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Abstract: A 3-PRR (three links with each link consisting of a prismatic pair and two rotating pairs)
parallel platform was designed for application in a vacuum environment. To meet the requirement of
high tracking accuracy of the 3-PRR parallel platform, a full closed-loop control precision tracking
system with laser displacement sensors and linear grating encoders was analysed and implemented.
Equally-spaced laser displacement sensors and linear grating encoders were adopted not only
for measurement but also for feedback control. A feed-forward control method was applied for
comparison before conducting the closed-loop feedback control experiments. The closed-loop control
experiments were conducted by adopting the PI (proportion and integration) feedback control and
RBF (radial basis function) neural network control algorithms. The experimental results demonstrate
that the feed-forward control, PI feedback control, and RBF neural-network control algorithms all
have a better control effect than that of semi-closed-loop control, which proves the validity of the
designed full closed-loop control system based on the combination of laser displacement sensors and
linear grating encoders.

Keywords: full closed-loop; laser displacement sensor; linear grating encoder; 3-PRR parallel
platform; precision tracking

1. Introduction

Precision positioning systems increasingly require a high positioning accuracy and a large travel
range [1,2], and play an important role in the fields of planar manipulations, industrial robots,
measurement systems, and so on [3–5]. To meet the requirements of high positioning accuracy and
long travel range, parallel robots have been developed and designed as a suitable alternative to serial
robots [6]. Many types of parallel mechanisms have been developed in recent years, such as 3-RRR
(three degrees of freedom with each branch consisting of three rotating pairs) and 3-PRR (three links
with each link consisting of a prismatic pair and two rotating pairs) planar parallel mechanisms [7].
The 3-PRR planar parallel mechanism is investigated in this paper. The input motions of the different
branches of 3-PRR are coupled to each other and interference phenomena are inevitable, which results
in tracking errors during tracking of the desired trajectory. Therefore, to improve the tracking accuracy,
it is important to precisely identify certain parameters of the parallel mechanism. In practice, calibration
is an effective method to improve the positioning accuracy of the parallel mechanism [8]. A calibration
method combining the error model and assistant measurement was proposed, and experimental results
demonstrated that this method can achieve better calibration for a 3-PRR parallel platform [9].

After calibration, because the semi-closed-loop control system is susceptible to external interference,
friction, and wear, the absolute positioning accuracy will gradually become worse. An observer
can be designed to estimate the end-effector state information without the external sensor [10].
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However, the noise and errors introduced from the observation seriously worsen the positioning
accuracy. Therefore, an external sensor is needed to measure the motion of the parallel mechanism
for closed-loop feedback control, and a full closed-loop control method can be an ideal choice [11–13].
For many parallel multi-degrees-of-freedom mechanisms, visual inspection is the most widely used
method [14,15]. Fatikow et al. [16] used visual feedback to extend automated closed-loop positioning
based on different external sensors, and the integration of mobile micro-robots into a specific system can
be done fully automatically. A micro-vision system (MVS) was used to obtain feedback signals online,
which illustrates that a full closed-loop tracking control can be developed to enhance the positioning
accuracy of micro/nano-positioning systems [17]. The main disadvantage of visual inspection is that
the sampling rate is too slow to measure a relatively rapid tracking motion. In practice, other sensors
can be used to obtain feedback for the parallel mechanism, such as capacitance sensors, eddy current
sensors, resistance strain gauges, and laser displacement sensors. Three capacitance sensors were
installed at the end of a planar three-degrees-of-freedom (3-DOF) nano-positioning platform to realize
feedback control, and the trajectory tracking accuracy of the mechanism was improved by using the
traditional PID (proportion, integration, and differentiation) control algorithm [18]. Kuan et al. [19]
built a full closed-loop control system for a three-DOF micro motion stage using eddy current sensors,
and closed-loop positioning control was achieved using a standard PI controller. A laser displacement
sensor was used to form a full closed-loop control system in a 6-DOF precision positioning platform,
and the experimental results showed good measurement performance [20]. All capacitance sensors,
eddy current sensors, and resistance strain gauges have very small measurement ranges, which are not
suitable for large travel measurements. Because laser displacement sensors have the advantages of
high sampling rate, high measurement accuracy, and a relatively large measurement range, they can
be used for the measurement of the fast tracking motion of a precision tracking platform. Therefore,
the laser displacement sensor was selected for the full closed-loop measurement and control of 3-PRR
parallel mechanism in this paper.

Conventional PID feedback control can be used for trajectory tracking with asymptotic stability
if the control parameters are carefully selected [21]. However, if the control gains are set at random,
then the system will enter an infinite loop or lose control, as shown in later experiments. Therefore,
it is necessary to make the PID parameters scientifically and effectively self-adjust. Ouyang et al. [22]
improved the trajectory tracking performance of a 2-DOF parallel mechanism by using an adaptive
switching learning PD control method, and the convergence rate was faster than that of the adaptive
iterative learning control method proposed by others in the literature. In addition, many researchers
have used different kinds of neural networks to adjust the PID parameters and acquired good control
performance [23,24]. In view of its strong learning ability and fast convergence ability, the RBF (radial
basis function) [25,26] neural network was selected to improve the tracking accuracy of the 3-PRR
parallel mechanism in this paper.

The above analysis shows that few people are designing and investigating a full closed-loop
control 3-PRR precision tracking system with laser displacement sensors and neural-network-based
control algorithms. Compared with visual inspection and other sensors, the laser displacement sensor
has certain advantages, such as high sampling frequency and high measurement accuracy, which will
be demonstrated in later experiments. In view of its strong learning ability and fast convergence ability,
the RBF neural network control algorithm has been designed to improve the tracking accuracy for
different tracking trajectories. The rest of this article is organized as follows: Section 2 introduces the
experimental setup, which is divided into three parts, the experimental setup, deviation of installing
angle and equally-spaced sensors, and the measurement evaluation. A feed-forward control experiment
is presented in Section 3 that shows that feed-forward control can reduce tracking errors to an extent.
A PI feedback control experiment is presented in Section 4 that shows that when the PI parameters are
carefully selected to avoid entering an infinite loop or losing control, the PI feedback control algorithm
can achieve a relatively good control effect. Section 5 presents the RBF neural-network-based control
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algorithm, and the experimental results illustrate that the neural-network-based control algorithm can
dramatically improve the tracking accuracy. Conclusions are drawn in Section 6.

The contribution of this paper is mainly two-fold. First, a three-degrees-of-freedom full
closed-loop control precision tracking system was developed and analysed in the paper. The precision
tracking system with three equally-spaced laser displacement sensors and linear grating encoders
for full closed-loop control is illustrated in detail, and demonstrates high measurement accuracy.
In fact, the six-degrees-of-freedom motion of more complicated mechanisms can be measured by
more equally-spaced laser displacement sensors in combination. Second, experimental studies of
semi-closed-loop control, feed-forward control, PI feedback control, and RBF neural-network control
methods were carried out. The experimental results demonstrate that all of the feed-forward control,
PI feedback control, and RBF neural network control algorithms have better control effects than that of
semi-closed-loop control, which proves the validity of the designed full closed-loop control system
based on the combination of laser displacement sensors and linear grating encoders.

2. Introduction of the Experimental Setup

2.1. Experimental Setup

As shown in Figure 1, the experimental setup consists of three equally-spaced laser displacement
sensors, three linear grating encoders, a computer, a motion card, three servo drivers, and motors,
which is a kind of full closed-loop control system. It should be noted that the six-degrees-of-freedom
motion of more complicated mechanisms can also be measured by using more equally-spaced laser
displacement sensors in combination. The precision tracking system is a 3-PRR planar parallel platform
as shown in Figure 2a, which is composed of a static platform, mobile platform, sliding pair, revolving
pair, and grating scale. The sliding pair is driven by an ultrasonic linear motor that can be used in a
vacuum environment. The precision tracking system has three planar degrees of freedom, as shown in
Figure 2a, and they are the X-axis translational freedom, Y-axis translational freedom, and rotational
freedom around the Z-axis, which can be measured by three equally-spaced laser displacement sensors.
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Figure 2. Photograph and schematic diagram of the 3-PRR (three links with each link consisting of a 
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Figure 2. Photograph and schematic diagram of the 3-PRR (three links with each link consisting of a
prismatic pair and two rotating pairs) parallel platform.

The 3-PRR planar parallel positioning platform includes a mechanical portion and an electric
control portion. The mechanical portion is composed of three identical kinematic chains, with each
chain including an ultrasonic linear motor, a connecting rod, a motor bracket, and a linear guide.
The mobile platform is supported by three connecting rods of kinematic chains. The electric control
portion consists of three laser displacement sensors, three linear grating encoders, photoelectric limit
switch, servo drivers, computer, and motion card. Because the input of analogue signal is seriously
influenced by external noise, the input of digital signal through the serial port was adopted. The type
of the LDS was Keyence LK-H050, with a beam diameter of 50 µm, a measurement range of ±10 mm,
and a sampling rate of 20 µs.

A schematic diagram of the 3-PRR parallel mechanism is shown in Figure 2b. The closed-loop
vector method was used to analyse the kinematic chain. Because the sum of the closed loop vector is
zero, the kinematic constraint relation can be expressed as:

EiFi + FiGi + GiM + MO + OEi = 0 , (i = 1, 2, 3) (1)

where the locations of E, F, G, M, and O can be seen in Figure 2b; E is the fixed point, F is the first
rotating pair, G is the second rotating pair, M is the geometric center of the mobile platform, and O is
the geometric center of the static platform.

The projection along the X-axis and Y-axis of Equation (1) can be expressed by li cos( 2π(i−1)
3 ) + h2 cosαi + h3 cos(π(4i−3)

6 + αM) = XM −XEi

li sin( 2π(i−1)
3 ) + h2 sinαi + h3 sin(π(4i−3)

6 + αM) = YM −YEi
(2)

where XEi and YEi are the coordinates of point Ei; XM, YM, and αM are the X-axis translational freedom,
Y-axis translational freedom, and rotational freedom around the Z-axis, respectively; and h1, h2, and h3

are the distance from point Ei to point O, the length of the connecting rod, and the distance from point
Gi to point M, respectively. By solving Equation (2), the driving parameters li and αi and the driving
input of every ultrasonic linear motor can be obtained for trajectory planning, which is known as
inverse kinematics. For brevity, the expressions for li and αi are omitted.

To accurately locate the platform at the expected position, it is necessary to ensure that the
trajectory motion of the parallel mechanism is smooth from the beginning to the end, and sudden
changes of acceleration and deceleration should not happen. To reduce the impacts of vibration and
shock, the position, speed, and acceleration of the parallel mechanism should be carefully designed.
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The trapezoidal speed planning algorithm was adopted in this paper, as shown in Figure 3b. The parallel
platform was stationary at the starting position, then it accelerated to the maximum speed ωmax at a
given acceleration α1, ran at the maximum speed for a period of time, and finally slowed to the stop
position at a given deceleration α2. During the whole process, the parallel platform had only a small
amount of shock impact at times t1 and t2, which had limited influence on the tracking accuracy of
the parallel mechanism. Values of h1 = 210.00 mm, h2 = 95.00 mm, and h3 = 28.00 mm were set to
analyse the trajectory planning of the 3-PRR parallel mechanism. When trapezoidal speed planning
was adopted, the mechanism was required to finish a circular motion in a time of 10 s with a constant
attitude angle of π/3 rad, as shown in Figure 3a, where a circle with a radius of 3 mm and a center point
of (−3, 0), denoted in red, is selected as an example to illustrate the control performances of different
control algorithms. The acceleration time and deceleration time were set as:

t1 =
1
4

t2 =
1
5

t3 = 2 s. (3)
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The angular velocity ω(t) of the moving platform of the 3-PRR planar parallel mechanism can be
described by:

ω(t) =


α1 ∗ t, t ≤ 2;
2α1, 2 < t ≤ 8;
α2 ∗ (10− t), 8 < t ≤ 10;
α1 = α2 = π/8;

(4)

According to Equation (3), the angular displacement θ(t), position (x, y) and attitude angle ϕ of
the moving platform can be expressed as:

θ(t) =


α ∗ t2/2, t ≤ 2;
π/4 + 2α(t− 2), 2 < t ≤ 8;
2π− α(10− t)2/2, 8 < t ≤ 10;

(5)


x = 3 cos(θ(t)) − 3;
y = 3 sin(θ(t));
ϕ = π/3;

(6)
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By substituting Equations (4) and (5) into the equation of inverse kinematics, the time history of
the displacement, velocity, and acceleration of the three driving motors can be obtained, which are
shown in Figure 4 in detail.
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Figure 4. Displacement, velocity, and acceleration of the three motors.

From Figure 4a–c, it can be seen that all of the displacements and velocities change continuously
and smoothly. However, the acceleration changes discontinuously, and little sudden acceleration
changes occur at the times of 2 s and 8 s as shown in Figure 4c, from which one can see that the
acceleration changes are not large enough to cause the mechanism vibration.

2.2. Deviation of Installing Angle and Equally-Spaced Sensors

Since measurement error has a large influence on the experimental result, it is important to avoid
measurement error as much as possible. The beam of the laser displacement sensor should vertically
strike the side of the measured block to ensure measurement accuracy. A standard block should then
be used to position the laser perpendicular to the face of the measured block. A schematic diagram of
the influence of deviation of the installing angle of the laser displacement sensor on the measurement
data is shown in Figure 5a, from which the measurement error caused by the deviation of installing
angle can be calculated by:

∆l = l_real− l_ideal = 10/ cos(α) − 10 (7)
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where α is the deviation of installing angle, ∆l is the measuring error caused by deviation of installing
angle, l_real is the actual measurement data, and l_ideal is the ideal measurement data. For example,
when the deviations of installing angle are ±1◦ and ±2◦, then the measuring errors ∆l can be calculated
as ∆l = 10/ cos(±1

◦

) − 10 = 0.0015 mm and ∆l = 10/ cos(±2
◦

) − 10 = 0.0061 mm, respectively.
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Figure 5. Influence of installation angle deviation on the measurement result and measurement of
rotational angle.

From the above analysis and Equation (6), one can see that when the value of deviation of
installing angle is smaller than 1 degree, the measurement error is less than 0.0015 mm. However,
when the value of installation angle deviation is larger than 2 degrees, the measurement error increases
dramatically and seriously affects the measurement accuracy. Therefore, it is extremely important to
limit and decrease the deviations of installing angles by using a standard block. Figure 5b shows the
schematic diagram of the measurement of rotational angle. By placing two laser displacement sensors
on the same side of the measured block, the rotational angle β of the 3-PRR parallel mechanism can be
acquired by:

β = arctan[(l2 − l1)/s] (8)

where l1 and l2 are the displacement values measured by laser displacement sensor I and laser
displacement sensor II, respectively, and s is the distance between these two laser displacement sensors.

Let distance s be an independent variable and derive Equation (7) as:

d(arctan[(l2 − l1)/s])/ds = d(arctan[∆l/s])/ds = −∆l/(s2 + ∆l2) (9)

There are three main factors influencing the distance s. First, it can be seen from the differential
Equation (8) that, in order to improve the sensitivity of angle measurement, the distance s between the
two laser heads should be set to be a small value appropriately. Second, because the laser displacement
sensor is based on the principle of diffuse reflection of light, in order to prevent diffuse reflection from
interfering with each other, the distance s should not be set too small. Third, to determine of the actual
value of distance s, it is also necessary to consider the actual size of the measured block, as shown in
Figure 1a with a length of 90 mm, which means that the value of distance s should be smaller than
90 mm. After considering all of these factors, it is appropriate to take the distance as 75 mm. It should
be noted that the value of 75 mm is not an optimal value, but a reasonable value. Experiments show
that when the value of distance s is set between 60 mm and 80 mm, one can achieve good measurement
results. However, when the value of distance s is less than 60 mm, diffuse reflection can easily cause
mutual interference.
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2.3. Measurement Evaluation

The above analysis shows that it is important to avoid measurement error as much as possible.
To verify the measurement accuracy of the laser displacement sensor, a more precise measurement
instrument should be adopted. The laser interferometer is a kind of high-accuracy measurement
instrument with measurement accuracy reaching the nanometer level, which is more accurate than
that of a laser displacement sensor. During the process of measurement evaluation, the interference
reflector is fixed by magnetic adsorption to make both the interference reflector and the reflector locate
on a same optical axis, as shown in Figure 6a. The laser interferometer and laser displacement sensor
are both used to measure the movement of the parallel platform. To reduce the Abbe error and cosine
error as much as possible, the laser interferometer should be carefully fixed.
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Figure 6 presents the measurement comparison between the laser displacement sensor and laser
interferometer. The planned path of the measurement evaluation is a line segment 16 mm long,
as shown in Figure 6b. The starting point is located at the position of 0 mm, and the ending point
is also located at the position of 0 mm after finishing the reciprocal motion. The process of the
measurement evaluation is as follows. First, the master computer and motion card send commands to
make the parallel platform continuously move to the positions of 0 mm, 2 mm, 4 mm, 6 mm, and 8 mm.
The reciprocal motion then begins and continues until the mobile platform moves back to the position
of 0 mm, as shown in Figure 6b. After finishing every step of 2 mm displacement, the measurement
data of the laser displacement sensor and laser interferometer are recorded. At last, 16 points of location
data are obtained after finishing the reciprocal motion, as shown in Table 1, which shows that the
largest absolute values of the measurement difference between the laser displacement sensor and laser
interferometer were smaller than 0.003 mm, except at the position of 4 mm. The large measurement
difference at the position of 4 mm may have been caused by surface roughness and flatness, which can
be largely eliminated by precision machining. In conclusion, after being fixed and regulated carefully,
the laser displacement sensor can obtain high-accuracy measurements.



Sensors 2019, 19, 1756 9 of 22

Table 1. Measurement evaluation between the laser sensor and laser interferometer.

Evaluation
Experiment

Ideal Input
Displacement (mm)

Laser Sensor
Measurement i

Laser Interferometer
Measurement j |i−j|

1 2.000 2.016 2.014 0.002
2 4.000 4.030 4.022 0.008
3 6.000 6.037 6.035 0.002
4 8.000 8.041 8.044 0.003
5 6.000 6.037 6.035 0.002
6 4.000 4.029 4.022 0.007
7 2.000 2.014 2.014 0.000
8 0.000 0.002 0.000 0.002
9 −2.000 −2.015 −2.014 0.001
10 −4.000 −4.027 −4.027 0.000
11 −6.000 −6.039 −6.039 0.000
12 −8.000 −8.053 −8.054 0.001
13 −6.000 −6.039 −6.039 0.000
14 −4.000 −4.029 −4.028 0.001
15 −2.000 −2.017 −2.015 0.002
16 0.000 −0.004 −0.002 0.002

3. Feed-Forward Control

3.1. Correlation Analysis of Semi-Closed-Loop Tracking Errors

It is noteworthy that the experiments of feed-forward control, PI feedback control, and RBF
neural network control were conducted on the basis of the full closed-loop control system having been
built. Generally speaking, the realization of the measurement method is to lay the foundation for the
control experiment. As we know, the feed-forward control is suitable for non-time-varying and stable
systems. If a system is time-varying or greatly affected by external disturbances, the feed-forward
control is not applicable to the system. Therefore, before conducting the experiment of feed-forward
control, it was necessary to analyze the correlation of tracking errors of several semi-closed-loop control
motions with the same trajectory. If there is a strong correlation between the tracking errors of several
semi-closed-loop control motions, then it means that the system is basically a non-time-varying and
stable system, and feed-forward control can be applied. In other words, the correlation analysis of
semi-closed-loop errors is very meaningful, and can verify the feasibility of experimental application of
feed-forward control as well as pointing out the main factors that influence the control effect. Correlation
analysis of two semi-closed-loop circular motions is shown in Figure 7. A semi-closed-loop circular
motion with a radius of 3 mm and a center of (0,3) is presented in this experiment. The semi-closed-loop
errors can be expressed by: {

eix(t) = xd(t) − xi(t)
eiy(t) = yd(t) − yi(t)

(10)

where xd(t) and xi(t) are the desired trajectory and actual trajectory in the X-direction respectively,
and eix(t) is the error in the X-direction. yd(t) and yi(t) are the desired trajectory and actual trajectory
in the Y-direction respectively, and eiy(t) is the error in the Y-direction.

In order to analyze the correlation of semi-closed-loop errors clearly, the Pearson correlation
coefficient is adopted to evaluate the correlation. Generally, the Pearson correlation coefficient ρx,y can
be expressed by:

ρx,y =
cov(X, Y)
σxσy

=
E((X − µx)(Y − µy))

σxσy
=

E(XY) − E(X)E(Y)√
E(X2) − E2(X)

√
E(Y2) − E2(Y)

(11)

Figure 7a,b present the semi-closed-loop tracking errors of two of the same circular motions in the
X and Y directions, respectively. The Pearson correlation coefficients have been calculated to be 0.8764
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and 0.9725 through Equation (10), and both of them have a kind of extremely strong positive correlation.
Figure 7c,d present the magnification of Figure 7a,b respectively, from which one can see that the
error-change trends of the two circular motions are almost the same. In conclusion, the correlation
analysis has demonstrated that the semi-closed-loop errors of two same circular motions have a strong
positive correlation, which also shows that the motion characteristics of the 3-PRR parallel platform
are relatively stable.Sensors 2019, 19, x FOR PEER REVIEW 10 of 23 
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Figure 7. Semi-closed-loop tracking errors of two open-loop circular motions.

3.2. Feed-Forward Control Experiment

From the above correlation analysis of semi-closed-loop errors, one can see that the feed-forward
control is suitable for the 3-PRR parallel platform. Figure 8a shows the semi-closed-loop control results
of a circular trajectory with a radius of 3 mm, which includes the actual trajectory and theoretical
trajectory. The red box in Figure 8a is magnified in Figure 8b to show the actual trajectory and
theoretical trajectory in detail. The semi-closed-loop errors in the X-direction are shown in Figure 8c,
which can be figured roughly by a fitting function marked in red. The semi-closed-loop errors in the
Y-direction can also be figured roughly by a fitting function. In order to avoid repetitive explanation,
only the fitting function description of X-direction errors was retained, and the feed-forward control
was carried out. From Figure 8c, it can be seen that the fitting function can be selected as a linear
function or quadratic function. After adopting an analysis of the least squares method, it is easy to
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see that the linear function is the best fitting function. The linear fitting function can then be shown
as follows: {

Ex = −0.00000877 ∗ S− 0.00119, 0 ≤ S < 5000
Ex = 0.00000846 ∗ S− 0.08370, 5000 ≤ S < 10000

(12)

where Ex is the error in the X-direction, Ey is the error in the Y-direction, and S is the sampling number.
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Figure 8. Semi-closed-loop control and feed-forward control results of a circular trajectory.

From Equation (11), one can see that semi-closed-loop errors in the X-direction increase at 0.0017
mm every 200 sampling points when the sampling number is less than 5000, and the semi-closed-loop
errors decrease at 0.0017 mm every 200 sampling points when the sampling number is greater than 5000.
Therefore, before tracking the semi-closed-loop circular trajectory, the fitting error compensation should
be inserted into the control input as feed-forward control, as shown in Figure 9; the semi-closed-loop
errors in the X-direction will then be greatly reduced, as shown in Figure 8d. Figure 9 presents a
schematic diagram of feed-forward control with the error fitting function, which is different from the
closed-loop control method with the laser displacement sensor shown in Figure 1b. The feed-forward
control results in the X-direction are shown in Figure 8d, which shows that the errors in the X-direction
have been greatly reduced from a maximum of 0.0470 mm and a mean of 0.0220 mm to a maximum
of 0.0170 mm and a mean of 0.0040 mm. Thus, the feed-forward control method can reduce
semi-closed-loop errors to an extent. However, it is worth noting that when there is mechanical
deformation, external disturbance, or shock, the tracking accuracy of the feed-forward control method
will seriously deteriorate.
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Figure 9. Schematic diagram of feed-forward control with the error fitting function.

4. PI Feedback Control

The above feed-forward control experiment shows that feed-forward control can reduce tracking
errors to an extent, but the control effect is not very satisfactory and the feed-forward control is
strictly limited in range. On one hand, the error fitting function of feed-forward control is not very
accurate, the system is not an absolutely non-time-varying system, and the system is affected by
external disturbances. The tracking accuracy of feed-forward control experiment will then not be very
high. On the other hand, the feedback control has no requirement for a non-time-varying system and
absence of external disturbance, which means feedback control can achieve higher tracking accuracy
than feed-forward control in the actual experiment. The main disadvantage of feedback control is that
it will slow down the motion of the platform. Figure 10 presents the flow chart of the closed-loop
control experiment of the 3-PRR parallel platform. The first step was to prepare the experiment, set
the sampling frequency of the laser displacement sensor, and design a low-pass filter. The circular
trajectory (x, y) was then planned offline and divided into 10,000 segments. Next, the error threshold
was set as 0.005 mm, and the starting point and compensation frequency were designed. The circular
motion was then started, and the laser displacement sensor could obtain actual position data (x1, y1).
After the measurement, the tracking error values |x− x1| and

∣∣∣y− y1
∣∣∣ should be used to compare with

the error threshold of 0.005 mm. If both the tracking error values |x− x1| and
∣∣∣y− y1

∣∣∣ are smaller
than 0.005 mm, then the system will continue the circular motion and record new measurement
data. However, if either of the tracking error values |x− x1| and

∣∣∣y− y1
∣∣∣ are larger than 0.005 mm,

then it is necessary to compensate for the tracking error. The compensation displacements of three
motors can be acquired by solving the inverse kinematics equation using the tracking errors as input.
After eliminating the tracking errors, the system can continue the circular motion and record new
measurement data.

The main problem of the 3-PRR parallel platform is that this platform is a multi-input multi-output
(MIMO) tracking system, which makes it difficult to establish an accurate mathematical model.
For example, there are certain unknown influence factors that objectively exist, such as joint clearance,
inertia force, and friction. To conduct the closed-loop control experiment with the laser displacement
sensor, first, the conventional PI control algorithm was adopted and investigated as shown in Figure 11.
Figure 11 presents the translations in the X-direction and Y-direction, which can be measured by two
laser displacement sensors. The two controllers PI1 and PI2 were used to compensate the tracking
error x− x1 in the X-direction and tracking error y− y1 in the Y-direction, respectively, which is typical
of a multi-input multi-output control system.
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Figure 11. PI control of the 3-PRR parallel platform.

The experimental results of the PI control algorithm with Kp = 1, Ki = 0 are shown in Figure 12.
From Figure 12a, one can see that the 3-PRR parallel platform can track the circular trajectory accurately
at first, but the motion will enter an infinite loop, as shown in Figure 12b, which shows that the 3-PRR
parallel platform cannot reach the error threshold after many repeats of the closed-loop control period,
and the PI controller with Kp = 1, Ki = 0 cannot compensate every tracking error well when tracking
the circular trajectory with a radius of 3 mm. In view of the above experimental result, other PI
parameters can be selected to investigate the feedback control experiment, and the experimental result
of a PI controller with Kp = 0.8, Ki = 0 is shown in Figure 13. From Figure 13a, one can see that the
3-PRR parallel platform can track the circular trajectory accurately at first, but the system soon loses
control, as shown in Figure 13b, which also demonstrates that the 3-PRR parallel platform cannot track
the circular trajectory accurately and the PI parameter settings of Kp = 0.8, Ki = 0 cannot compensate
every tracking point well when tracking a circular trajectory with a radius of 3 mm.
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Figure 12. Circular trajectory tracking with a PI controller, Kp = 1, Ki = 0.
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Figure 13. Circular trajectory tracking with a PI controller, Kp = 0.8, Ki = 0.

The above two experimental results show that the proportion term Kp should be carefully set
to be a relatively small value to avoid entering an infinite loop, as shown in Figure 12b, or losing
control, as shown in Figure 13b. Meanwhile, if the proportion term Kp alone cannot eliminate the
steady-state error of the control system, then it is necessary to adopt the integration term Ki to eliminate
the steady-state error, compensate for the past deviation, and improve the stability of the control
system. After several attempts, the PI parameters can be set to be Kp = 0.5, Ki = 0.1 to achieve a
relatively good control effect, as shown in Figure 14, which shows the comparison between the circular
trajectory tracking accuracies of different control methods, such as the semi-closed-loop control and
closed-loop control. It should be noted that the parameters of Kp = 0.5, Ki = 0.1 are not optimal
parameters, but reasonable parameters.
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Figure 14. Circular trajectory tracking with a PI controller, Kp = 0.5, Ki = 0.1.

The theoretical trajectory, semi-closed-loop control trajectory, and closed-loop control trajectory
are shown in Figure 14a. The red box in Figure 14a is magnified in Figure 14b, which shows the three
trajectories in detail and is a kind of qualitative analysis. The quantitative analysis of the closed-loop
control algorithm and semi-closed-loop control algorithm are presented in Figure 14c,d. The absolute
values of tracking errors in the X-direction are shown in Figure 14c, and the absolute values of tracking
errors in the Y-direction are shown in Figure 14d, which demonstrate that the absolute values of the
error both in the X-direction and Y-direction were greatly reduced compared with the semi-closed-loop
control algorithm. Compared with the tracking accuracy of the semi-closed-loop control, the tracking
errors in the X-direction were greatly reduced from a maximum of 0.047 mm and a mean of 0.022 mm
to a maximum of 0.016 mm and a mean of 0.0035 mm, respectively. The errors in the Y-direction were
greatly reduced from a maximum of 0.035 mm and a mean of 0.012 mm to a maximum of 0.027 mm
and a mean of 0.0042 mm, respectively. In conclusion, when the PI parameters are carefully selected to
avoid entering an infinite loop or losing control, the conventional PI closed-loop control algorithm can
achieve a relatively good control effect.
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5. RBF Neural Network Control

5.1. RBF Neural Network

When the PI parameters are set to be Kp = 0.5, Ki = 0.1, a relatively good control effect can be
achieved for a circular trajectory with a radius of 3 mm and a circular center of (−3,0), which is not a
good enough control effect. In theory, different PI parameters should be used at different locations in
order to achieve a better control effect, which was difficult to carry out in the experiment. In addition,
there are many nonlinear factors involved in the 3-PRR parallel mechanism, such as load variation,
mechanical deformation, and joint clearance, which necessitates a parameter tuning controller. RBF
neural network control is based on PI feedback control. Most positions of tracking trajectory are
controlled by constant PI parameters, and RBF neural network control is performed only at specific
positions, such as the position in the red box in Figures 12b and 13b. The position in the red box
of Figures 12b and 13b often corresponds to the position where the speed of any motor reaches its
maximum value, as shown in Figure 4b. Therefore, RBF neural network control can achieve a higher
tracking accuracy than PI feedback control. The disadvantage of RBF neural network control is that,
in the first run, RBF neural network needs some time to learn online, which will reduce the speed of
trajectory tracking. The advantage of RBF neural network is that, after the first run, it does not need
any time to learn again to repeat the trajectory, and the first learning result can be used. An incremental
PI controller was applied in the experiment and it can be expressed as:{

u(k) = u(k− 1) + ∆u(k)
∆u(k) = Kp(e(k) − e(k− 1)) + Kie(k)

(13)

where ∆u(k) is the incremental control of the PI controller, and e(k) is the tracking error.
The RBF neural network controllers of the 3-PRR planar parallel platform are shown in Figure 15,

which are marked in blue and designed to adjust the PI feedback controllers. Different from the BP
neural network controller, which directly uses the output of the output layer as the PI parameters

Kp and Ki, the RBF neural network controller adopts the Jacobian function ∂x(k)
∂∆u(k) marked in the blue

box to adjust the PI parameters Kp and Ki, as shown in Figure 15. Since the RBF neural network
controllers that adjust the PI parameters are almost the same, only the RBF neural network controller
that compensates the tracking error x− x1 in the X-direction was shown and investigated in this paper.
Figure 16 presents the structure of the three layers of the RBF neural network, which includes input
layer i with three neurons, hidden layer j with six neurons, and output layer m with one neuron.
The control increment ∆u(k) and measurement data x1(k) and x1(k − 1) were used as the input of
the input layer. The activation function h j of the hidden layer is the Gaussian radial basis function.
The matrix [w1, w2, w3, w4, w5, w6] is the weight of the output layer, and xm(k) is the output of the

RBF neural network. The PI parameters Kp and Ki were adjusted by the Jacobian function ∂x(k)
∂∆u(k) of the

RBF neural network.
According to the gradient descent method, the adjustment of the weight, centric vector and basis

breadth of the Gaussian radial basis function can be expressed by:

w j(k) = w j(k− 1) + η(x1(k) − xm(k))h j + α(w j(k− 1) −w j(k− 2))

∆b j = (x1(k) − xm(k))w jh j
‖X−C j‖

2

b j
3

b j(k) = b j(k− 1) + η∆b j + α(b j(k− 1) − b j(k− 2))
∆c ji = (x1(k) − xm(k))w j

x j−c ji

b j
2

c ji(k) = c ji(k− 1) + η∆c ji + α(c ji(k− 1) − c ji(k− 2))

(14)
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An incremental PI controller was applied in the experiment, and the adjustment of the PI
parameters can be determined by:

E(k) = 1
2 (e(k))

2 = 1
2 (x(k) − x1(k))

2

∆Kp = −η ∂E
∂Kp

= −η∂E
∂x

∂x
∂∆u

∂∆u
∂Kp

= ηe(k) ∂x
∂∆u (e(k) − e(k− 1))

∆Ki = −η
∂E
∂Ki

= −η∂E
∂x

∂x
∂∆u

∂∆u
∂Ki

= ηe(k) ∂x
∂∆u e(k)

(15)
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An incremental PI controller was applied in the experiment, and the adjustment of the PI 
parameters can be determined by: 

( ) 2 2
1

1 1( ( )) ( ( ) ( ))
2 2

( ) ( ( ) ( 1))

( ) ( )

p
p p

i
i i

E k e k x k x k

E E x u xK e k e k e k
K x u K u
E E x u xK e k e k
K x u K u

η η η

η η η
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The definitions of certain given symbols are shown in Table 2. The adjustment process of the 
RBF neural-network controller is shown in Figure 17. To compensate for a large tracking error of 
the circular motion, the position of the red box in Figure 13a was selected for the experiment of RBF 
neura network control. The initial values of the output layer weight matrix were set to be [0.321, 
0.499, 0.418, −0.075, 0.050, −0.418], which are random numbers between −0.5 and 0.5. The initial 
values of the basis breadth matrix of the Gaussian radial basis function were set to be [0.5, 0.5, 0.5, 
0.5, 0.5, 0.5]. The initial values of the centric vector matrix of the Gaussian radial basis function were 
set to be [−0.412, −0.261, 0.447; −0.143, −0.089, 0.495; −0.294, −0.380, −0.413; 0.3874, −0.051, 0.027; 
−0.480, 0.305, 0.182; −0.465, −0.332, 0.375], which are random numbers between −0.5 and 0.5. The 
initial values of the PI parameters were set as 0, 0 p iK K= = . 

Figure 16. Structure of the three layers of the RBF neural network.

The definitions of certain given symbols are shown in Table 2. The adjustment process of the RBF
neural-network controller is shown in Figure 17. To compensate for a large tracking error of the circular
motion, the position of the red box in Figure 13a was selected for the experiment of RBF neura network
control. The initial values of the output layer weight matrix were set to be [0.321, 0.499, 0.418, −0.075,
0.050, −0.418], which are random numbers between −0.5 and 0.5. The initial values of the basis breadth
matrix of the Gaussian radial basis function were set to be [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]. The initial values
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of the centric vector matrix of the Gaussian radial basis function were set to be [−0.412, −0.261, 0.447;
−0.143, −0.089, 0.495; −0.294, −0.380, −0.413; 0.3874, −0.051, 0.027; −0.480, 0.305, 0.182; −0.465, −0.332,
0.375], which are random numbers between −0.5 and 0.5. The initial values of the PI parameters were
set as Kp = 0, Ki = 0.

Table 2. Definitions of the given symbols of the RBF neural network.

Symbol Meaning

hi(x) Gaussian radial basis function
C j Centric vector of the Gaussian radial basis function
b j Basis breadth of the Gaussian radial basis function
w j Weight of the output layer

xm(k) Output of the RBF neural network
α Inertia coefficient
η Learning rate

E(k) Performance index function
∂x(k)
∂∆u(k) Jacobian function used to adjust the PI parameterSensors 2019, 19, x FOR PEER REVIEW 19 of 23 
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Figure 17. The adjustment process of the RBF neural network controller.

Figure 17a–c present a part of the adjustment process of the RBF neural network, which shows that
the weights of the output layer and centric vector finished the adjustment process in 4 s. The values of
the basis breadth converged relatively slowly and finished the adjustment process in 6 s. After the
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adjustment process was finished, the weight matrix of the output layer was [0.971, 1.412, 0.838, 1.160,
0.872, 0.240]. The values of the basis breadth matrix of the Gaussian radial basis function were [0.885,
1.026, 0.7104, 0.385, 0.623, 0.533]. The values of the centric vector matrix of the Gaussian radial
basis function were [0.383, 0.176, −0.548; 0.290, 0.102, −1.156; 0.441, 0.183, 0.130; 0.144, −0.019, 0.010;
0.079, −0.048, −0.0304; −0.513, −0.366, 0.414]. Figure 17d shows that the PI parameters can finish the
adjustment process in 4 s, which results in Kp = 0.302, Ki = 0.01 and demonstrates that the proportion
term Kp plays the main role when compensating for the tracking error.

5.2. Trajectory Tracking Experiment Based on RBF Neural Network

After finishing the adjustment process of the RBF neural network, the trajectory tracking experiment
based on RBF neural network was conducted. To verify the control performance of the RBF neural
network controller when tracking different circular trajectories, the tracking experiments of different
circular trajectories were conducted. The neural-network-based experimental results for tracking
different circular trajectories are shown in Figure 18. Figure 18a presents the experimental results of
several circular trajectories with different radii, such as radii of 2 mm, 3 mm, and 4 mm. Figure 18b
presents the experimental results of tracking five circular trajectories with different circular centers,
such as circular centers of (0, 0), (3, 0), (−3, 0), (0, 3), and (0, −3). The point at the position of 6 mm in
the X-axis in Figure 18b is magnified in Figure 18c, which shows that the neural-network-based control
algorithm can dramatically improve the tracking accuracy compared with the semi-closed-loop control
algorithm. The qualitative comparison of the positioning precision is shown in Figure 18d,e, which
demonstrates that the tracking accuracies both in the X-direction and Y-direction were improved by
using the neural-network-based control algorithm.

A quantitative comparison of the tracking accuracies of the different control algorithms is presented
in Table 3, which includes three evaluation indicators, namely, the mean value, standard deviation,
and the maximum value of tracking errors. The circular trajectory with a radius of 3 mm and a center
point of (−3,0) has been selected to illustrate the control performances of different control algorithms in
Table 3. When the tracking accuracy of neural-network-based control is used to compare with that of
the semi-closed-loop control, one can see that the errors in the X-direction are greatly reduced from a
mean Xmean of 0.0220 mm and a maximum Xmax of 0.0470 mm to a mean of 0.0025 mm and a maximum
of 0.0177 mm. The errors in the Y-direction are greatly reduced from a mean Ymean of 0.0120 mm
and a maximum Ymax of 0.0350 mm to a mean of 0.0026 mm and a maximum of 0.0206 mm. When
the tracking accuracy of neural network-based control is used to compare with that of PI feedback
control with Kp = 0.5, Ki = 0.1, the mean errors in the X-direction and Y-direction are reduced from
0.0032 mm and 0.0037 mm to 0.0025 mm and 0.0026 mm, respectively. It should be noted that the PI
parameters Kp = 0.5, Ki = 0.1 are carefully selected by many attempts to avoid entering an infinite loop
as shown in Figure 12b or losing control as shown in Figure 13b. In conclusion, the experimental results
demonstrate that all of the feed-forward control, PI feedback control, and RBF neural-network control
algorithms have better control effects than that of semi-closed-loop control, which proves the validity of
the designed full closed-loop control system based on a combination of laser displacement sensors and
linear grating encoders. In addition, the experimental results also demonstrate that the control effect of
feed-forward control is better than that of semi-closed-loop control; the control effect of PI feedback
control is better than that of feed-forward control; and the control effect of RBF neural-network control
is better than that of PI feedback control. In addition, in the first run, the RBF neural network control
took more time than the PI feedback control. After the first run, the RBF neural-network control took
the same time as the PI feedback control. The tracking times of different control algorithms are shown
in Table 4. Because there was no feedback control, the semi-closed-loop control and feed-forward
control took relatively less time.
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Figure 18. Neural-network-based experimental results of different circular trajectories.

Table 3. Tracking accuracies of different control algorithms.

Control
Algorithm Xmean (mm) Xstd (mm) Xmax (mm) Ymean (mm) Ystd (mm) Ymax (mm)

Semi-closed-loop control 0.0220 0.0170 0.0470 0.0120 0.0090 0.0350
Feed-forward control 0.0040 0.0033 0.0170 0.0045 0.0038 0.0210

PI control with Kp = 0.5, Ki = 0.1 0.0032 0.0026 0.0160 0.0037 0.0031 0.0274
RBF neural network control 0.0025 0.0020 0.0177 0.0026 0.0020 0.0206
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Table 4. Tracking time of different control algorithms.

Control Algorithm Time of
First Run (s)

Time of
Later Run (s)

Semi-closed-loop control 10 10
Feed-forward control 10 10

PI control with Kp = 0.5, Ki = 0.1 20 20
RBF neural network control 36 20

6. Conclusions

A three-degrees-of-freedom full closed-loop control precision tracking system was developed and
analyzed in this paper. Equally-spaced laser displacement sensors and linear grating encoders were
used in combination not only for measurement but also for feedback control. First, the kinematics
model of the 3-PRR parallel mechanism was analyzed, which showed that a constraint relation between
the output value and input value can be established by solving the inverse kinematics equation.
The precision tracking system with three equally-spaced laser displacement sensors and linear grating
encoders for full closed-loop control was then introduced. Before conducting the closed-loop feedback
control experiment, a feed-forward control method was applied. After that, several experiments using
the PI feedback control algorithm were conducted. To improve the absolute tracking accuracy of the
closed-loop control system, a RBF neural network control algorithm was designed and applied. Finally,
the experimental results demonstrate that the control effect of feed-forward control is better than that
of semi-closed-loop control; the control effect of PI feedback control is better than that of feed-forward
control; and the control effect of RBF neural network control is better than that of PI feedback control.
It should be noted that other experiments have been done to run rhombus trajectories with sharp
edges, which have shown similar control effects to circular trajectories. In order to ensure the concision
of this article, the experiments of rhombus trajectories have been omitted.
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