size (7, 14, and 21 mils). Therefore, we had ten fault conditions for each load.
For each pattern and load configuration, the collected signals were divided into segments; 512 points
were selected as a segment and one segment as a sample. There were 237 samples for each condition
and 2370 samples in total for ten health conditions under one load. The specific experimental data are
shown in Table 2. Next, Time domain statistical features of each sample were calculated. Generally,
according to dimensional and non-dimensional features, time domain statistical features were divided
into two parts. Dimensional statistical parameters include maximum, minimum, peak-to-peak, mean,
mean square and variance. Non-dimensional statistical parameters include waveform indicators,
peak indicators, pulse indicators, margin indicators, kurtosis indicators, and skewness indicator. The
selected nine time-domain statistical features of each sample were calculated according to the formulas
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in Table 3. In the experiments, we randomly selected 2000 samples from 2370 original vibration signals
and time domain feature samples as training sets and the remaining samples as test sets to validate the
proposed model under four motor loads. To reduce the impact of randomness, 10 experiments were
conducted on each dataset.
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Figure 6. Vibration signals of bearing under 2-hp loads from one sensor. (a–c) are the bearing inner
race fault signal under fault size of 7mils, 14mils and 21 mils, respectively. (b–d) are the bearing outer
race fault under fault size of 7 mils, the 14 mils and 21 mils, respectively. (g–i) are the bearing ball fault
under size of 7 mils, 14 mils and 21 mils, respectively. (j) the normal bearing signal.

Table 2. Bearing dataset descriptions.

Fault Location None Inner Race Outer Race Ball

Fault Diameter(mil) 0 7 14 21 7 14 21 7 14 21

Class label 0 1 2 3 4 5 6 7 8 9

Dataset A
Train 200 200 200 200 200 200 200 200 200 200
Test 37 37 37 37 37 37 37 37 37 37

Dataset B
Train 200 200 200 200 200 200 200 200 200 200
Test 37 37 37 37 37 37 37 37 37 37

Dataset C
Train 200 200 200 200 200 200 200 200 200 200
Test 37 37 37 37 37 37 37 37 37 37

Dataset D
Train 200 200 200 200 200 200 200 200 200 200
Test 37 37 37 37 37 37 37 37 37 37

4.2. Diagnostic Results and Analysis

The proposed model was compared with CNN model in four aspects: convergence speed of
training loss function, test accuracy, F-Score and feature learning ability. The simulations were
implemented in 64-bit PyCharm with a computer with I7-8550U at 1.8 GHZ (4 cores) and 8-Gb memory.

4.2.1. Convergence Speed of Training Loss Function

The convergence curve of the training process in a certain experiment was randomly selected
to analyze the convergence rate. As shown in Figure 7, the convergence of CNNEPDNN model
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was achieved within 20 iterations and it was faster than CNN and DNN under different loads.
In addition, the model is a parallel structure and the cross-entropy loss is convex, which ensured that
the performance of the global model was better than that of the local models, and had no effect on
the computational complexity [34]. Experimental results confirm that the one time of CNNEPDNN
training (one forward propagation and one back propagation) was basically the same as the CNN
network structure with an average time of 7–12 ms; the average training time of DNN was 3 ms.

Table 3. Features selected in the time domain.

Max xmax = max|xi| Kurtosis q = 1
N

N∑
i=1

(xi − x)4

Min xmin = min|xi| Absolute mean xmean = 1
N

N∑
i=1
|xi|

Peak-Peak Value xF−F = xmax − xmin Square root amplitude xt = ( 1
N

N∑
i=1

√
|xi|)

2

Standard deviation σ =

√
1
N

N∑
i=1

(xi − x)2 Shape factor S f =

√
1
N

N∑
i=1

x2
i

1
N

N∑
i=1
|xi |

Skewness g = 1
N

N∑
i=1

(xi − x)3

Note: N is the number of sampling points and xi is the amplitude of the signal at each sampling point.
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4.2.2. Test Accuracy

To test the effectiveness and superiority of CNNEPDNN, CNN, DNN, and BPNN were selected
to compare with the proposed model. Figure 8 presents the testing results of the ten trails of all
comparative methods on four datasets. The average test accuracy and standard deviation of all
comparison methods in the experiment are shown in Table 4. The results show that the proposed
method could improve the accuracy and reliability of diagnosis results.
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Figure 8. Testing accuracy results of the proposed method and CNN, DNN, BPNN in 10 trials: (a), (b),
(c) and (d) are the test accuracy of four methods on dataset A, B, C and D, respectively.

Table 4. Average testing accuracy and standard deviation of comparative methods.

Dataset
CNNEPDNN CNN DNN BPNN

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

Average
Accuracy

Standard
Deviation

A 98.10 0.94 95.07 1.28 89.89 1.63 80.43 1.36
B 97.62 0.42 97.11 0.74 89.46 1.32 83.07 1.43
C 97.92 0.44 97.79 0.63 86.32 1.98 82.41 1.06
D 95.76 0.70 93.40 1.15 83.07 1.43 79.40 1.40

4.2.3. F-Score

In addition to accuracy analysis, two other useful indexes are precision and recall. On the one
hand, it is not desirable to have too many false alarms (high recall rate, low precision) because this will
increase the operating cost due to unnecessary downtime. On the other hand, if only real faults are
marked and no false positive results are reported, the accuracy is high, but the recall rate is low. It takes
much time to balance these two indicators comprehensively. F-Score [10] comprehensively considers
the harmonic values of precision and recall so that the alarm will not be triggered until an actual fault
occurs without any missing fault or false alarm. Precision, Recall and F-Score are defined as follows:

Precision =
|TP|

|TP|+ |FP|
(10)
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Recall =
|TP|

|TP|+ |FN|
(11)

F− Score = (1 + β2)
Precision×Recall
Precision + Recall

(12)

where |TP| is the true positive classification; |TN| is the number of true negative classifications; |FP| is
the number of false positive classifications, such as false positive classification; and |FN| is the number
of false negative classifications, such as missed faults. When β = 1, F-Score combines precision and
recall values so that the alarm will not be triggered until an actual fault occurs without any missing
fault or false alarm. As shown in Table 5, precision, recall and F-Score of CNNEPDNN model are
higher than those of CNN model under different loads.

Table 5. F-Score results obtained with CNN and CNNEPDNN.

Metric
Dataset A Dataset B Dataset C Dataset D

CNNEPDNN CNN CNNEPDNN CNN CNNEPDNN CNN CNNEPDNN CNN

Precision 0.99 0.97 0.98 0.98 0.99 0.98 0.99 0.97
Recall 0.99 0.97 0.98 0.95 0.99 0.98 0.99 0.97

F-Score 0.99 0.97 0.98 0.96 0.99 0.98 0.99 0.97

To further evaluate the proposed model, the confusion matrices of the test dataset for one trial are
shown in Figure 9. Each column of the confusion matrix represents the prediction category and each
row represents the real category to which the data belongs. The green data in the last row indicates
the precision of each fault state and the green data in the last column indicates the recall of each fault.
We can see the diagnosis results of each condition from the confusion matrix. Figure 9(a1–d1) shows
the confusion matrix of CNN for fault identification of Datasets A–D and Figure 9(a2–d2) shows the
confusion result of CNNEPDNN for fault identification of Datasets A–D.

F-score can be calculated according to precision and recall of each fault condition, F-score value
for ten fault condition in four datasets is shown in Figure 10. The F-Score values of the CNNEPDNN
model were no less than those of the CNN model except the inner race faults with fault sizes of 21
and 14 mils in Datasets C and D, and the ball faults with the fault size of 14 mils in Datasets B and D
because the extracted features did not contain sufficient information for accurately distinguishing the
same kind of the faults with different degrees of severity in rolling body and inner race. The signals of
the same kind of faults with different degrees of severity were similar, thus it was more difficult to
distinguish them than different kinds of faults.
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4.2.4. Feature Learning Ability

The influences of fusion features obtained by t-SNE visualization on classification results are
shown in Figure 11. In the 2D embedding figure, every point represents a sample and the axis represents
the t-SNE dimension [35]. Figure 11(a1–d1) shows that the features learned from Datasets A–D at CNN
corresponded to ten conditions. In addition to the features under normal conditions, the features of
several other conditions overlapped with each other. The feature results of CNNEPDNN’s feature
fusion layer learned in Dataset A, B, C and D are, respectively, shown in Figure 11(a2–d2). As shown
in Figure 11(a2–d2), fusion features could be clustered well into categories and easily recognized, thus
further confirming that the proposed model could improve the classification accuracy. However, as
shown in Figure 11(b2–d2), the features of the ball faults with the depths of 7, 14 and 21 mils overlapped
with the features of the fault of the inner race with a depth of 14 mils. The features of the outer race
faults with a depth of 7 and 14 mils overlapped with the features of the inner race fault with a depth of
21 mils. The overlapping phenomena may be related to the extracted features and these types of faults
could not be effectively identified.
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Figure 11. T-SNE visualization of features learned in the fully connected layer: (a1), (b1), (c1) and (d1)
are the features of CNN learning from testing Dataset A, B, C and D, respectively. (a2), (b2), (c2) and
(d2) are the features of CNNEPDNN learning from testing Dataset A, B, C and D, respectively.

4.3. Discussion

1. The experimental results show that the proposed model could effectively identify the same
type of rolling bearing faults of different sizes. As shown in Figure 8 and Table 4, the proposed model
and CNN have the best test accuracy and stability compared with DNN and BPNN under different
motor loads. Experiments proved that CNN has the ability of automatic feature learning. The average
test accuracies of CNNEPDNN model on Datasets A–D were, respectively, 3.04%, 0.51%, 0.13% and
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2.36% higher than those of CNN model; and the standard deviations of CNNEPDNN model were,
respectively, 0.34, 0.32, 0.19 and 0.45 lower than those of CNN model. We think that this result is
significantly related to the structure of the proposed model. The proposed model integrated CNN
and DNN in parallel. CNN extracts local features from the original vibration signal, DNN extracts
waveform features from the time domain features, and further fuses these features to obtain the
final result.

2. Although we integrate DNN in parallel on CNN, the training time of the proposed model
was similar to CNN model. Through ten trials, we calculated the average training time of CNN was
between 7 and 12 ms, and the average training time of DNN was 3 ms. The proposed model has a
parallel structure and two local networks were trained at the same time, thus the average training time
of the proposed model was similar to CNN. The loss function of the proposed model is cross-entropy,
i.e., convex function. The model averages the output of the local model rather than the parameters,
which guarantees the performance of the model. As shown in Figure 7, the proposed model converged
more quickly than its local model.

3. The accuracy and reliability of the proposed model and CNN in fault identification of rolling
bearings were further compared through F-score. In the confusion matrix shown in Figure 9, we can
see the identification results of each type of fault. As shown in Table 5 and Figure 10, The F-score value
of CNNEPDNN model was higher than the F-score value of CNN model. This proved that our model
was effective. However, the inner race fault with fault size 21 and 14 mils in Datasets C and D, and the
ball fault with fault size 14 mil in Datasets B and D were easily confused with each other. We think
that this may be related to the insufficient feature extraction. The signals of the same kind of faults
with different degrees of severity were similar, thus the features extracted from the local model did not
distinguish the inner race fault and the ball fault.

4. Through T-SNE visualization, the feature learning abilities of the proposed model and CNN
were further compared. As shown in Figure 11(a1–d2), by visualizing the features of the full-connection
layer of CNN, the features of several other conditions overlapped with each other in addition to those
under normal conditions. In the proposed model, the fusion features became distinguishable, as shown
in Figure 11(a2–d2).

5. Conclusions and Future Work

In this study, we proposed a novel model CNNEPDNN to improve CNN in rolling bearing fault
diagnosis. After integrating DNN with CNN, the extracted local features are fused with global features.
The performance of the proposed fault diagnosis model for bearing fault was tested in ten conditions
under different loads. The comparison of the diagnosis results of CNN and CNNEPDNN indicated
that CNNEPDNN could give more precise diagnosis results for the same type of faults with different
sizes. The visualized fusion features indicated that the feature clustering effect of the proposed model
was better than that of CNN.

It is worth noting that the time domain features encounter some limitations, such as the bearings
are running at variable speeds, or the noise is very high; it is difficult to design discriminant features or
features become inconsistent, which will affect the diagnostic accuracy of DNN, and may affect the
diagnostic accuracy of the whole model.

In the future, we will test the proposed model under more conditions. Furthermore, there are still
some possible misclassifications. Additional features, sensor data, and other ensemble methods will
be considered.
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