
sensors

Article

Monocular Visual-Inertial Odometry with
an Unbiased Linear System Model and Robust
Feature Tracking Front-End

Xiaochen Qiu 1,2, Hai Zhang 1,2,*, Wenxing Fu 3, Chenxu Zhao 4 and Yanqiong Jin 1,2

1 School of Automation Science and Electrical Engineering, Beihang University, No. 37 Xueyuan Road,
Haidian District, Beijing 100191, China; qiuxiaochen@buaa.edu.cn (X.Q.); buaa_jinyq@buaa.edu.cn (Y.J.)

2 Science and Technology on Aircraft Control Laboratory, Beihang University, No. 37 Xueyuan Road,
Haidian District, Beijing 100191, China

3 Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory,
No. 40 Yungangbeili, Fengtai District, Beijing 100074, China; fuwenxingCHN@163.com

4 Sino-French Engineer School, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191,
China; chenxu.zhao@buaa.edu.cn

* Correspondence: zhanghai@buaa.edu.cn; Tel.: +86-10-8233-9366

Received: 23 March 2019; Accepted: 22 April 2019; Published: 25 April 2019
����������
�������

Abstract: The research field of visual-inertial odometry has entered a mature stage in recent years.
However, unneglectable problems still exist. Tradeoffs have to be made between high accuracy
and low computation for users. In addition, notation confusion exists in quaternion descriptions
of rotation; although not fatal, this may results in unnecessary difficulties in understanding for
researchers. In this paper, we develop a visual-inertial odometry which gives consideration to
both precision and computation. The proposed algorithm is a filter-based solution that utilizes
the framework of the noted multi-state constraint Kalman filter. To dispel notation confusion,
we deduced the error state transition equation from scratch, using the more cognitive Hamilton
notation of quaternion. We further come up with a fully linear closed-form formulation that
is readily implemented. As the filter-based back-end is vulnerable to feature matching outliers,
a descriptor-assisted optical flow tracking front-end was developed to cope with the issue.
This modification only requires negligible additional computation. In addition, an initialization
procedure is implemented, which automatically selects static data to initialize the filter state.
Evaluations of proposed methods were done on a public, real-world dataset, and comparisons
were made with state-of-the-art solutions. The experimental results show that the proposed
solution is comparable in precision and demonstrates higher computation efficiency compared
to the state-of-the-art.

Keywords: visual inertial odometry; quaternion notation; closed-form state transition equation;
robust feature tracking; real-time motion tracking; computation saving

1. Introduction

The fusion of monocular cameras and inertial measurement units (IMUs) is very popular recently,
thanks to great improvements in the computation capacity of computers with low energy costs and
low weight, and the increasing demand for accurate motion tracking or positioning in unmanned
aerial vehicles (UAVs), augmented reality, and driverless cars. This fusion problem has been studied by
brilliant scientists for years [1–4], and as a result, one can now build his own visual-inertial odometry
(VIO) module simply with cheap sensors and open-source software [2,5–9].

Sensors 2019, 19, 1941; doi:10.3390/s19081941 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/8/1941?type=check_update&version=1
http://dx.doi.org/10.3390/s19081941
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 1941 2 of 24

Fusion frameworks are divided into two main branches: filter-based and optimization-
based [10,11]. Optimization-based methods are so far widely recognized performing better in terms of
precision [12] due to their iterating mechanism, which is essentially solving a noted bundle adjustment
(BA) problem [13]. The BA problem was considered to be computational costly in earlier years,
until the literature recognized and revealed its sparse structure [13,14] so as to develop real-time
algorithms. Kümmerle et al. [7] modeled BA as a graph optimization problem. Kaess et al. [8]
introduced a factor graph model to further illustrate the Bayesian nature of BA. Kaess et al. [8] also
found that the incremental fact of sophiscated Hessian matrix in normal equation can be utilized for
solving BA, thus speeding up the calculation further. With these profound insights, researchers also
made efforts to overcome the inconsistency in fixed-lag fusion algorithms, which has the advantages
of having bounded computation with less information loss and maintaining the sparse structure [15].
Several open-source libraries are available for building the back-end for algorithms of this branch,
based on different mathematical descriptions listed above and providing convenient application
program interfaces (APIs) [7–9,16]. Although enabling reduced computation by leveraging sparse
matrix factorization, optimization-based VIO systems still need to be tailored sometimes in order to be
deployed on a computation-limited platform. Sometimes, this leads to a downgraded performance [17].

Before the flowering of optimization-based methods, the solving of fusion problems was
dominated by filtering [18]. The ordinary procedure is to include IMU pose and map point positions in
the filter state and recursively propagate and update as IMU and camera measurements respectively
arrive [10]. The accurate estimation of map point positions is the key to bring about an unbiased
IMU pose updating. In traditional filter-based solutions, the filter state would invariably have a very
large dimension since it always preserves a lot of map points, resulting in enhanced computation
requirements [1]. The use of a multi-state constraint Kalman filter (MSCKF) was proposed as
an effective and optimal filter-based solution that does not maintain map points in filter state [19].
By properly handling the camera measurement, MSCKF can achieve as competitive a performance as
optimization-based algorithms and demands far less computation [17].

By correcting observability properties [19–21] and incorporating camera–IMU extrinsic parameters
into the filter state [22], the performance of MSCKF was further improved. Many follow-up works
emerged, including an open-source monocular implementation [23], expansion to stereo camera
rig [24], and schemes using direct visual front-ends [25] or adding line features [26].

It should be emphasized that all members of the MSCKF family so far have been developed
based on Shuster’s notation of quaternion [27], whereas most of the community utilizes the traditional
Hamilton notation, which results in unnecessary trouble in understanding for researchers [28].

Visual front-ends apparently play an important role in VIOs. There are typically of two categories.
Feature-based methods use descriptors to match features between consecutive images [6], while direct
methods seek a minimization of photometric residuals to accomplish data correlation [5,25]. Sparse
optical flow tracking is an efficient direct method that is widely used [2,23,24]. It provides sub-pixel
accuracy but contains more outliers than feature descriptor matching [29]. An optimization-based
back-end would eliminate outliers during iteration [30]. Filter-based back-ends are meanwhile
vulnerable to the outliers if only one-off updating is applied [23]. Using an iterated update scheme
would mitigate this situation while introducing additive computation [31].

To recap, in order to make VIO algorithms more practical, it is desirable to develop algorithms
with lower computation while maintaining high precision.

In this paper, we developed a filter-based monocular visual-inertial odometry which can be
regarded as a member of MSCKF family, giving consideration to both high precision and computation
efficiency. The main contributions of this paper are as follows:

• We deduced a closed-form IMU error state transition equation based on the more cognitive Hamilton
notation of quaternion. By solving integration terms analytically, a novel fully linear formulation
was further obtained, which is also closed-form, and furthermore, is readily implemented.



Sensors 2019, 19, 1941 3 of 24

• By analyzing the statistical properties of ORB descriptor [32] distances of matched and unmatched
feature points, we introduced a novel descriptor-assisted sparse optical flow tracking technique,
which enhances the feature tracking robustness and barely adds any computation complexity.

• More improvements are made to improve the usability and performance of the filter.
An initialization procedure is developed that automatically detects stationary scenes by analyzing
tracked features and initializes the filter state based on static IMU data. The feature triangulation
mechanism is carefully refined to provide efficient measurement updates.

• A filter-based monocular VIO using the proposed state transition equation, visual front-end,
and initialization procedure under Sun et al.’s [24] framework is implemented. The performances
of our VIO and MSCKF-MONO [23], an open-source monocular implementation of MSCKF,
are compared with parameters setup as similarly as possible. Ours is also compared with
other state-of-the-art open-source VIOs including ROVIO [5], OKVIS [6], and VINS-MONO [2].
In addition, we analyze the process time of our algorithm. All of the evaluations above are done
on EuRoC datasets [33]. Detailed evaluations are reported.

The rest of this paper is organized as follows. The problem of quaternion notation confusion is
illustrated in Section 2. Section 3 deduces the error state differential equation based on Hamilton’s
notation. Section 4 gives a closed-form error state transition formulation and then solves the integration
terms in it, obtaining a fully linear closed-form formulation. Section 5 presents the descriptor-assisted
sparse optical flow tracking front-end. Other implementation details and improvements are presented
in Section 6, including the overall filter model, automatic initialization procedure, and refined feature
triangulation mechanism. Section 7 presents the experimental results in detail. Finally, conclusions are
made in Section 8.

2. Quaternion Notation Confusion

Quaternion is one of the widely used representations of rotation in numerical calculations [34].
In the related literature, there are mainly two different notations: Hamilton’s notation and Shuster’s
notation [35]. The difference between them lies in their flipped rule for the multiplication of imaginary
parts i, j, and k. Hamilton utilizes ij = k, while Shuster advocates for ij = −k to maintain the order
of chain rule when transferring to direction cosine matrices (DCMs). Sommer et al. [28] surveyed this
notation confusion problem in detail and argue for entirely abandoning Shuster’s notation. In this
section, we present the original problem that Shuster’s notation is designed to solve and a solution for
maintaining chain rule order while still using Hamilton’s notation.

A quaternion of rotation q is basically a unit quaternion; it can be defined as

q = cos
θ

2
+ uA · sin

θ

2
(1)

where uA is the unit vector of rotation axis in frame A, and θ is the angle of rotation. In the rest of this
article, the term “quaternion” will be used to refer to a quaternion of rotation, for the sake of simplicity.

Equation (1) shows how to construct a quaternion q from an axis-angle θuA, which describes
the anticlockwise rotation of an angle θ about the axis u. If the original frame A is rotated to a new
frame B after this rotation, as illustrated in Figure 1, then we can use a quaternion qB

A or a DCM RB
A to

describe this rotation.
Note that RB

A can be used to compute the coordinate of a vector v in frame B given its coordinate
in frame A, that is vB = RB

AvA. RB
A can be written as a function of qB

A

RB
A = CS

(
qB

A

)
(2)

where CS (•) is an operator mapping qB
A to RB

A.
Let qC

B be the quaternion describing the rotation from frame B to frame C and qC
A the rotation

from frame A to frame C. Then, according to Equation (2), we have



Sensors 2019, 19, 1941 4 of 24

RC
B =CS

(
qC

B

)
RC

A =CS

(
qC

A

)
.

(3)

A
X

A
Y

A
Z

B
X

B
Y

B
Z u

q

Figure 1. Rotation of frame A into frame B.

Coordinate transformation of vectors can also be done by applying the triple product of quaternions:

vB =
(

qB
A

)−1
⊗ vA ⊗ qB

A

vC =
(

qC
B

)−1
⊗ vB ⊗ qC

B .
(4)

Here we abuse the notation of vA, vB, and vC to describe quaternions with zero real part such

that vA →
[

0
(
vA)T

]T
. Combining the two equations above yields:

vC =
(

qC
B

)−1
⊗
(

qB
A

)−1
⊗ vA ⊗ qB

A ⊗ qC
B

=
(

qB
A ⊗ qC

B

)−1
⊗ vA ⊗

(
qB

A ⊗ qC
B

)
.

(5)

Referring to Equation (5), there is

qC
A = qB

A ⊗ qC
B . (6)

At the same time, by applying the chain rule in DCM production, it follows that

RC
A = RC

BRB
A . (7)

Now we can conclude that CS
(
qB

A ⊗ qC
B
)
= CS

(
qC

B
)

CS
(
qB

A
)
, which means the mapping CS (•)

is not a homomorphism. One would prefer a homomorphic mapping between DCM and quaternion
to maintain the chain-rule order, which is convenient to manipulate. Shuster utilized a flipped
multiplication rule to avoid this problem. This notation was adopted by the Jet Propulsion Laboratory
(JPL) and thus introduced to spacecraft literatures, while other research fields were still using the
traditional Hamilton notation. But as researchers have exchanged ideas between different research
fields, Shuster’s notation has been utilized in robotics for rotation representation [28]. So far, all of the
theories about MSCKF are deduced based on this notation [1].

As Sommer et al. [28] claimed, a homomorphic mapping could be obtained even under Hamilton’s
notation. Let CH (•) be an operator that satisfies CH (q) = CS(q)

T . Thus, we have



Sensors 2019, 19, 1941 5 of 24

RA
B =CH

(
qB

A

)
RB

C =CH

(
qC

B

)
RA

C =CH

(
qC

A

)
.

(8)

According to Equations (6) and (7), we now have CH
(
qB

A ⊗ qC
B
)

= CH
(
qB

A
)

CH
(
qC

B
)
,

which proves CH (•) to be a homomorphism.
Given a quaternion

qB
A = cos

θ

2
+ uA sin

θ

2
=q0 + q1i + q1j + q2k,

(9)

the operator CH (•) is defined as a function mapping quaternion qB
A to a DCM RA

B as

CH

(
qB

A

)
= RA

B

=

 q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3.

 (10)

This is, in fact, the classical Rodrigues Rotation Formula. There is a more thorough discussion
about this mapping in [36].

3. IMU Error State Differential Equation

In this section, we deduce the IMU error state differential equation based on Hamilton’s
quaternion notation. The Earth’s rotation is ignored as low cost gyros cannot measure it. The static
world assumption is employed, which means that gravity has a fixed direction. This is acceptable
when a VIO is working in a limited region.

3.1. Notation

The east-north-up geographic coordinate system at initial position is selected as the reference
world frame w. As the Earth’s rotation is omitted, w can be regarded as an inertial frame. Quaternion
qb

w is used to represent the rotation from frame w to body frame b. According to Equation (8), we obtain

CH

(
qb

w

)
= Rw

b . (11)

The error quaternion is defined as

δqb
w = qb

w ⊗
(

q̂b
w

)−1
, (12)

where q̂b
w is the estimated quaternion of qb

w.
According to Equation (10), applying the CH (•) mapping to Equation (12) leads to

Rw
w′ = Rw

b

(
Rw′

b

)−1
, (13)

where w′ is the estimated world frame, and δqb
w corresponds to the rotation between w and w′.

δqb
w can be expressed in axis-angle formulation as



Sensors 2019, 19, 1941 6 of 24

δqb
w = cos

|δθθθw|
2

+
δθθθw

|δθθθw|
sin
|δθθθw|

2
, (14)

where δθθθw =
[

δθw
x δθw

y δθw
z

]T
is an axis-angle in frame w that rotates frame w′ to frame w.

As |δθθθw| is a small angle, an approximate expression of Equation (14) is

δqb
w ≈ 1 +

1
2

δθθθw. (15)

Based on Equations (10) and (14), an approximate expression of Rw
w′ is formulated as

Rw
w′ ≈

 1 −δθw
z δθw

y
δθw

z 1 −δθw
x

−δθw
y δθw

x 1


=I + [δθθθw×] ,

(16)

where the operator [•×] is used to denote the skew matrix. For a given three-dimensional (3D) vector

v =
[

vx vy vz

]T
, its skew matrix is

[v×] =

 0 −vz vy

vz 0 −vx

−vy vx 0

 . (17)

3.2. IMU Measurement Model

An IMU includes a 3-axis gyroscope and a 3-axis accelerometer, whose axes are aligned with the
body frame. The output of the gyroscope is modeled as

ωωωb
m = ωωωb

wb + bg + ng, (18)

where ωωωb
wb is the true angular velocity, bg denotes the gyroscope bias under the body frame, and ng is

the Gaussian white noise.
The accelerometer measures the specific force along a body-fixed axis, which includes an opposite

gravity and is affected by bias and noise as well:

fb
m = ab − Rb

wgw + ba + na

= Rb
w (aw − gw) + ba + na,

(19)

where ab is the true acceleration, and gw =
[

0 0 −g
]T

denotes the gravity under the world frame.
ba and na denote the bias and the Gaussian white noise under the body frame, respectively.

The biases bg and ba are modeled as random walk processes

ḃg =nwg

ḃa =nwa,
(20)

where nwg and nwa are Gaussian white noises.

3.3. IMU Error State Definition

The IMU state includes the quaternion qb
w, velocity vw

b and position pw
b of the body frame origin

in the world frame, and IMU biases bg and ba. The IMU state can be defined as



Sensors 2019, 19, 1941 7 of 24

xIMU =
[

qb
w

T
vw

b
T pw

b
T bT

g bT
a

]T
. (21)

The filter is designed based on the error state because it is convenient to process by extended
Kalman filter (EKF). Three dimensional angular error δθθθw rather than four dimensional quaternion
error δqb

w is utilized since it is accordance with the degree of freedom (DOF) of rotation, and thus
a minimum parameterization.

Other error state components are simply defined as the Euclidean distances between true states
and the estimated states, which lead to

δvw
b =vw

b − v̂w
b , (22)

δpw
b =pw

b − p̂w
b , (23)

δbg =bg − b̂g, (24)

δba =ba − b̂a. (25)

The overall IMU error state can now be concluded as

δxIMU =
[

δθθθwT
δvw

b
T δpw

b
T bT

g bT
a

]T
. (26)

3.4. Differential Equation

The matrix form of the differential equation of the overall IMU error state is as follows.

δẋIMU = FδxIMU + GnIMU , (27)

where nIMU denotes the IMU noise, given by

δxIMU =
[

δθw δvw
b

T δpw
b

T δbT
g δbT

a

]T
, (28)

nIMU =
[

nT
g nT

a nT
wg nT

wa

]T
, (29)

and the matrices F and G are as follows:

F =


03×3 03×3 03×3 −R̂w

b 03×3

−
[(

R̂w
b â
)
×
]

03×3 03×3 03×3 −R̂w
b

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 , (30)

G =


−R̂w

b 03×3 03×3 03×3

03×3 −R̂w
b 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 . (31)

4. Fully Linear State Transition Equation Formulation

A state transition equation is needed for the extended Kalman filter (EKF) to propagate the
state and covariance. One commonly used method is to make a first-order approximation based
on a continuous differential equation [37]. Li and Mourikis [19] proposed a closed-form error state
transition equation that effectuated a system model with no information loss. However, there are still
some tricky integration terms left behind. In this section, we first present the closed-form IMU error



Sensors 2019, 19, 1941 8 of 24

state transition equation based on the results of Section 3. Then, we solve the integration terms by
two-sample fitting of the rotation matrix, resulting in a closed-form formulation that is fully linear.

4.1. Original Closed-Form Equation

Following the methodology of Li and Mourikis [19], the closed-form transition equation was
deduced and presented in what follows. Noting that k and k + 1 are consecutive discrete sampling
instants of IMU, and ∆t is the sampling period,

δθθθw
k+1|k =Φθθ (k + 1, k) δθθθw

k|k + Φθbg (k + 1, k) δbgk|k + nθk, (32)

δvw
k+1|k =Φvθ (k + 1, k) δθθθw

k|k + Φvv (k + 1, k) δvw
k|k

+ Φvbg (k + 1, k) δbgk|k + Φvba (k + 1, k) δbak|k + nvk,
(33)

δpw
k+1|k =Φpθ (k + 1, k) δθθθw

k|k + Φpv (k + 1, k) δvw
k|k + Φpp (k + 1, k) δpw

k|k

+ Φpbg (k + 1, k) δbgk|k + Φpba (k + 1, k) δbak|k + npk,
(34)

δbgk+1|k =Φbgbg (k + 1, k) δbgk|k + nbgk, (35)

δbak+1|k =Φbaba (k + 1, k) δbak|k + nbak, (36)

where Φx1x2 is used to represent the transition matrix of the error state of x1 with respect to the error
state of x2, and n∗ terms represent noise. All of the Φ∗ and n∗ terms are listed as follows:

Φθθ (k + 1, k) =I3×3, (37)

Φθbg (k + 1, k) =− R̂w
bk

∫ tk+1

tk

R̂bk
bτ

dτ, (38)

Φvθ (k + 1, k) =−
[(

v̂w
k+1|k − v̂w

k|k − gw∆t
)
×
]

, (39)

Φvv (k + 1, k) =I3×3, (40)

Φvbg (k + 1, k) =
∫ tk+1

tk

{[(
˙̂vw

τ − gw
)
×
]

R̂w
bk

(∫ τ

tk

R̂bk
bm

dm
)}

dτ, (41)

Φvba (k + 1, k) =− R̂w
bk

∫ tk+1

tk

R̂bk
bτ

dτ, (42)

Φpθ (k + 1, k) =−
[(

p̂w
k+1|k − p̂w

k|k − v̂w
k|k∆t− 1

2
gw∆t2

)
×
]

, (43)

Φpv (k + 1, k) =I3×3∆t, (44)

Φpp (k + 1, k) =I3×3, (45)

Φpbg (k + 1, k) =
∫ tk+1

tk

{∫ τ

tk

([(
˙̂vw

s − gw
)
×
]

R̂w
bk

[∫ s

tk

R̂bk
bm

dm
])

ds
}

dτ, (46)

Φpba (k + 1, k) =− R̂w
bk

∫ tk+1

tk

(∫ τ

tk

R̂bk
bs

ds
)

dτ, (47)

Φbgbg (k + 1, k) =I3×3, (48)

Φbaba (k + 1, k) =I3×3, (49)

nθk =R̂w
bk

∫ tk+1

tk

R̂bk
bτ

(∫ τ

tk

nwgsds + ngτ

)
dτ, (50)

nvk =
∫ tk+1

tk

R̂w
bτ

(
−
∫ τ

tk

nwasds− naτ

)
dτ

−
∫ tk+1

tk

{[(̇̂
vw

τ − gw
)
×
]

R̂w
bk

[∫ τ

tk

R̂bk
bm

(∫ m

tk

nwgsds + ngm

)
dm
]}

dτ,
(51)



Sensors 2019, 19, 1941 9 of 24

npk =
∫ tk+1

tk

nvτdτ, (52)

nbgk =
∫ tk+1

tk

nwgτdτ, (53)

nbak =
∫ tk+1

tk

nwaτdτ. (54)

4.2. Fully Linear Closed-Form Formulation

Notice that in Equations (38), (41), (42), (46), and (47), although they are closed-form expressions,
there are still some tricky integration terms that are not straightforward for implementation. One can
solve these terms with numerical integration, but here we present a fully linear analytical expression
that is readily implemented. The key is to solve

∫ tk+1
tk

R̂bk
bτ

dτ. We first apply a two-sample fitting

method to approximate the axis-angle representing R̂bk
bτ

, then Rodrigues’ rotation formula is applied to
express the DCM as a linear function of τ, thus making the integration easy to solve.

4.2.1. Two-Sample Fitting of Axis-Angle

Any DCM can be regarded as a single rotation about a fixed axis, and thus can be represented by
an axis-angle. Let the axis-angle of R̂bk

bk+1
be φφφ = αubk , where α is the angle of rotation and ubk is the

rotation axis. Let τ be a time instant between tk and tk+1 and ε = τ − tk, then a linear model can be
used to represent the axis-angle of R̂bk

bτ
:

φφφτ = φφφ (ε) =
ε

∆t
αubk =

ε

∆t
φφφ. (55)

Angular velocity measurements of tk and tk+1 are available when calculating the transition matrix
ΦΦΦ (k + 1, k), so a two-sample fitting method can be used to approximate the axis-angle φφφ. We start
from the differential equation of φφφ (ε) [36]:

φ̇̇φ̇φ (ε) = ω̄̄ω̄ω +
1
2

φφφ (ε)× ω̄̄ω̄ω +
1

12
φφφ (ε)× (φφφ (ε)× ω̄̄ω̄ω) , (56)

where ω̄̄ω̄ω is the average angular velocity between tk and tk+1. As two gyro measurements are available,
we use a straight line model to fit ω̄̄ω̄ω as

ω̄̄ω̄ω (tk + ε) = a + 2bε, 0 ≤ ε ≤ ∆t. (57)

Considering ω̄̄ω̄ωb (tk) = ω̂̂ω̂ωb
wb (tk) and ω̄̄ω̄ωb (tk + ∆t) = ω̂̂ω̂ωb

wb (tk+1), leads to

a =ω̂̂ω̂ωb
wb (tk)

b =
(

ω̂̂ω̂ωb
wb (tk+1)− ω̂̂ω̂ωb

wb (tk)
)/

(2∆t).
(58)

According to Equation (55), φφφ is equal to φφφtk+1
, then using Taylor expansion to expand φφφ at

linearized point tk yields

φφφ =φφφtk+1

=φφφtk
+ ∆tφ̇φφtk

+
∆t2

2!
φ̈φφtk

+ · · ·

=φφφ (0) + ∆tφ̇φφ (0) +
∆t2

2!
φ̈φφ (0) + · · · .

(59)

Now define a new function of ε as



Sensors 2019, 19, 1941 10 of 24

∆θθθ (ε) =
∫ ε

0
ω̂ωωb

wb (tk + ε) dε. (60)

It can be pointed out that φφφ (ε) ≈ ∆θθθ (ε). Derivatives of ∆θθθ (0) are defined as

∆θθθ (0) =0,

∆θ̇θθ (0) =ω̂ωωb
wb (tk) = a,

∆θ̈θθ (0) = ˙̂ωωωb
wb (tk) = 2b,

∆θθθ(i) (0) =ω̂ωωb
wb

(i−1)
(tk) = 0, i = 3, 4, 5, · · · .

(61)

The third term in Equation (56) is a high-order small quantity that can be omitted. By substituting
φφφ (ε) as ∆θθθ (ε), Equation (56) turns into

φ̇φφ (ε) = ω̄ωω (tk + ε) +
1
2

∆θθθ (ε)× ω̄ωω (tk + ε) . (62)

Now the high-order derivatives of φφφ (ε) can be obtained:

φ̈φφ (ε) = ˙̄ωωω (tk + ε) +
1
2

∆θ̇θθ (ε)× ω̄ωω (tk + ε) +
1
2

∆θθθ (ε)× ˙̄ωωω (tk + ε) ,

φφφ(3) (ε) =
1
2

∆θ̈θθ (ε)× ω̄ωω (tk + ε) + ∆θ̇θθ (ε)× ˙̄ωωω (tk + ε) ,

φφφ(4) (ε) =
3
2

∆θ̈θθ (ε)× ˙̄ωωω (tk + ε) ,

φφφ(i) (ε) =0, i = 5, 6, 7, · · · .

(63)

Let ε = 0, and considering Equation (61), we have

φφφ (0) =0,

φ̇φφ (0) =a,

φ̈φφ (0) =2b,

φφφ(3) (0) =a× b,

φφφ(i) (0) =0, i = 4, 5, 6, · · · .

(64)

Substituting the equations above into Equation (59) yields

φφφ =a∆t + b∆t2 +
1
6
(a× b)∆t3

=
1
2

(
ω̂ωωb

wb (k) + ω̂ωωb
wb (k + 1)

)
∆t +

1
12

(
ω̂ωωb

wb (k)× ω̂ωωb
wb (k + 1)

)
∆t2.

(65)

This is how the axis-angle between two consecutive sampling time instants tk and tk+1 can
be computed.

According to Rodrigues’ rotation formula,

R̂bk
bk+1

= I + sin α
[
ubk×

]
+ (1− cos α)

[
ubk×

]2
. (66)

As α is a small angular, since ∆t is small, Equation (66) has an approximation



Sensors 2019, 19, 1941 11 of 24

R̂bk
bk+1
≈I + α

[
ubk×

]
=I + [φφφ×] .

(67)

Now, substituting Equation (55) into Equation (67) leads to

R̂bk
bτ
≈ I +

τ − tk
∆t

[φφφ×] . (68)

Finally, the general procedure to solve the integration term
∫ tk+1

tk
R̂bk

bτ
dτ can be summarized

as follows:

1. Compute the axis-angle between tk and tk+1 according to Equation (65).
2. Express R̂bk

bτ
as Equation (68).

3. Easily solve the
∫ tk+1

tk
R̂bk

bτ
dτ term, as it becomes an integration about a linear analytic expression.

4.2.2. Solve Integration Terms in ΦΦΦ∗

The fully linear closed-form transition matrix of Equations (38), (41), (42), (46), and (47) can now
be obtained by simply solving the integration terms. The results are listed below.

ΦΦΦθbg (k + 1, k) =− R̂w
bk

(
∆tI +

1
2

∆t [φφφ×]
)

,

ΦΦΦvbg (k + 1, k) =
[(
−p̂w

k+1|k + p̂w
k|k + v̂w

k+1|k∆t− 1
2

gw∆t2
)
×
]

R̂w
bk

+

[(
−1

2
p̂w

k+1|k +
1
2

p̂w
k|k +

1
2

v̂w
k+1|k∆t− 1

6
gw∆t2

)
×
]

R̂w
bk
[φφφ×] ,

ΦΦΦvba (k + 1, k) =− R̂w
bk

(
∆tI +

1
2

∆t [φφφ×]
)

,

ΦΦΦpbg (k + 1, k) =
[(
−1

6
gw∆t3

)
×
]

R̂w
bk

+

[(
1
4

p̂w
k+1|k∆t− 1

4
p̂w

k|k∆t− 1
24

gw∆t3
)
×
]

R̂w
bk
[φφφ×] ,

ΦΦΦpba (k + 1, k) =− 1
6

R̂w
bk

∆t2 (3I + [φφφ×]) .

(69)

Notice that all of the variables needed are available at the time of calculating the ΦΦΦ terms above.
This model is unbiased up to the information loss of the two-sample fitting of DCM, which is small
due to the utilization of all related measurement data.

4.2.3. Process Noise Terms

The property of noise terms in Equations (50)–(54) should be acquired to compute the process
noise covariance matrix in a Kalman filter. The process noise covariance at tk can be computed as [37]:

Q (tk) =
∫ tk+1

tk

ΦΦΦ (tk+1, τ)G (τ) qGT (τ)ΦΦΦT (tk+1, τ) dτ. (70)

We temporarily abuse symbol q here to represent the noise intensity matrix. ΦΦΦ is the overal; IMU
error state transition matrix. As ∆t is a small quantity, an approximate expression of Equation (70) is
formulated as

Q (tk) ≈ ΦΦΦ (tk+1, tk)G (tk) qGT (tk)ΦΦΦT (tk+1, tk)∆t. (71)



Sensors 2019, 19, 1941 12 of 24

The discrete form, which will be preferable for a discrete filter implementation, is

Q (k) ≈ ΦΦΦ (k + 1, k)G (k) qGT (k)ΦΦΦT (k + 1, k)∆t. (72)

4.3. Summarization

According to the derivation above, the proposed fully linear closed-form IMU error state transition
equation is as follows:

δxIMU (k + 1) = ΦΦΦ (k + 1, k) δxIMU (k) + nIMU (k) , (73)

where

ΦΦΦ (k + 1, k) =


I3×3 03×3 03×3 ΦΦΦθbg 03×3

ΦΦΦvθ I3×3 03×3 ΦΦΦvbg ΦΦΦvba

ΦΦΦpθ ∆tI3×3 I3×3 ΦΦΦpbg ΦΦΦpba

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

 , (74)

nIMU (k) =
[

nT
θk nT

vk nT
pk nT

bgk nT
bak

]T
, (75)

and the covariance matrix of nIMU (k) is E
[
nIMU (k) nT

IMU (k)
]
= Q (k).

The integration terms are solved using a fitting rule of DCMs by utilizing all of the related
measurements, so we claim that the obtained formulation is an unbiased model up to the numerical
integration resolution.

5. ORB Descriptor-Assisted Optical Flow Front-End

In this section, we propose a sparse visual front-end using descriptor-assisted optical flow
feature tracking.

Different kinds of feature descriptors are used in several VIOs to accomplish feature extraction and
matching [1,6,30]. In contrast, other solutions choose optical flow feature tracking as their front-end
solution since it is not that time-consuming compared to the descriptor-based methods [2,23,24].
However, there are more wrong matches in optical flow tracking than in descriptor-based methods,
and these wrong matches exist even after eliminating algorithms such as random sample consensus
(RANSAC). Filter-based VIOs are very sensitive to feature outliers since they don’t eliminate outliers
in their iterations as the optimization-based ones do. Wrong matches left behind will participate in
measurement updates, which may result in deteriorating estimates or even failure. As a conclusion,
a robust front-end is needed to achieve stable performance for filter-based VIOs, while a real-time
solution also calls for fast data correlation.

Yang et al. [29], refined ORB-SLAM [38] by using a sparse optical flow algorithm. The key
idea was to correct the image coordinates of ORB features by optical flow tracking results to achieve
sub-pixel precision. The proposed method here is a bit different since we use optical flow to first
conduct a fast tracking, then compute descriptor distance between matched feature pair members and
justify whether they are a good match-up.

There exist plenty of feature descriptor algorithms. We chose the ORB descriptor in our proposed
method for two reasons:

1. The ORB descriptor is a binary string, so the distance between two descriptors can be expressed
as a Hamming distance, which can be computed efficiently.

2. The rotation between consecutive images in a real-time application is usually very gentle,
so invariance to rotation is not very important for a descriptor.



Sensors 2019, 19, 1941 13 of 24

Descriptor Distance Analysis for General Corner Features

The basic visual front-end is based on Shi-Tomasi corner detection [39] and optical flow tracking [40].
It is important to figure out whether the ORB descriptor is meaningful for general Shi-Tomasi corner
features. An experiment was done and proved that it is indeed meaningful statistically. We calculated the
feature angle for a Shi-Tomasi feature and then used it to compute the ORB descriptor [32]. Several tests
were conducted in the experiment. For each test, feature pairs from every two adjacent images of a
continuous image stream were stored separately in two sequences. These tests basically analyzed the
statistical properties of ORB descriptor distances of feature pairs, including

1. Coarsely matched feature pairs based on Shi-Tomasi corner detection and optical flow tracking.
2. Relatively strictly matched feature pairs based on ORB descriptor matching and RANSAC.
3. Randomly constructed feature pairs.
4. Unmatched feature pairs generated by inverse order of one of the strictly matched

feature sequences.

One feature sequence from strictly matched pairs was inverted to generate strictly unmatched
feature pairs. The experimental result is shown in Figure 2.

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

4

distance

n
u

m
b

er

 

 

coarsely matched

(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

distance

n
u

m
b

e
r

 

 

random

(b)

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

4

distance

n
u

m
b

e
r

 

 

matched

(c)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

distance

n
u

m
b

e
r

 

 

unmatched

(d)

Figure 2. Statistical distribution of ORB descriptor [32] distances for coarsely matched, strictly matched,
random constructed, and unmatched Shi-Tomasi feature pairs. The X axis represents descriptor
distances and ranges from 0 to 255. The range of the Y axis is determined by the number of feature
pairs in each experiment. (a) Coarsely matched features results. (b) Random constructed features
results. (c) Strictly matched features results. (d) Unmatched features results.



Sensors 2019, 19, 1941 14 of 24

We strongly suspect the very long tail in Figure 2a may be due to wrong matches because no
further outlier rejection method was applied after optical flow tracking in this test. In Figure 2b, except
for the massive Guassian-like distribution, a little bump centered at about 17 appeared, which is
framed by a red rectangular border. This is because the random pairs were constructed in two adjacent
images and thus, two matched features have a considerable probability of being coincidentally formed
into a pair. These two experiments prove that ORB descriptors and descriptor distances are meaningful
for general Shi-Tomasi corners, from a statistical standpoint.

In order to clearly analyze the statistical properties of matched and unmatched pairs, two further
tests were conducted. First, a descriptor-based matching and RANSAC mechanism were applied to
obtain relatively strictly matched feature pairs. Then, the order of one of the feature sequences was
reversed, which is a simple yet effective way to make two sequences unmatched. Descriptor distances
before and after order reversion were computed, and statistical results are shown in Figure 2c,d. It can
be seen from the figures that the long tail and little bump disappear because of the relatively strict
pairing rule. They are plotted together in Figure 3 to make a clear comparison.

0 50 100 150 200 250

distance

0

1

2

3

4

5

6

n
u
m

b
e
r

×10
4

unmatched

matched

Figure 3. This figure shows the descriptor distances of unmatched and matched feature pairs. It can be
clearly seen that the difference is statistically significant, thus a heuristic algorithm can be used to pick
out outliers.

The experimental results show that the descriptor distances of unmatched and matched feature
pairs possess significantly different statistical properties. As shown in Figure 3, descriptor distances
of unmatched features approximately follow the Gaussian distribution with a mean, or we can say
peak, at about 124.7 and with a standard deviation of 21.8. For matched pairs, the distribution shows
a sharper peak at about 18.5. There is still a tail in the matched distribution, but it is much smaller than
the one in Figure 2a. The difference between matched and unmatched pairs is significant enough to
design a strategy to filter out wrong matches.

We use a heuristic to complete the mission:

• For feature pairs with distances lower than the smaller peak value, classify them as inliers.
• For feature pairs with distances higher than the bigger peak value, classify them as outliers.
• For feature pairs whose distances are between two peaks, calculate and compare the Mahalanobis

distances to both peak to decide their classification.

6. EKF-Based VIO Implementation Details and Improvements

In this section, implementation details and improvements of the proposed EKF-based VIO
are presented, including filtering scheme, automatic initialization procedure, and refined feature



Sensors 2019, 19, 1941 15 of 24

triangulation mechanism. An overall flow chart of the implemented VIO algorithm is shown in
Figure 4. Red sections highlight novelties proposed in this paper.

IMU(200Hz)

Images(200Hz)

Wait for New

Measurements

Feature Extraction and

Sparse Optical Flow

Tracking

ORB Descriptor

Computing and Outlier

Filtering

Initialized?

Try to Initialize by

Proposed Method

Succes?
Set Initial State

Values

IMU State

Propagation

Filter Covariance Update

Using Proposed Fully

Linear Transition Equation

State

Augmentation

Refined Features

Triangluation

Mechanism

MSCKF

Measurement Update

Figure 4. Flow chart of extended Kalman filter (EKF)-based visual-inertial odometry (VIO) implementation.
Red sections highlight novelties proposed in this paper. Term “IMU” stands for inertial measurement unit,
and term “MSCKF” stands for multi-state constraint Kalman filter.

6.1. Filter State and Measurement Model

A VIO following the scheme of Mourikis and Roumeliotis [1] is implemented. The system state
includes a sliding window of N historical IMU poses and camera-IMU extrinsic as proposed by Li and
Mourikis [22]. The overall system state is formulated as

xall =
[

xIMU qc
b pb

c qb1
w pw

b1
· · · qbN

w pw
bN

]T
. (76)

Therefore, the overall error state of the filter is

δxall =
[

δxIMU δθθθb δpb
c δθθθw

1 δpw
b1
· · · δθθθw

N δpw
bN

]T
. (77)

The measurement residual is a linearized residual about historical IMU pose errors and
camera-IMU extrinsic errors. The original reprojection error is manipulated firstly by left nullspace
multiplication to marginalize out the feature position, and secondly by applying QR decomposition to
decrease the residual dimensions without information loss [1]. Furthermore, only residuals passing
through the Mahalanobis gating test would be used in measurement updating.

6.2. Automatic Initialization Procedure

An automatic initialization procedure is developed. Firstly, a stationary scene is automatically
detected by only using image stream. Secondly, stationary IMU data is used to initialize the system
state. The detailed procedure is described in Algorithm 1.

The algorithm identifies a stationary scene by continuously detecting almost no motion of tracked
features. Then, static gyro data is used to initialize gyro bias. Rotation matrix R̂b

w is computed by
aligning gravity in frame b, which is the mean static accelerometer data, with gravity in frame w.
This initialization procedure is a rough one since accelerometer bias has not been eliminated, but its
uncertainty can be modeled by the initial covariance matrix of the filter state.



Sensors 2019, 19, 1941 16 of 24

Algorithm 1 Automatic initialization procedure

1. Detect stationary scene

Counter = 0
for each image do

pixcurr = TrackFeatures()
if 0 == Counter then

Counter ++
pixprev = pixcurr
continue

end if
diff = pixcurr − pixprev
if max(diff) is small enough then

Counter ++
else

Counter = 0
pixprev = pixcurr
continue

end if
if Counter is big enough then

break
end if

end for

2. Initialize system state

Save stationary acc data in arryacc

Save stationary gyro data in arrygyro

gb = mean(arryacc)

gw = [0, 0,−9.8]T

R̂b
w = FromTwoVectors(gb,−gw)

b̂g = mean(arrygyro)

v̂w = 0; p̂w = 0; b̂a = 0;

6.3. Refined Feature Triangulation Mechanism

In Mourikis and Roumeliotis’s work [1], features are triangulated only if they are no longer being
tracked; however, we found that this mechanism does not perform well, especially when using cheap
IMUs. To conduct frequent and effective measurement updates, which is crucial to correct biased IMU
propagation, a maximum feature tracking length is set. This means each feature would be triangulated
when it has been tracked for a certain number of frames, even if it is still being tracked. In the latter
situation, the current observation would not be used in triangulation.

Generally, features that failed in triangulation would be discarded directly. While the proposed
mechanism is that if a feature fails in triangulation while it is still being tracked, it will have another
chance to triangulate when the next image is coming. This mechanism improves the performance
when the camera is moving slowly, where features in adjacent images exhibit a small parallax that
would easily result in triangulation failure.

7. Experimental Results

The public dataset EuRoC [33] was used to evaluate the performance of the proposed VIO. It includes
11 sequences that were collected by a UAV in three different scenes. One is a machine hall and the other two
are rooms equipped with motion capture systems and different manual layout arrangements. The extrinsic
and intrinsic parameters of sensors are carefully calibrated, and ground truths of UAV poses are provided.
It is one of the widely used benchmarks for evaluating algorithms of different configurations, including



Sensors 2019, 19, 1941 17 of 24

monocular-visual, stereo-visual and monocular/stereo-visual-inertial setups. All of the experiments
below were performed on an Ubuntu 16.04 virtual machine powered by MacBook Pro Mid 2015 assigned
with two core and 8 GB RAM. Our implementation is a real-time algorithm based on ROS nodelet [41].

The estimated trajectories and corresponding ground truths are shown in Figure 5. Estimated
trajectories are aligned with ground truths by a 6-DOF Sim (3) transformation without adjusting the
scale [42].

10

5

MH04

0
1

0

2

5

10

3

-5
15

ground truth

estimated

(a)

10

5

MH05

0
1

0

2

5

3

10 -5

15

ground truth

estimated

(b)

1.5

1

0.5

1

3
0

2
-0.5

V103

1
-1

0
-1.5

2

-1 -2

ground truth

estimated

(c)

3

2

1

V203

1

-4

0-3

-2

2

-1
-1

0

1

ground truth

estimated

(d)

Figure 5. Results of 4 EuRoC sequences classified as “difficult”. Estimated trajectories are aligned with
ground truths by a 6-DOF Sim (3) transformation (without scale). (a) MH_04_difficult. (b) MH_05_difficult.
(c) V1_03_difficult. (d) V2_03_difficult.

7.1. Front-End Improvement

For implementations of front-ends with and without ORB descriptor assistance, we run each
EuRoC sequence 50 times. A boxplot summary is shown in Figure 6. The corresponding means and
standard deviations are listed in Table 1.

After adding ORB descriptor assistance, the estimator performs better in most sequences, since
boxes became narrow and their position lower in Figure 6. The statistics in Table 1 give a numerical
display of the results. Obvious improvement can be observed in seven sequences. In the other four
sequences, performance are similar with or without ORB descriptor assistance. This may be due to the
small quantity of outliers of optical flow tracking in these sequences.

We also analyzed the processing time of the proposed ORB descriptor-assisted outlier elimination
procedure. The maximum feature number is set as 150. The results are listed in Table 2.



Sensors 2019, 19, 1941 18 of 24

MH_01_easy MH_02_easy MH_03_medium MH_04_diffcult MH_05_diffcult V1_01_easy V1_02_medium V1_03_diffcult V2_01_easy V2_02_medium V2_03_diffcult

0.1

0.2

0.3

0.4

0.5

0.6

pure optical flow
ORB assisted

Figure 6. Boxplot summary of experimental results in terms of translation root-mean-square errors (RMSEs) of estimated trajectories. As can be seen, with ORB
descriptor assistance the estimation is generally of higher precision, reflected in the lower position and narrower height of the corresponding box’s range for
most sequences.

Table 1. Mean and standard deviation of RMSEs in Figure 6. For each sequence, the one with an obviously better performance is highlighted.

Sequence MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std

pure optical flow 0.309 0.076 0.297 0.065 0.381 0.050 0.435 0.071 0.393 0.051 0.108 0.026 0.082 0.012 0.130 0.018 0.162 0.057 0.137 0.019 0.248 0.047
ORB assisted 0.294 0.055 0.273 0.056 0.330 0.048 0.366 0.058 0.391 0.046 0.104 0.018 0.082 0.010 0.131 0.017 0.127 0.030 0.134 0.019 0.231 0.039



Sensors 2019, 19, 1941 19 of 24

As shown in Table 2, the proposed ORB descriptor-assisted outlier elimination procedure
introduces little computation. The processing time varies among sequences, mostly due to the motion
speed. Sequences with aggressive motion tend to take less processing time than those with slow
motion since fewer features are tracked in the former case, and fewer ORB descriptor distances need
to be calculated.

Table 2. Mean of the processing time (ms) of the proposed ORB descriptor-assisted outlier elimination
procedure for every image.

Sequence MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

process time 1.3942 1.6480 1.3373 1.3983 1.0870 1.3297 1.0410 0.9574 1.2506 1.0525 0.7465

7.2. Comparison with MSCKF-MONO

We compare our proposed monocular MSCKF with the open-source monocular MSCKF
implementation MSCKF-MONO [23]. MSCKF-MONO has a visual front-end based on optical
flow and utilizes first-order approximation state transition equations in filtering. It also applies
observability-constrained Kalman filter (OC-KF) [21] to fix the observability problem, which would fix
the wrong observability properties and improve filter performance. Note that ours does not apply any
similar techniques.

In our experiment, we removed the coarse initialization and forbid the reset module in
MSCKF-MONO because for some reason, MSCKF-MONO did not work properly on nearly half
of sequences under the original coarse initialization, and reset does not help if there is no stop
during running. The initial state was assigned by noisy ground truth for both our algorithm and
MSCKF-MONO in this experiment. To make a fair comparison, we tried to run with same setup for
common parameters in both algorithms, such as noise densities for sensors measurement, sliding
window size, and maximum or minimum track lengths for features. However, MSCKF-MONO barely
worked in any sequences under a similar setup as ours. This is mainly due to the different state
transition model and visual front-end implementations. As we explored further and could not find
a setup which generally performed better than the original setup for MSCKF-MONO, we left the
original parameters unaltered. The comparison results are listed in Table 3.

Table 3. Comparison results for proposed algorithm and MSCKF-MONO using the EuRoC dataset.
The means of positioning RMSEs (m) of 10 runs for both algorithms are calculated.

MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

MSCKF-MONO 1.015 0.534 0.427 2.102 0.968 0.169 0.275 1.551 0.281 0.341 ×
Proposed 0.299 0.280 0.342 0.350 0.384 0.096 0.078 0.132 0.121 0.137 0.224

The results show that the proposed monocular MSCKF is far more accurate than MSCKF-MONO.
We claimed that this is due to a more accurate state transition model and a robust visual front-end.

7.3. Comparison with the State-Of-The-Art

The results of proposed VIO algorithm are compared with several state-of-the-art open-source
monocular VIOs using the EuRoC dataset, including OKVIS [6], ROVIO [5], and VINS-MONO [2].
To make a fair comparison between pure VIOs, we turned off the closure detection in VINS-MONO.
The proposed VIO automatically selects stationary IMU data to initialize the rotation and gyro bias
at the beginning of every sequence, while other states are initialized as zeros. In addition, a unique
parameter configuration is applied in all sequences. Results are listed in Table 4.



Sensors 2019, 19, 1941 20 of 24

Table 4. Results of proposed and state-of-the-art VIOs using EuRoC dataset. Ten runs on each sequence
and the means of positioning RMSEs (m) are calculated.

MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

VINS-MONO 0.159 0.182 0.199 0.350 0.313 0.090 0.110 0.188 0.089 0.163 0.305
ROVIO 0.250 0.653 0.449 1.007 1.448 0.159 0.198 0.172 0.299 0.642 0.190
OKVIS 0.376 0.378 0.277 0.323 0.451 0.087 0.157 0.224 0.132 0.185 0.305

Proposed 0.289 0.258 0.331 0.394 0.423 0.117 0.089 0.134 0.097 0.140 0.211

As shown above, the proposed VIO algorithm is comparable in accuracy to the state-of-the-art.
Notice that VINS-MONO generally performs best out of all four algorithms, and the proposed
algorithm has a similar performance in vicon rooms, which is due to good feature triangulation
results in a limited area. In addition, the proposed algorithm and ROVIO perform better in V1_03 and
V2_03 than others. There are aggressive motions in these two sequences that might result in tracking
failure in the front-end; the proposed algorithm and ROVIO are filter-based methods that can utilize
IMU measurements to propagate for a short period in this situation, while VINS-MONO and OKVIS
sometimes fail and have to lean on relocalization in this circumstance. Notice that the machine hall is
a relatively large-scale scenario [33], where triangulations in the proposed method mostly deal with
points of large depth. This results in a relatively downgraded performance of the proposed method in
the machine hall, even in sequences with mild motions.

7.4. Processing Time

As mentioned by Delmerico and Scaramuzza [17], the better performance of VINS-MONO is
a trade-off requiring more computer resources than others. In contrast, the proposed method has
a similar architecture to MSCKF-MONO, which is a light-weight solution. The average processing time
of the visual front-end and EKF/optimization back-end of our implementation and the state-of-the-art
are listed in Table 5.

The results show that, the proposed method has higher processing speed than the listed
optimization-based methods. ROVIO is the fastest solution among all listed solutions, but as shown
in Table 4, its precision is generally the worst. In proposed method, the visual front-end can process
images at about 60 Hz. Notice that V2_03 is a little bit slower than others, because aggressive motions
in this sequence result in a short feature tracking length, and thus, the front-end will take more time to
extract new features. The EKF-based back-end run at more than 160Hz and the difference between
each sequence is due to the difference in the number of features used in measurement updating. As can
be concluded from Tables 4 and 5, the proposed method is a VIO solution which has comparable
precision and generally required less computation resources than the state-of-the-art.



Sensors 2019, 19, 1941 21 of 24

Table 5. Average processing time (ms) and rate (Hz) of visual front-end and EKF/optimization back-end of our implementation and the state-of-the-art using the
EuRoC dataset.

Sequence
MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate Time Rate

VINS-MONO front-end 18.0 55 18.3 55 18.6 54 19.3 52 21.3 47 20.2 49 21.4 47 23.2 43 22.3 45 23.8 42 30.6 33
back-end 50.2 20 50.9 20 50.1 20 50.1 20 53.0 19 53.1 19 45.9 22 37.9 26 54.4 18 48.3 21 33.4 30

ROVIO front-end 2.0 505 1.9 526 2.0 497 2.1 476 2.0 490 1.9 538 2.0 508 2.1 481 2.0 503 2.0 510 2.0 478
back-end 15.9 63 15.9 63 15.9 63 15.9 63 15.7 63 15.9 63 15.9 63 15.9 63 15.9 63 15.9 63 15.9 63

OKVIS front-end 46.7 21 45.3 22 47.4 21 40.9 24 41.4 24 38.5 26 38.8 26 31.3 32 38.8 26 37.3 27 31.4 32
back-end 39.8 25 39.4 25 39.9 25 32.1 31 33.1 30 30.6 33 25.5 39 19.2 52 29.6 34 27.9 36 18.0 56

Proposed front-end 16.2 62 16.5 61 15.9 63 16.1 62 15.7 64 15.7 64 15.3 65 16.4 61 15.8 63 15.9 63 17.3 58
back-end 5.5 182 5.9 169 6.1 164 5.5 181 6.0 166 5.7 174 5.4 185 4.9 203 5.7 176 5.6 178 4.6 218



Sensors 2019, 19, 1941 22 of 24

8. Conclusions

In this paper, we first deduced a highly closed-form IMU error state transition equation from
scratch. By using Hamilton’s notation of quaternion, we tried to eliminate notation ambiguity. We then
managed to solve the integration terms left behind in the transition equation by introducing a
two-sample fitting method to approximate the axis-angle, resulting in a fully linear closed-form
formulation that is unbiased up to the fitting resolution. This formulation also has potential to
incorporate IMU intrinsics into the filter state, since it is a linear function of IMU measurements.
An automatic initialization procedure is developed and the feature triangulation mechanism is carefully
refined. The ORB descriptor distance between Shi-Tomasi corner pairs was analyzed, and we found
that there is a statistical difference in descriptor distances between matched and unmatched feature
pairs. As outliers are sometimes fatal for filter-based VIOs, this inspired us to propose a visual
front-end based on optical flow tracking and additionally, to use ORB descriptors to eliminate outliers.
We implement a monocular VIO under the framework of MSCKF with proposed novelties.

Through a comparison between estimation results with and without the proposed outlier
eliminating method, we demonstrate its effectiveness. Furthermore, an experiment was done to
compare the proposed method with several state-of-the-art VIOs, both in terms of precision and
computation. Results show that the proposed VIO is a visual inertial fusion solution with comparable
precision to the state-of-the-ar but which demands less computation resources.

Future works include adding a robust initialization procedure adapting to versatile scenes and
analyzing the point selection mechanism in detail.

Author Contributions: X.Q. and H.Z. designed the algorithms. X.Q. deduced all the formulas, analyzed the
experimental results and drafted the paper. W.F., C.Z., and Y.J. revised the draft.

Funding: This research work is supported by the National Key Research and Development Program of China
(Grant No. 2016YFB0502004 and No. 2017YFC0821102).

Acknowledgments: We would like to thank Sun et al. [24] for their released code. X.Q. would also like to thank
Xingwei Qu, Huakun Cui, and Shuhang Liao for their inspiring talks.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy,
10–14 April 2007; pp. 3565–3572.

2. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator.
IEEE Trans. Robot. 2018, 34, 1004–1020. [CrossRef]

3. von Stumberg, L.; Usenko, V.; Cremers, D. Direct Sparse Visual-Inertial Odometry using Dynamic
Marginalization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 2510–2517.

4. He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K. PL-VIO: Tightly-Coupled Monocular Visual-Inertial Odometry
Using Point and Line Features. Sensors 2018, 18, 1159. [CrossRef] [PubMed]

5. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based
approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304.

6. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual-inertial odometry
using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

7. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g2o: A general framework for graph
optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 9–13 May 2011 ; pp. 3607–3613.

8. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235. [CrossRef]

http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.3390/s18041159
http://www.ncbi.nlm.nih.gov/pubmed/29642648
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1177/0278364911430419


Sensors 2019, 19, 1941 23 of 24

9. Liu, H.; Chen, M.; Zhang, G.; Bao, H.; Bao, Y. ICE-BA: Incremental, Consistent and Efficient Bundle
Adjustment for Visual-Inertial SLAM. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1974–1982.

10. Gui, J.; Gu, D.; Wang, S.; Hu, H. A review of visual inertial odometry from filtering and optimisation
perspectives. Adv. Robot. 2015, 29, 1289–1301. [CrossRef]

11. Aqel, M.O.; Marhaban, M.H.; Saripan, M.I.; Ismail, N.B. Review of visual odometry: Types, approaches,
challenges, and applications. SpringerPlus 2016, 5, 1897. [CrossRef] [PubMed]

12. Strasdat, H.; Montiel, J.; Davison, A.J. Real-time monocular SLAM: Why filter? In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010;
pp. 2657–2664.

13. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis.
In Proceedings of the 1999 International Workshop on Vision Algorithms, Corfu, Greece, 20–25 September
1999; Springer: Berlin, Germany, 1999; pp. 298–372.

14. Lourakis, M.I.; Argyros, A.A. SBA: A software package for generic sparse bundle adjustment. ACM Trans.
Math. Softw. (TOMS) 2009, 36, 2. [CrossRef]

15. Hsiung, J.; Hsiao, M.; Westman, E.; Valencia, R.; Kaess, M. Information Sparsification in Visual-Inertial
Odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Madrid, Spain, 1–5 October 2018.

16. Agarwal, S.; Mierle, K. Ceres Solver. Available online: http://ceres-solver.org (accessed on 16 August 2018).
17. Delmerico, J.; Scaramuzza, D. A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms

for Flying Robots. Memory 2018, 10, 20.
18. Eade, E.; Drummond, T. Scalable monocular SLAM. In Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 17–22 June 2006; Volume 1,
pp. 469–476.

19. Li, M.; Mourikis, A.I. Improving the accuracy of EKF-based visual-inertial odometry. In Proceedings of the
2012 IEEE International Conference on Robotics and Automation (ICRA), St Paul, MN, USA, 14–18 May 2012;
pp. 828–835.

20. Hesch, J.A.; Kottas, D.G.; Bowman, S.L.; Roumeliotis, S.I. Observability-Constrained Vision-Aided Inertial
Navigation; Technical Report; University of Minnesota, Departmen of Computer Science & Engineering:
Minneapolis, MN, USA, 2012; Volume 1, p. 6.

21. Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. Observability-based rules for designing consistent EKF SLAM
estimators. Int. J. Robot. Res. 2010, 29, 502–528. [CrossRef]

22. Li, M.; Mourikis, A.I. High-precision, consistent EKF-based visual-inertial odometry. Int. J. Robot. Res. 2013,
32, 690–711. [CrossRef]

23. Group of Prof. Kostas Daniilidis, R. Msckf-Mono. Available online: https://github.com/daniilidis-group/
msckf_mono (accessed on 16 August 2018).

24. Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust stereo
visual inertial odometry for fast autonomous flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [CrossRef]

25. Zheng, X.; Moratto, Z.; Li, M.; Mourikis, A.I. Photometric patch-based visual-inertial odometry.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 3264–3271.

26. Zheng, F.; Tsai, G.; Zhang, Z.; Liu, S.; Chu, C.C.; Hu, H. Trifo-VIO: Robust and Efficient Stereo Visual Inertial
Odometry using Points and Lines. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018.

27. Trawny, N.; Roumeliotis, S.I. Indirect Kalman Filter for 3D Attitude Estimation; Technical Report; University of
Minnesota, Departmen of Computer Science & Engineering: Minneapolis, MN, USA, 2005; Volume 2.

28. Sommer, H.; Gilitschenski, I.; Bloesch, M.; Weiss, S.M.; Siegwart, R.; Nieto, J. Why and How to Avoid the
Flipped Quaternion Multiplication. arXiv 2018, arXiv:1801.07478.

29. Yang, N.; Wang, R.; Gao, X.; Cremers, D. Challenges in monocular visual odometry: Photometric calibration,
motion bias, and rolling shutter effect. IEEE Robot. Autom. Lett. 2018, 3, 2878–2885. [CrossRef]

30. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017,
2, 796–803. [CrossRef]

http://dx.doi.org/10.1080/01691864.2015.1057616
http://dx.doi.org/10.1186/s40064-016-3573-7
http://www.ncbi.nlm.nih.gov/pubmed/27843754
http://dx.doi.org/10.1145/1486525.1486527
http://ceres-solver.org
http://dx.doi.org/10.1177/0278364909353640
http://dx.doi.org/10.1177/0278364913481251
https://github.com/daniilidis-group/msckf_mono
https://github.com/daniilidis-group/msckf_mono
http://dx.doi.org/10.1109/LRA.2018.2793349
http://dx.doi.org/10.1109/LRA.2018.2846813
http://dx.doi.org/10.1109/LRA.2017.2653359


Sensors 2019, 19, 1941 24 of 24

31. Bloesch, M.; Burri, M.; Omari, S.; Hutter, M.; Siegwart, R. Iterated extended Kalman filter based visual-inertial
odometry using direct photometric feedback. Int. J. Robot. Res. 2017, 36, 1053–1072. [CrossRef]

32. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011;
pp. 2564–2571.

33. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC
micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [CrossRef]

34. Titterton, D.; Weston, J.L.; Weston, J. Strapdown Inertial Navigation Technology; IET: Stevenage, UK, 2004;
Volume 17.

35. Solà, J. Quaternion Kinematics for the Error-State Kalman Filter; Technical Report; Laboratoire dAnalyse
et dArchitecture des Systemes-Centre National de la Recherche Scientifique (LAAS-CNRS): Toulouse,
France, 2017.

36. Qin, Y. Inertial Navigation; Science Press: Berlin, Germany, 2006. (In Chinese)
37. Qin, Y.; Zhang, H.; Wang, S. Kalman Filtering and Integrated Navigation Principles, 3rd ed.; Northwestern

Polytechnical University Press: Xi’an, China, 2015. (In Chinese)
38. Mur-Artal, Raúl; Tardós, Juan D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and

RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]
39. Shi, J.; Tomasi, C. Good Features to Track; Technical Report; Cornell University: Ithaca, NY, USA, 1993.
40. Bouguet, J.Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the

algorithm. Intel Corp. 2001, 5, 4.
41. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source

Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 17
May 2009; Volume 3, p. 5.

42. Umeyama, S. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans.
Pattern Anal. Mach. Intell. 1991, 4, 376–380. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0278364917728574
http://dx.doi.org/10.1177/0278364915620033
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/34.88573
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Quaternion Notation Confusion
	IMU Error State Differential Equation
	Notation
	IMU Measurement Model
	IMU Error State Definition
	Differential Equation

	Fully Linear State Transition Equation Formulation
	Original Closed-Form Equation
	Fully Linear Closed-Form Formulation
	Two-Sample Fitting of Axis-Angle
	Solve Integration Terms in -.4*
	Process Noise Terms

	Summarization

	ORB Descriptor-Assisted Optical Flow Front-End
	EKF-Based VIO Implementation Details and Improvements
	Filter State and Measurement Model
	Automatic Initialization Procedure
	Refined Feature Triangulation Mechanism

	Experimental Results
	Front-End Improvement
	Comparison with MSCKF-MONO
	Comparison with the State-Of-The-Art
	Processing Time

	Conclusions
	References

