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Abstract: Assisted driving and unmanned driving have been areas of focus for both industry and
academia. Front-vehicle detection technology, a key component of both types of driving, has also
attracted great interest from researchers. In this paper, to achieve front-vehicle detection in unmanned
or assisted driving, a vision-based, efficient, and fast front-vehicle detection method based on the
spatial and temporal characteristics of the front vehicle is proposed. First, a method to extract the
motion vector of the front vehicle is put forward based on Oriented FAST and Rotated BRIEF (ORB)
and the spatial position constraint. Then, by analyzing the differences between the motion vectors
of the vehicle and those of the background, feature points of the vehicle are extracted. Finally,
a feature-point clustering method based on a combination of temporal and spatial characteristics
are applied to realize front-vehicle detection. The effectiveness of the proposed algorithm is verified
using a large number of videos.
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1. Introduction

In recent years, with the rapid development of intelligent transportation, an increasing amount
of attention has been paid to unmanned and assisted driving. As one of the key technologies,
vision-based front-vehicle detection has also attracted great attention from both industry and academia.
With advantages such as low cost and high performance, vision-based front-vehicle detection can
greatly reduce manpower operation and reduce traffic accidents caused by human factors, so it can be
effectively applied in assisted or unmanned driving. Facing complex traffic scenes and variable imaging
environments, it is undoubtedly extremely challenging to rely solely on vision-based front-vehicle
detection to achieve high-precision and high-efficiency objectives. Therefore, it is theoretically
significant and has practical application to the study of vision-based front-vehicle detection.

Unlike vehicle detection in static scenes, for the front-vehicle detection problem in unmanned
driving the scene changes as the vehicle moves, so the background is not constant and the traditional
target-detection method based on background prediction is hardly applicable. At the current stage,
a large amount of work remains to be done for front-vehicle detection. In general, vision-based
front-vehicle detection algorithms can be divided into the following categories: motion-based methods,
feature-based methods, methods based on multi-vision (stereoscopic vision), model-based methods,
machine-learning-based methods, and multi-sensor fusion methods.

(1) Motion-based methods
Such methods mainly include the frame-difference method and optical flow method.

The frame-difference method [1] is suitable for video monitoring systems with a constant background,
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whereas its function is rather limited in dynamic road environments. The optical flow method [2]
can extract information such as velocity, three-dimensional surface structure, and gray value of the
moving targets. However, in some cases susceptible to vibration, the acquired images are usually
blurred, resulting in false detection and missed detection of the front vehicle. In addition, the optical
flow method is computationally intensive, which makes it difficult to ensure real-time performance of
vehicle detection.

(2) Feature-based methods
Also known as knowledge-based methods [3], feature-based methods are the most commonly

used methods in vision-based vehicle-detection methods. Common vehicle features include color,
texture, headlights, symmetry, lane lines, and underbody shadows. Since the actual scene is often
complicated, it is difficult to detect the vehicle only with one kind of feature. Hence, multiple features
are often combined in front-vehicle detection. The general process of this method is to first perform
a coarse detection of the front vehicle based on specific features, and to then use other features to
post-process the coarse-detection results.

Qu et al. [4] proposed a multi-feature front-vehicle detection method that first adopted
pre-processing methods, such as graying, smoothing filtering, and histogram equalization to improve
the image quality, then used a segmentation algorithm to roughly segment the background and the
vehicle in the image, and finally detected the vehicle by comprehensively considering the directional
characteristics of underbody shadows and the rear of the vehicle, as well as the symmetry of the
vehicle. Similar to the method proposed by Qu et al., [4], Chen et al. [5] proposed to first perform
the lane-line detection to determine the approximate position of the vehicle in the image, and then
verify the candidate area using constraints like the edge features, vertical projection, and symmetry.
By calculating the depth of the road image based on built-in parameters of the camera using the
calibration method, Chao et al. [6] determined the difference between the boundary area of the current
frame and that of the next frame to obtain the vehicle mask, then obtained the vanishing point through
lane-line detection, and finally worked out the position of the vehicle according to the vehicle mask.
Li et al. [7] proposed a vehicle detection method based on an And–Or Graph (AOG) and Hybrid
Image Templates (HITs). Zhang et al., [8], based on the grads feature of the shadow, which shows the
candidate vehicle regions, eliminated the noises of the corresponding area by the method of differential
box counting. Then, the accurate vehicle area can be located by analyzing the information of the
vehicle’s horizontal edge feature in the candidate vehicle region. Xu et al. [9] proposed an algorithm
for front-vehicle detection based on Haar-like features. When the scene is relatively simple, the lighting
conditions are good, and the vehicle features are obvious, the above methods can achieve relatively
good results. Nevertheless, once the scene becomes complicated or there are a large number of vehicles
in the scene, the accuracy will decrease.

(3) Methods based on multi-vision (stereoscopic vision)
Methods based on multi-vision require two vision sensors to simultaneously observe the

foreground. Zhao and Zhou [10] proposed a front-vehicle detection method based on binocular
vision. Image-processing methods, such as the Canny operator and Hough transform, were first used
to detect the road area, then the shadow-recognition method was used to identify the vehicle within
the road area, and binocular vision was finally applied to estimate the distance between the unmanned
vehicle and front vehicle. Although front-vehicle detection methods based on multi-vision can gain
more accurate detection results than the single-vision front-vehicle detection algorithm, the hardware
cost of such methods is relatively high, the calculation amount is large, and the matching of features is
difficult to carry out.

(4) Model-based methods
The model-based method detects the front vehicle by building a two- or three-dimensional model

based on a large amount of vehicle data collected in advance, and then matching the image to be
detected with the model [11]. This method is often used jointly with feature-based methods; that is,
the potential front vehicle is first determined by feature-based methods, and model-based methods are
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used for verification to eliminate false targets. Zeng [12] proposed a method based on a rectangular
box model and a u-shaped model. This method first established a rectangular frame model for
vehicles relatively close to the unmanned vehicle and built a u-shaped model for vehicles relatively far
away, and then conducted the final detection according to the dynamic changes of vehicles in front.
Pi et al. [13] first used the image gray gradient to detect the front vehicle. Kalman filtering was then
used to predict the position of the vehicle in the next frame based on the two-dimensional model
of the vehicle and located the vehicle near the predicted position using the edge-projection method.
Cai et al. [14] proposed a probabilistic framework combining a scene model with a pattern recognition
method for vehicle detection by a stationary camera. Chen et al. [15], aiming at the complex scenes of
traffic video surveillance and the characteristics of high real-time requirements, proposed a vehicle
detection algorithm based on “divide and conquer” thinking.

This type of method depends too much on the model, and the same model is not applicable to
all situations.

(5) Machine learning-based methods
Machine learning-based methods usually need to train the classifier by collecting positive and

negative sample sets of the target. The detection process is to input the original image into the trained
network and then output the detection results [16]. Yu et al. [17] proposed a front-vehicle detection
method applying the Haar feature to the AdaBoost classifier. The integral graph method was used to
calculate Haar-like features, which were then applied to the AdaBoost algorithm to select the features
and train the classifier. In the end, the trained classifier was used for detection.

Machine learning-based methods have achieved great results in some cases, but these methods
require a large number of positive and negative samples, and the algorithm is so complicated that the
real-time performance of the detection cannot be guaranteed.

In recent years, deep learning has developed rapidly in the field of computer vision, and there
are currently some studies introducing deep learning into front-vehicle detection. Junghwan et al. [18]
proposed a front-vehicle detection method based on a convolutional neural network (CNN).
This method first obtained the region of interest (ROI) through lane-line and vanishing-point detection,
and then determined the candidate region using edge and shadow detection, with the CNN model
applied for verification. Zhao et al. [19] put forward a front-vehicle detection method based on a visual
attention mechanism and CNN. This method combined a multi-view attention mechanism with a
CNN, using the reinforcement learning method to obtain a CNN model based on the visual attention
mechanism and then working out the key regions in the image according to the reinforcement learning
algorithm. In addition, information entropy was used to measure the classification confidence to
further guide the reinforcement learning algorithm. Georgy et al. [20] proposed an adaptive hybrid
network that was divided into two levels, one for feature extraction and the other for multi-layer
sensing. In the experiment, there were three sensing layers, each of which contained 80 neurons, and
the weight of the network was adjusted by a stochastic gradient-descent algorithm. Wang et al. [21]
proposed a vehicle detection algorithm based on a multiple feature subspace distribution deep model
with online transfer learning.

In the current stage, the main problem of the front-vehicle detection method based on a
deep-learning method is that massive samples are needed. Moreover, parameter adjustment of
the deep-learning network and the rapid implementation of the algorithm are also difficulties in
this respect.

(6) Multi-sensor fusion methods
Considering the influence of weather, road surface, and exterior appearance of the front vehicle

during the actual driving process, single-sensor detection—whether it is by vision sensor or radar
sensor—will inevitably have some shortcomings, resulting in a decreased detection rate. It is therefore
suggested that both radar and vision sensors be used to detect vehicles. Zeng et al. [22] proposed a
method to detect the front vehicle using the Harri-like feature classifier based on underbody shadows.
In this study, the ROI was obtained using the millimeter-wave radar image, the ROI in the visible image
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was segmented per the Harri-like rectangular features, and front-vehicle detection was then performed
based on the coincidence degree of the ROIs gained by the radar and vision sensors. According to
Xie et al. [23], the suspected target was obtained by the video sensor, and the laser distance sensor was
used to scan the area. If no beam was reflected back, it would be considered a false alarm, otherwise,
the vehicle target would be considered to exist and the distance information would be calculated
based on the beam-reflection time. Generally, vision-based vehicle detection methods consist of two
stages: hypotheses generation and hypotheses verification. Manuel et al. [24] proposed a feature-based
method for on-road vehicle detection in urban traffic. Jin et al. [25] proposed a vehicle detection
algorithm combining millimeter-wave radar data and visual multi-features.

Among the above methods, feature-based vehicle detection has been studied quite frequently
in the current phase. The research trend has been to extract more effective features and design a
reasonable detection algorithm based on features of a front-vehicle detection method. As is known,
the characteristics of the front vehicle include the movement velocity characteristics in the time domain,
as well as features in the space domain, such as shape, texture, and color. In general, the spatial
characteristics utilized in the existing publications are complex and variable, while the movement
characteristics are relatively stable. Therefore, with the temporal and spatial characteristics of the front
vehicle considered, a motion-vector feature-extraction method based on Oriented FAST and Rotated
BRIEF (ORB) and the spatial position constraint was explored in this study. Then, based on the prior
knowledge of the vehicle approaching the vanishing point while the background will move away
from the vanishing point, the background point was eliminated. In the end, a feature-point clustering
method was used to realize front-vehicle detection based on temporal and spatial characteristics.
This paper studies how to use spatial characteristics to obtain the motion characteristics of the front
vehicle, and how to obtain the final detection of the front vehicle based on the motion characteristics.

2. Motion-Vector Extraction Based on ORB and Spatial Position Constraint Matching

The front-vehicle detection method proposed in this study is based on the extraction of a vehicle’s
motion vector. The motion vector can be obtained by the optical flow method or inter-frame matching,
but the optical flow method is complicated with poor real-time performance. Hence, in this study,
an image inter-frame matching algorithm based on ORB [26] and the spatial position constraint was
proposed to extract the motion vector.

ORB is a fast feature-extraction and -description method based on the features from accelerated
segment test (FAST) feature-point detection [27] and binary robust independent elementary features
(BRIEF) [28] description. Since traditional FAST is not scale-invariant, this method introduced a
Gaussian pyramid to solve this problem during the extraction of the feature points. During the
feature-description stage, based on the BRIEF algorithm, the problem of rotation invariance was solved
by introducing the grayscale centroid method.

The feature points of FAST are represented as local maxima and minima points in the
neighborhood, and the ORB method is based on FAST, so the ORB feature points also have this
feature. For occluded and partial views, as long as the pixel points corresponding to the vehicle have a
maximum or minimum value, the corresponding feature points can still be extracted. In other words,
for occluded and partial views, FAST feature points have a relatively robust performance. It is worth
mentioning that Wang et al. [29] proposed a probabilistic inference framework based on part models
to deal with the occlusion and partial-view problems. In addition, viewpoint maps generated by
knowledge of road structure are also required. These processes to some extent limit the practical
applications of this method.

2.1. Algorithm Flow

To obtain the motion vector of the vehicle, it is necessary to match the feature points extracted
by the ORB algorithm. However, the common approach cannot guarantee that all feature points can
be correctly matched. Moreover, if all feature points are matched one by one, the computational cost
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will undoubtedly increase. Since the change of the scenes between adjacent frames will not be too
large, the spatial position constraint of the candidate matching points was introduced in this study to
improve the matching accuracy and reduce the time consumed by the matching process. The basic
idea was to open a window centered on the feature point and find candidate matching points in
the window. The candidate matching points in the window were ranked from high to low per their
weighted similarities, and the candidate matching point with the highest similarity was selected as
the matching point. This strategy has the following strengths: First, it reduced the time overhead
because it looked for matching points in the neighborhood rather than in the entire picture; second,
the matching accuracy was improved by applying the similarity of the features and the spatial position
constraint to jointly portray the similarity. Figure 1 shows the above ORB matching method based on
the spatial position constraint.
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spatial position constraint.

As shown in Figure 1, the ORB algorithm was used to extract feature points as the points to be
matched. To determine the similarity of the feature points, the similarity between the feature point
p and all candidate matching points in the window was calculated, the results of which were then
arranged from large to small, and the candidate point with the highest similarity value was selected as
the homonymy point of this feature point.

2.2. Matching-Point Search in Opened Windows

p is the point to be matched in the image of the tth frame and p′ is the pixel point of p in
the corresponding position in the image of the t + 1th frame. With p′ as the center, all candidate
points in the neighborhood S× S were selected, and their weighted similarity with p was calculated.
The candidate matching point q with the highest weighted similarity was selected to be matched
with p.

In practice, there may be such a situation that the homonymy points in two adjacent frames may
not be detected. The following strategies can be adopted: (1) If no feature point is detected in the
window, the feature point should be discarded rather than matched; (2) if there are multiple candidate
matching points in the window, the candidate point with the highest weighted similarity should be
selected for matching.

2.3. Calculation of Weighted Similarity

Since the scaling and rotation of two adjacent frames in the video are not obvious, the homonymy
points in two adjacent frames will not deviate too much from each other in the image space. Therefore,
based on the usual matching method, the spatial position constraint was added to the feature points to
be matched to construct the similarity index as follows:

Dis = ω1disbrie f + ω2disspace, (1)
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where disbrie f is the distance depicted by the BRIEF description operator, ω1 the corresponding weight,
disspace the spatial distance, and ω2 = 1−ω1 the corresponding weight.

The BRIEF method is a binary descriptor that mainly uses the Hamming distance to measure
the similarity between two binary strings. For two binary strings of the same length, the Hamming
distance refers to the number of different characters at the corresponding position, which can be
expressed by

d =
n

∑
i=0

x[i] ∧ y[i], (2)

where both x and y are binary string descriptors, n is length, ∧ represents exclusive OR, and d
represents the Hamming distance between two binary strings, i.e., the similarity between the feature
points to be matched.

According to the principle of the BRIEF algorithm, the value disbrie f is an integer between 0 and n,
which are generally integers such as 128 and 256. If the length of the pixel of the diagonal is L, then the
spatial distance between the two pixels is 0 to L, so the range of the spatial distance should be adjusted
to 0 to n. For the sake of simplicity, here [0, L] was directly mapped to [0, n] using linear transformation.

3. Front-Vehicle Detection Based on Temporal and Spatial Characteristics

Owing to variable weather conditions, complex background, and diverse vehicles, it is difficult to
accurately detect the front vehicle with a single feature. A fast and efficient front-vehicle detection
method was thus proposed based on a comprehensive consideration of motion characteristics in the
temporal domain and proximity characteristics in the spatial domain.

3.1. Algorithm Flow

Owing to the perspective projection in the imaging process, a pair of parallel lines in the physical
space will intersect at a point on the image plane, which is called the vanishing point. For front-vehicle
detection in unmanned driving, the camera is fixed on the currently unmanned vehicle, and from the
point of view of the unmanned vehicle all the cars in front will move forward to the vanishing point in
the direction of the current vehicle, whereas the background point will move away from the vanishing
point in the opposite direction to the current vehicle. Hence, according to the extraction of motion
vectors of the feature points introduced in the preceding section, the feature points in the scene can
be divided into two categories: the front-vehicle category and the background category. In addition,
considering that the motion vectors of the feature points on the same vehicle are almost the same
and adjacent to each other, front-vehicle detection can be realized by clustering motions vectors of
the feature points. Based on the above analysis, the front-vehicle detection flow shown in Figure 2 is
proposed here.

Since images are easily affected by the environment and equipment during acquisition and
transmission, the obtained images often contain noise, so it is necessary to perform corresponding
pre-processing operations to improve the image quality. Considering the generality of the method,
the Gaussian filtering method was used for de-noising and the multi-scale Retinex operator was
applied for image enhancement [30]. After the image was pre-processed, the motion vectors were
extracted using the inter-frame matching method introduced in the preceding section. The extraction
of the vanishing point and feature points of the front vehicle as well as front-vehicle detection were
introduced one by one in the following parts.
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3.2. Extraction of Vanishing Point Based on Automatic Edge Detection and Hough Transform

Owing to the perspective principle of imaging, two parallel lines in a physical space will intersect
at a distant point on the image plane, which is the vanishing point.

The lane lines in the image provide a natural way to extract the vanishing points. The lane lines
appear as the strong edges in the image, so lane-line extraction can be performed by means of image
edge detection and Hough transform. Common edge-detection operators include sobel, prewitt, LoG,
and Canny, which require the setting of a threshold. To adapt edge detection to various situations,
an edge-detection method based on an adaptive threshold was used in this study [31]. Based on edge
extraction, Hough transform and straight-line fitting were used to extract the lane lines, which were
then extended to obtain the vanishing point.

In practice, the lane line may be not visible; in this case, we can also use the edges on both sides
of the road to extract the vanishing point.

3.3. Extraction of Feature Point of Front Vehicle Based on Analysis of Motion Vector

Owing to the relativity of motion, we will feel that the points in the scene are gradually moving
away from the vanishing point, while the points on the front car are gradually approaching the
vanishing point. It should be noted that when the speed of the front car is greater than that of the
current car, the front car will approach the vanishing point; otherwise, the front car will move away
from the vanishing point. Therefore, after extracting the vanishing point of the scene in a certain frame,
it is fixed for a certain period of time (set as 1/5 s here), so that even if the speed of the front car is less
than the speed of the current car, the front car will still approach the vanishing point. Furthermore,
in the actual scene, the leaves on the sides of the road may tremble in the breeze. Such movements are
rather random, but the movement of feature points on the vehicle is fairly consistent, so the differences
between vehicles and the scene in movement velocity can be used to distinguish feature points on the
vehicle from those in the background.

As mentioned in Section 2, the ORB feature-point extraction method was used to extract the
feature points of the image. Figure 3 shows an example of extraction of leading-vehicle feature points.
Subfigure (a1) shows the extracted feature points, including the scenes and the vehicles, and the two
points connected by a straight line are homonymy points between the adjacent two frames. Subfigure
(b1) shows feature points of the vehicles detected based on motion-vector analysis. It can be seen that
feature points on the vehicle can be effectively distinguished from those in the background based on
the motion vectors and the vanishing point, thereby facilitating the detection of front vehicles. To more
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clearly visualize the matching of feature points of different front vehicles in the scene, we display the
extraction results of feature points of three front vehicles in the scene, as shown in Figure 4.Sensors 2018, 18, x FOR PEER REVIEW  8 of 18 
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As can be seen in Figure 4, feature points of different front vehicles can be well matched,
thus guaranteeing the accuracy of motion velocity extraction.

3.4. Front-Vehicle Detection Based on Clustering of Spatial Neighborhood Features and
Motion-Vector Characteristics

Based on the vanishing point and motion vectors, most of the scene areas can be eliminated.
To obtain the position of each vehicle in the image, it is necessary to classify the feature points on the
vehicles. Since feature points on different vehicles have different motion vectors, the detection and
marking of vehicles can be realized according to the “clustering” of the motion vectors. On this basis,
a feature-point clustering algorithm based on motion vector is proposed in this study. The basic flow is
shown in Figure 5.
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In Figure 5, let n = 0 during initialization, the “total number” denotes the number of motion
vectors, i.e., the number of feature points of all the vehicles, and the condition to stop clustering is
that all motion vectors are processed. Unlike general clustering methods, this algorithm did not set a
fixed number of clusters at the beginning. After obtaining the motion vectors, a motion vector was
randomly extracted to initialize the clusters, and the motion vector of each feature point was taken
out one by one to calculate its similarity with each cluster. If the similarity is greater than a certain
value, the motion vector will be classified into this cluster and the cluster center will then be updated.
If not, a new cluster will be created with this motion vector as the center. The feature points in the
image can be divided into several clusters after going through the above process to traverse all the
motion vectors.

Considering that the feature points on the same vehicle are of strong spatial clustering,
the similarity can be characterized jointly by the motion vector and spatial distance. p(xt, yt) and
p(xt+1, yt+1) are the positions of the feature point p in the image at time t and time t + 1, respectively,
and r = (xt+1− xt, yt+1− yt) represents the motion vector of p. As shown in Figure 6, θx and θy indicate
the angles between the motion vector and the x and y direction, respectively, and V = (θx, θy, ‖r‖)
denotes the motion vector of this point. The motion vector of the kth feature point can be expressed as

Vk = (θkx, θky, ‖rk‖), (3)

where θkx is the angle between the motion vector of the kth feature point and the x direction, θky the
angle between the motion vector of kth feature point and the y direction, and ‖rk‖ the magnitude of
the motion vector of the kth feature point, which was normalized using the following equation:

‖r̃k‖ = ‖rk‖/‖r‖max, (4)

where ‖r̃k‖ is the normalized magnitude of the motion vector, and ‖r‖max = max(‖ri‖), i = 1, 2, · · · , N.
The normalized motion vector Ṽk can be expressed as

Ṽk = (θkx, θky, ‖r̃k‖) . (5)
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As the correlation coefficient is suitable for calculating the similarity of vectors, the correlation
coefficient was used to measure the similarity between motion vectors. The similarity between the
kth motion vector Vk and the vector of the ith cluster center Ci is denoted by ρki, and the following
equation can be obtained:

ρki =
VkCT

i
‖Vk‖·‖CT

i ‖
, (6)

where CT
i is the transposed Ci, and ‖Vk‖ and ‖CT

i ‖ are the moduli of the vectors Vk and CT
i , respectively.

The range of the correlation coefficient ρki was thereby obtained, i.e., [−1, 1]. The larger the value,
the more similar the two vectors are to each other and the more likely it is for Vk to be classified into
the cluster represented by Ci.

Since the vehicle is a rigid body and the feature points on it are strongly correlated when it comes
to spatial position, spatial constraint can be introduced into the clustering process and the similarity
can be jointly characterized by the motion vector and spatial position. The Euclidean distance was
used to measure the spatial distance d between two feature points; that is,

d =

√
(xt+1 − xt)

2 + (yt+1 − yt)
2. (7)

To be consistent with the motion vector, the spatial distance was also normalized, and the
normalized spatial distance was recorded as d̃. For the sake of simplicity, linear normalization was
used, and the following equation was obtained:

d̃ = d/D, (8)

where D =
√

x2
max + y2

max, and xmax and ymax represent the maximum values of the x and y coordinate
of the starting points in all the motion vectors, respectively.

ρki is the similarity between the motion vector Vk of the kth feature point and the motion of the ith
cluster center Ci, d̃ki is the spatial similarity between this feature point and the cluster center, and the
total similarity is denoted S:

S = α · ρki + (1− α) · dki, (9)

where α represents the weight of the similarity between the vectors, and (1− α) indicates the weight
of the spatial similarity. The larger S is, the more likely it is that the two feature points are on the same
vehicle, and the more they should be classified into the same cluster. It was proven by many tests that
when α is to set to 0.6, the results are good.
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Through the clustering of motion vectors, feature points with similar motion vectors were
clustered into the same category, and different vehicles were thereby marked. As shown in Figure 7,
feature points on different vehicles were marked with different colors. It should be pointed out that
the feature-point extraction method adopted in this paper generates some false detection when there is
a shadow. Therefore, after clustering, these false-detection shadow points will remain as points on the
vehicle. Despite the presence of false positives, these false shadows and points on the actual vehicle
form the vehicle area. To improve the accuracy of detection, the method of shadow removal should be
studied to eliminate the influence of shadow on the extraction of vehicle feature points.
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The front-vehicle detection method proposed in this paper is based on the vanishing point.
From the viewpoint of the current vehicle, the vehicles in the opposite lane will be far from the
vanishing point, and the background point will also be far from the vanishing point, but the speed of
the two will be greatly different, so that the vehicles in the opposite lane can be detected. In addition,
as visible-light video is used here, the contrast of the scene is very low for the nighttime situation,
and it is difficult to carry out effective vehicle detection. Low contrast image enhancement methods
can be considered to improve image contrast and image quality.

4. Results and Discussion

4.1. Experimental Data

Three videos were taken by an on-board camera, which provided daily test data of the unmanned
teams at the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing of Wuhan University, China [26]. The data are highly targeted to unmanned driving scenes
and have practical test application value.

4.2. Results and Discussion

Figure 8 shows the results obtained using the method proposed in this study. Each box in
Figures 8–10 is obtained by taking the minimum external rectangular frame for all feature points on
the final extracted vehicle.
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It can be seen from Figures 8–10 that, in most cases, this algorithm can achieve great detection
results. Although the complete areas of the vehicles were not obtained at some time points, the presence
of the vehicle was detected.

To further test the performance of the algorithm, a car video containing 1058 vehicles was used
for testing. Its image resolution was 1920 × 1080, its frame rate 25 frames per second, and the total
number of frames 1200. The parameters were set as follows: the weight of the spatial distance ω2 = 0.3
during inter-frame matching and the weight of the vector similarity α = 0.6 in vector clustering.
Since feature-based front-vehicle detection was explored in this study, currently available methods
with relatively great effects were selected to be compared with the proposed method. As mentioned in
the Introduction, the three methods proposed by Qu and Li [4], Chen et al. [5], and Chen et al. [6] are
selected as the comparison methods. To verify the effectiveness of the method presented in this paper,
we also compared it to the methods in [7,8]. The values set in this study served as the parameters
used in the process to implement these methods. The configuration of the computer used in the
experiment is as follows: Pentium (R) Dual-Core processor, CPU E6600 @ 3.06 GHz/3.07 GHz, RAM
8.00 GB, and the Windows 7 64-bit operating system. Precision=TP/(TP+FP) and Recall=TP/(TP+FN),
where TP is the number of vehicles detected as the targets, FP the number of non-target objects detected
as targets (false detection), and FN the number of undetected targets (missed detection). The values of
the performance indexes of the above methods are shown in Figures 11–13.
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As can be seen in Figures 11 and 12, out of all of the method of [4–6], method of [5] has the
highest recall, but its precision is the lowest. This is because method of [5] adopts the symmetry of
vehicle edge features, and many non-vehicle targets, such as buildings, will be mistakenly detected as
vehicles. The method proposed in [6] has the highest precision, but its recall is the worst. This method
is very sensitive to the environment and is mostly suitable for single-vehicle situations. In terms of
comprehensive recall and precision, the performance results in [4] are better than those in [5,6].

Compared with the above three methods, the method proposed in this study has the highest
detection precision, which is 1.1% higher than that of the second-ranked method, that proposed by
Chen et al. [6]. In terms of recall, the method proposed in this study also has obvious advantages,
and is 1.85% higher than that of the second-ranked method, that proposed by Chen et al. [5]. Regarding
time consumption, the method proposed in this study is the least time-consuming, which is close
to quasi-real-time.

In addition, it can be seen from Figures 11 and 12 that the precision of the method of [7] is 1.09%
higher than that of [8], but 1.49% lower than that of this study. The recall of [8] is 2.54% higher than
that of [7], but 1.92% lower than that of this study. Therefore, the detection effect of this method has
the best performance in both precision and recall. In addition, the efficiency of the algorithm in this
paper is the highest.

Partial experimental results of the above methods are shown in Figure 14.
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5. Conclusions

Front-vehicle detection for unmanned and assisted driving was explored in this study, based on
videos of monocular visible light. To obtain the motion vectors of image feature points, an ORB
matching method, integrating spatial constraints, was proposed in this study. This method with
spatial constraints not only improved the precision of the algorithm, but also reduced its complexity.
According to prior knowledge that the front vehicles are approaching the vanishing point while the
background is moving away from it, the feature points of the vehicles were successfully extracted.
Finally, vehicle detection was completed by a clustering method based on velocity characteristics and
spatial proximity characteristics. The feature-based front-vehicle detection method proposed in this
study has a good performance in both detection efficiency and effectiveness. The next phase of work is
to optimize this algorithm to further enhance its effectiveness and efficiency.
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