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Abstract: The electrocardiogram (ECG) is an important diagnostic tool for cardiovascular diseases.
However, ECG signals are susceptible to noise, which may degenerate waveform and cause
misdiagnosis. In this paper, the ECG noise reduction techniques based on sparse recovery
are investigated. A novel sparse ECG denoising framework combining low-pass filtering and
sparsity recovery is proposed. Two sparsity recovery algorithms are developed based on the
traditional `1-norm penalty and the novel generalized minimax concave (GMC) penalty, respectively.
Compared with the `1-norm penalty, the non-differentiable non-convex GMC penalty has the potential
to strongly promote sparsity while maintaining the convexity of the cost function. Moreover, the GMC
punishes large values less severely than `1-norm, which is utilized to overcome the drawback of
underestimating the high-amplitude components for the `1-norm penalty. The proposed methods
are evaluated on ECG signals from the MIT-BIH Arrhythmia database. The results show that
underestimating problem is overcome by the proposed GMC-based method. The GMC-based
method shows significant improvement with respect to the average of output signal-to-noise
ratio improvement (SNRimp), the average of root mean square error (RMSE) and the percent root
mean square difference (PRD) over almost any given SNR compared with the classical methods,
thus providing promising approaches for ECG denoising.

Keywords: ECG denoising; sparse recovery; Generalized Minimax Concave Penalty (GMC); `1-norm

1. Introduction

As the recording of the bioelectric potentials produced by rhythmical cardiac activities,
the Electrocardiogram (ECG) signals provides plentiful and valuable information on the heart
functional conditions, and it is thus has been widely used not only for the clinical diagnosis of
cardiovascular diseases in hospital, but also for patient monitoring at home. However, the ECG signals
are essentially weak and non-stationary, and so susceptible to various noises. The noise may blur or
even mask the key characteristics in the ECG waveform, which will further degenerate the reliability
and efficiency of the clinical diagnosis. Therefore, it is important and valuable to denoise the ECG, i.e.,
extract high resolution cardiac signals from noisy ECG observations.

ECG noise elimination is a very challenging task due to the spectral overlap of signals and noise,
and a wide range of ECG denoising techniques have been continuously and extensively studied in
the last few decades. These methods can be typically classified as the linear filtering, empirical mode
decomposition (EMD) and wavelet transform, etc. They are the most well-developed approaches and
have their own advantages and drawbacks.
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The linear filtering methods [1–4] have low computational complexity and fast calculation
speed and thus have been widely used in embedded or portable monitoring instruments. However,
the classical filters failed to reduce the noise components that overlap with signal spectrum. Moreover,
they will cause significant damage to the details of ECG signals which contain sharp edges and impulses
of short duration. Therefore, they are often used in combination with other noise reduction algorithms.

To overcome these difficulties, nonlinear methods have been investigated and Wavelet-based
methods are the most famous and effective [5–14]. These approaches rely on the idea of thresholding
under the assumption that signal magnitudes will concentrate in the Wavelet representation while
the noise will spread, such that the noise can be illuminated by cutting the Wavelets coefficients less
than a pre-determined threshold. The performance of the Wavelet denoising methods depends on
the matching degree of the selected Wavelet basis functions and the ECG signals. The basis functions
will be fixed once the algorithms have been developed and may not necessarily match the practical
ECG signals.

Due to the ability of dealing with non-stationary and nonlinear signals, the EMD-based ECG
denoising methods gained extensive attention recently [15–21]. The EMD method was first introduced
in [22] for analyzing data from nonstationary and nonlinear processes. The EMD decomposes a
given signal into a series of intrinsic mode functions (IMFs) through an iterative process called sifting.
The IMFs play the roles of basis functions, and the EMD method can be seen as a type of Wavelet
decomposition with adaptive basis functions. Since the basis functions of the EMD are derived from
the signal itself, it has the potential to outperform the traditional Wavelet methods. However, the EMD
has a limitation of mode mixing, which causes the mixing of higher order components with the lower
order components. Because of the mode mixing problem, it is difficult to separate the signal and noise
components clearly even in higher order IMFs. To overcome this problem, paper [21] proposed a grey
spectral noise cancellation (GSNC) scheme for ECG signals where two-stage discrimination is employed
with the empirical mode decomposition (EMD), the ensemble empirical mode decomposition (EEMD)
and the grey spectral noise estimation (GSNE). This method effectively alleviates the mode mixing
problem. In the case of denoising, removing some of the IMFs will inevitably corrupt the useful
information of the signal [23]. For example, in ECG denoising, the EMD may cause damage to P-waves
and T-waves, which may result in misdiagnosis [24].

Either the Wavelet or the EMD methods can be classified as the transform-domain processing
approaches under the assumption that the true signal can be well approximated by a linear combination
of some basis functions [25,26]. The essence underlying these methods is that the signal can be
sparsely represented in the transform domain. Since the ECG signals consist of periodical pulse
components, they can also be well represented by a combination of low pass components and sparse
components in time domain. Consequently, ECG denoising methods based on the time-domain
sparse representations have been an active research area in recent years. Paper [27] modeled the
ECG signals as the sum of two second and third order sparse derivative signals to reduce noise.
In [28], an sparse ECG signals enhancement and QRS waves detection algorithm was proposed.
In [29,30], the sparse optimizationis combined with linear time invariant (LTI) filtering to conduct
ECG signals denoising. In these sparse representation methods, `1-norm is used as a penalty term to
construct sparse optimization models. This penalty term has the ability to control the sparsity of the
optimization results. However, the `1-norm penalty has a drawback that it always underestimates the
interested signal [31], since larger coefficients are penalized more heavily in the `1 norm than smaller
coefficients [32]. The underestimating causes the amplitude of estimated signals to be lower than the
true value, which may lead to misdiagnoses.

In order to improve the denoising performance, a variety of non-convex penalty terms have
been developed to replace `1-norm [32–34]. Paper [32] proposes a weighted formulation of `1-norm
minimization designed to more closer to the solution of `0-norm. In [33], the author uses `2 − `0

penalty instead of `1-norm penalty. Paper [34] addresses the minimization problem of `0-regularized
least squares for a continuum and propose two heuristic search algorithms. However, these methods
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adopt non-convex penalty to replace `1-norm, which leads to nonconvex objective functions. As a
result, the algorithms become complicated and the solution is often stuck in the local optimal
solutions. To overcome these drawbacks, a novel multivariate non-separable non-convex penalty,
namely generalized minimax-concave (GMC) penalty, has been recently presented in [35,36]. The GMC
penalty is a non-differentiable non-convex penalty obtained by subtracting a differentiable generalized
Huber function from `1-norm. It strongly promotes sparsity while maintaining the convexity of the
cost function.

Currently, the GMC penalty has been successfully applied to the fault detection of gearbox and
achieved good results [31,37]. However, the application of GMC penalty to the ECG denoising has not
been well studied yet. It is not known whether the GMC penalty can be applied to the ECG signals
processing area to improve the denoising performance. This motivates the work in this paper to
explore the GMC-based sparse denoising method.

In this paper, we study the sparse denoising techniques for the ECG signals. Through modeling
the observed ECG signals as a sum of low-pass component, sparse component and additive noise
component, we propose an ECG denoising framework by combining the LTI low-pass filtering and
the sparsity recovering. As the key ingredients of the framework, the sparsity recovery algorithms
are investigated and we proposed two sparsity recovery algorithms based on `1-norm penalty and
GMC penalty, respectively. We compare the denoising performance of the proposed two schemes and
demonstrate that the GMC-based scheme preservers more detail information with respect to QRS
waves of ECG signals. The contributions of this work are summarized as follows.

1. A novel ECG denoising framework based on sparsity recovery is proposed. Low-pass filtering
and sparse denoising idea was first proposed in [38], but it is not known if it can be applied to the
ECG denoising. Moreover, the sparsity in [38] deals with the derivatives of the signal, while we
directly deal with the sparsity components of the signal. Therefore, we propose a different sparse
framework for ECG denoising.

2. We extend the application of GMC penalty to the area of ECG denoising. Although the GMC
penalty has been proposed in [35] and several application examples were given there, it is not
known how to apply it in the ECG area and whether the performance of ECG denoising can
be improved.

3. The performance of the GMC-based sparse denoising algorithm is comprehensively tested.
We carry out a series of experiments to explore the performance the GMC-based denoising
algorithm. The relationship between the parameter setting and the performance are demonstrated
through experiments. It is also shown that the GMC-based algorithm helps to overcome the
underestimation problem and outperforms the classical methods known in the literature.

The paper is organized as follows. We introduce the sparsity recovery denoising framework in
Section 2. The `1-norm based algorithm is described in Section 3. The GMC-based sparse denoising
algorithm is proposed in Section 4. Experimental results are presented in Section 5. Section 6 concludes
the work.

2. System Model

In this section, the sparse signal model in time domain is presented. A sparse denoising framework
based on this signal model is established with the help of mathematical derivations.

2.1. Signal Model

The noisy ECG signals can be modeled as the superposition of a low-pass signal, a sparse signal
and the additive white Gaussian noise (AWGN), which can be written as

y(n) = l(n) + d(n) + w(n), n ∈ Z (1)
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where n is the index to the discrete sampling sequences, l(n), d(n) and w(n) represent the low-pass
signal, the sparse signal and the additive white Gaussian noise (AWGN), respectively. The ’sparse’
property means that there are many zeros in a signal frame with N data points. To easily understand,
we can regard d(n), 0, 1, 2, . . . ., N − 1, as the periodic components in the ECG signal frame. In the
following, to facilitate our derivations, we omit the time index (n) in the case of not being confused.

2.2. Denoising Framework

We aim to recover the pure ECG signals l + d from the observed noisy signals s. To achieve
this, a straightforward method is the traditional linear filtering procedure. Specifically, let s , l + d
represent the pure ECG signals, then it can be approximately estimated through traditional linear
filtering

LPF(y) = LPF(l + d + w) , (2a)

= LPF(l + w) + LPF(d) , (2b)

= ĺ + LPF(d) , (2c)

where LPF represents a low-pass filtering (LPF) process and ĺ , LPF(l + w). Here, we use the
zero-phase filter since it can reduce noise in the signals and preserves the QRS complex at the same
time, it occurs in the original [38,39]. To facilitate readers, the design method of the LPF is sketched in
Appendix A.

From Equation (2c), it is observed that the traditional LPF will smooth not only the low-pass
component but also the sparse component in the original signals. Since the sparse component d consists
of high frequency ingredients, it is prone to be damaged by the LPF, which will be embodied by the
injury of the details of the ECG signals. For example, the amplitude of the peaks, the shape of the Q
and R waves may be damaged by the LPF.

As mentioned above, the traditional LPF methods may cause damage to the details of the ECG
signals due to the high-frequency ingredients. In order to enhance the details in the recovered signals,
we propose a new ECG denoising framework as shown by Figure 1. The main idea is to recover these
details, which is sparse, from the residual of the low-pass filter. Specifically, the residual of the LPF is
written as

y− LPF(y) = HPF(y) , (3a)

= HPF(l + d + w) , (3b)

= HPF(d) + HPF(l + w) , (3c)

= HPF(d) + w̃ , (3d)

where HPF represents a high-pass filter (HPF). It is assumed that the LPF and HPF are compensative,
i.e., HPF = I − LPF. Here, I represents the identity operator. From Equation (3d), we know that the
residual of the LPF consists of the high-passed ingredient of the sparse signals plus high-frequency
noise. If d̃ , HPF(d) is recovered, then it can be combined with the output of the LPF ( l̃ = ĺ + LPF(d))
as shown in Figure 1. The combined signal can be written as

s̃ = l̃ + d̃ , (4a)

≈ ĺ + LPF(d) + HPF(d) . (4b)

Recall that HPF(d) contains the details of the sparse high-frequency components, the details of
the recovered ECG signals can be thus improved. Then the problem boils down to how to recover this
high-frequency sparse signals, i.e., HPF(d), from noise.

In the following, we propose two methods to recover the sparse components in the residual of
the LPF. The first one is based on the `1-norm penalty, which improves the details in the detains of



Sensors 2019, 19, 1718 5 of 21

the output of LPF but still has obvious underestimating phenomenon. The second one is based on
the GMC penalty, which achieves better performance than the `1-norm method and overcomes the
underestimating problem.

LPF
y ~l

Σ

~d ¼ HPF (d)

Σ

+

-

+

+
~s ¼ ~l + ~d

dw Sparse 

Recovery

Figure 1. Block diagram of the sparsity electrocardiogram (ECG) denoising process.

3. Sparsity Recovery with `1-Norm

In this section, we propose the `1-norm based sparsity recovery algorithm for the sparsity recovery
block in Figure 1.

From Figure 1, we know that the performance of the sparsity recovery plays the vital role
in the whole denoising procedure. The classical sparsity recovery methods can be applied here
straightforwardly, e.g., the `1-norm penalized least squares method [40]. Specifically, the sparse signal
d̃ can be decomposed as

d̃ = Ax , (5)

where A ∈ RN×M is the basis vectors of the signal space and x ∈ RM is the representation coefficients.
Given A, we expect to find a sparse solution x to satisfy the equality. The sparse solving process can be
mathematically reformulated as the following `1-norm optimization problem

min
x
‖x‖1 (6)

s.t. : d̃ = Ax .

Note that A can be constructed using different methods in principle [35]. In this work, we construct
A based on the Short Time Fourier Transform (STFT) matrix as shown in Appendix B, considering that
the ECG signals are periodic pulses in time series.

When d̃ is corrupted by noise, i.e., dw , d̃ + w̃ is observed, an approximation solution to
Equation (6) can be found by solving the following basis pursuit denoising (BPD) problem [41,42]

arg min
x

1
2
‖dw − Ax‖2

2 + λ‖x‖1 . (7)

Specifically, the forward-backward spliting (FBS) method can be applied to find the solution of
Equation (7) [43], as listed in Algorithm 1. It is noted that the so f t(·) in the algorithm is the soft
thresholding operator defined by

so f t(t, T) = t ∗max{0, 1− T/|t|} , (8)

where T ∈ R+ is a given threshold. The maxeig(·) denotes the maximum eigenvalue of a matrix.
Our simulation results show that the details in the recovered ECG signals of the proposed `1-norm

method are enhanced significantly compared with the output of LPF. However, there still exists an
obvious gap between the recovered signal and the noiseless signal with respect to the peaks. That is to
say the proposed `1-norm method underestimates the peaks values in the signals. This drawback of
the `1-norm methods has also been revealed in literature [31,35]. To further improve the performance
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of the denoised signals with respect to the details, we propose a non-convex sparse regularization
method based on the generalized minimax concave (GMC) penalty in the following.

Algorithm 1 FBS algorithm for `1-norm penalized least squares problem

Input: x(0), A, AT , λ

Output: x(i+1)

1: Set ρ = maxeig(‖AT A‖)
2: Set µ : 0 < µ < 1/ρ

3: Number of iteration: Niter
4: for i = 0 to Niter do

5: w(i) = x(i) − µAT(Ax(i) − dw)
6: x(i+1) = so f t(w(i), µλ)
7: end for
8: return x(i+1)

4. Sparsity Recovery with GMC Penaly

As mentioned above, the classical sparsity recovery method based on `1-norm penalty will lead
to underestimation to the peaks values. In this section, instead of the `1-norm penalty, we adopt a
novel penalty for the sparsity recovery problem, which can keep the convexity of the least squares cost
function minimized and avoids underestimation the values of waveform.

4.1. GMC Penalty

The GMC penalty function ψB : RN → R is defined as

ψB(x) = ‖x‖1 − SB(x) (9)

= ‖x‖1 − min
v∈RN

{‖v‖1 +
1
2
‖B(x− v)‖2

2} ,

where, B ∈ RM×N and SB , infv∈RN{‖v‖1 +
1
2‖B(x− v)‖2

2} is the generalized Huber function [35],
inf{·} denotes the infimum of a function.

Figure 2 illustrates the scalar version of GMC penalty functions. It shows that the GMC penalty
has a basic property that large values are penalized no less than small values, but the degree of
punishment is not as severe as `1-norm [35]. Because of this property, it becomes possible to overcome
the drawback of underestimating the high-amplitude components for the `1-norm penalty. Moreover,
the GMC penalty function is non-convex itself, but it can be carefully customized to maintain the
convexity of the cost function to be minimized. This means that the global optimization of the cost
function can be achieved with GMC penalty.

-3 -2 -1 0 1 2 3
x

0

0.5

1

1.5

2

2.5

3

B
(x

)

Scaled MC penalty

B = 1.00

B = 0.50

B = 1.41

B = 0.71

|x|

Figure 2. Illustration of the generalized minimax concave (GMC) penalty function.
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4.2. Problem Formulation

By replacing the `1-norm penalty in Equation (1) with the GMC penalty Equation (9), we present
the following sparsity recovery problem

arg min
x
{1

2
‖dw − Ax‖2

2 + λψB(x)} . (10)

In order to maintain the convexity of the objective function, the parameters in B should be set
carefully based on the following lemma.

Lemma 1. In [35], Let y ∈ RM, A ∈ RM×N and λ > 0, the function F(x) = 1
2‖y− Ax‖2

2 + λψB(x) is a
convex function if BT B � 1

λ AT A. (BT B � 1
λ AT A implies that AT A− λBT B is positive semidefinite.)

Based on Lemma 1 and given A, the convexity of the objective in Equation (10) can be satisfied by
simply setting

B =
√

γ/λA, 0 ≤ γ ≤ 1 . (11)

• The non-convexity of the penalty ψB is controlled by the parameter γ. When γ = 0, the elements
of B are zeros, and the penalty degenerates to the `1-norm. When γ > 0, a higher γ will lead to
higher non-convexity.

4.3. Proposed GMC-Based Sparsity Recovery Algorithm

Similar with the classical `1-norm penalty problem, there exists no closed-form solution for the
GMC penalty problem Equation (10). In fact, the gradient of the GMC penalty is also inexplicit.
In order to solve it, we substitute Equation (9) into Equation (10) and obtain a reformulated
optimization problem

(xopt, vopt) = arg min
x

max
v

F(x, v) (12)

where F(x, v) = 1
2‖dw − Ax‖2

2 + λ‖x‖1 − λ‖v‖1 − γ
2 ‖A(x− v)‖2

2 with 0 ≤ γ ≤ 1, and dw = d̃ + w̃.
Problem Equation (12) is a saddle-point optimization problem [44], which can also be solved by

the FBS method [35,45]. We list details of the solving process in Algorithm 2.
Based on the sparse denoising framework in Figure 1 and the sparsity recovery algorithm in

Algorithm 2, we propose the GMC-penalty ECG denoising method. The detailed processing flow
of the method is shown in Figure 3 with some key parameter settings. The whole process consists
of four steps. At the first step, the noisy ECG signal is sent to a low-pass filter. At the second step,
the output of the LPF l̃ and the residual signal y− l̃ are obtained. Two parameters of the LPF, i.e.,
the order k and the cutoff frequency is wc should be configured beforehand. The next step is to perform
sparse recovery following Algorithm 2. The linear transform matrix A, the data length R, the data
overlapping ration and the window function should be set before applying the algorithm. Moreover,
the regularization parameter λ and the convexity-guaranteeing factor γ are also set at the start of
the algorithm. After processing dw by Algorithm 2, the optimal solution xopt is obtained for each
data frame. Since xopt is the sparse coefficients in frequency domain, we should further recover the
denoised sparse signal through the calculation d̃ = AHxopt. Finally, we obtain the denoised ECG signal
by synthesizing the low-pass component l̃ and the high-frequency sparse component d̃ in the last step.
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Step 1: Input noisy ECG signals

Step 2: Low Pass Filter

Parameter Setting

Step 3: GMC penalty denoising

(1) Transform choosing and Parameter setting

(2) Regularization    and convexity    parameter selection

(3) Caculating the optimal solution        via FBS algorithm

Step 4: Obtain denoised ECG signals

(4) Using     obtain 

Filter order:                     Cutoff frequency:k = 2 !c = 0:06¼

~l dw

y

A : inverse DFT matrix

AH : DFT matrix

Data segment length : R = 32

FFT length : N = 64

Overlapping : 50%

Window : cosine

¸ °

¸ = 0:1; ° = 0:8

xopt

A ~d

~d = Axopt

~s = ~l + ~d

Figure 3. The detail flowchart of sparse ECG denoising with GMC-penalty.
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Algorithm 2 FBS algorithm for GMC penalized least squares problem

Input: x(0), v(0), A, AT , λ

Output: x(i+1)

1: Set ρ = max{1, γ/(1− γ)} ·maxeig(AT A)
2: Set µ : 0 < µ < 2/ρ

3: Number of iteration: Niter
4: for i = 0 to Niter do

5: w(i) = x(i) − µAT(Ax(i) − dw) + µγAT A(v(i) − x(i))
6: u(i) = v(i)− µγAT A(v(i) − x(i))
7: x(i+1) = so f t(w(i), µλ)
8: v(i+1) = so f t(u(i), µλ)
9: end for

10: return x(i+1)

5. Simulation Results

5.1. Configurations and Preprocessing

The performance of the proposed algorithms are evaluated based on the ECG records of the
MIT-BIH arrhythmia database [46]. The database contains a total of 48 records, each record length is
30 min, the sampling rate is 360 Hz. We note that the original signals in the MIT-BIH database have
been filtered by a band-pass filter with a passband from 0.1 to 100 Hz. However, it is obvious that the
noise components falling in the passband will not be eliminated. To understand its influence on the
clean signal, we make an observation of the original signals in the database, as shown in Figure 4a.
It can be observed that there exist noise components in the signals, but the amplitudes of the noise
components are relatively weak compared with the useful signal. In order to gain deeper insight
into the influence of the noise on our algorithms, we process the original signal directly using our
algorithms, and the results are shown in Figure 4b. It can be perceived that the weak noise in the
original signal is ‘smoothed’ out by our algorithms. That is to say our algorithms have the ability to
suppress the noise in the acquired signals. However, considering that the original noise in the original
signals of the database is relatively weak, we omit its impact on the ‘true’ signal. In this case, we call
the original signals in the MIT-BIH database as ‘pure signal’, despite there existing very weak noise
in practice.

Time/s
0 0.1 0.2 0.3 0.4 0.5

m
V

-0.5

0

0.5

1
(a) No.100 MIT-BIH ECG 

Time/s
0 0.1 0.2 0.3 0.4 0.5

m
V

-0.5

0

0.5

1
(b) Denoised signal by GMC

Figure 4. Denoising effect of original signal of MIT-BIH database.

The performance of the proposed algorithm is compared with the works in [30,47,48].
Three different performance criteria are chosen for the performance measurement, i.e., the rooted
mean square error (RMSE), the percent root mean square difference (PRD) an the signal-to-noise ratio
improvement (SNRimp).
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For the LPF, we set the parameter of filter order as k = 2. The the digital cutoff frequency is set as
wc = 0.06π, i.e., fc = 0.03 ∗ Fs = 10.8 Hz, where Fs = 360 Hz is the sampling frequency of the ECG
signals. It is noted that the cutoff frequency should be customized for different ECG signals, since the
periodic characteristics of the ECG signals are not uniform in practice. We took data from the first
1 min, a total of 21,600 points. The data segment length R is set as 32, and the frame length of the
STFT is 64.

To illustrate the proposed denoising framework, as shown by Figure 1, we plot the outputs of
different preprocessing nodes in Figure 5. Specifically, Figure 5a is the original ECG signal read from
the No.100 recode in the MIT-BIH database. This pure signal is then corrupted by AWGN noise with
10dB SNR and the result waveform is shown in Figure 5b. The noisy ECG signal, i.e., s, is the input
of our denoising framework. It is sent to the LPF, and the output of which is shown in Figure 5c.
By substituting this LPF signal from the raw noisy signal, a residual signal is obtained which can be
treated approximately as a residual high-frequency sparse component of the ECG signal contaminated
with noise, as shown in Figure 5d.

Time/s
0 1 2 3 4 5 6

m
V

-0.5

0

0.5

1

(a)

Time/s
0 1 2 3 4 5 6

m
V

-0.5

0

0.5

1

(b)

Time/s
0 1 2 3 4 5 6

m
V

-1

-0.5

0

0.5

1

(c)

Time/s
0 1 2 3 4 5 6

m
V

-1

-0.5

0

0.5

1

(d)

Figure 5. Comparison of the original ECG signal y, the noisy ECG signal s, the low-pass filtered
signal l̃ and the residual sparse component dw in the proposed sparse denoising framework.
(a) No.100 MIT-BIH ECG; (b) Noisy ECG with 10 dB SNR; (c) Output of the LPF; (d) Residual noisy
sparse component.

5.2. Convergence of the Proposed Sparsity Recovery Algorithms

The noisy sparse signal dw = d̃ + w̃ is further sent to the sparsity recovery block in Figure 1,
where the proposed `1-norm method or the GMC-penalty method is applied to extract the sparse signal.
The convergence curves of the algorithms are plotted in Figure 6. In the simulation, we set γ = 0.8
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and λ = 0.1, and we define the update rate as d̃(k)−d̃(k−1)
d̃(k)

, where k denotes the kth iteration. It can
be observed that the updating rate of the algorithm will be less than 0.1% after about 250 iterations.
This means the proposed algorithm will converge after hundreds of iterations. In Figure 6, we also
plot the converge performance of the SASS method which is proposed in [30]. It can be observed that
the update rate of the SASS algorithm will be less than 10−4 after 250 steps, which reveals that the
proposed algorithms in this work converge slower than the SASS algorithm.

0 50 100 150 200 250 300
iterations

10-4

10-3

10-2

10-1

100

101

lo
ss

L1
SASS
GMC

Figure 6. The updating rate of the recovered signal versus iterating numbers.

5.3. Performance Comparison of the Proposed Algorithms

The outputs of the sparsity recovery block are plotted in Figure 7. It can be observed that the
noise in the dw (i.e., Figure 5d is removed by both algorithms).

As the final step of the proposed denoising scheme, we obtain the final denoised ECG signal by
adding the outputs of the LPF and the sparsity recovery block according to Figure 1. The resulting
waveforms are shown in Figure 8. It can be observed that all the three methods, i.e., the proposed
`1-norm method, the proposed GMC method and the SASS method, eliminate the noise effectively.
However, the `1-norm method underestimates the R-peaks visibly as shown in the down-right corner
of Figure 8. The SASS method performs better than the `1-norm method with respect to the R-peaks,
but it underestimates the Q-peaks as shown in the down-left corner of Figure 8. As a comparison,
the GMC method outperforms the other two methods with respect to both the R-peaks and Q-peaks.

To gain more insights into the proposed algorithms, we plot the time-frequency relationships of
the recovered ECG signals in Figure 9. It is observed that the GMC-based method preserves more
high-frequency components than the `1-norm method, which can be perceived in the spectrogram.
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Figure 7. Output of the sparsity recovery block.
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Figure 9. Comparison time-frequency properties of the GMC and `1-norm methods.
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5.4. Impacting of λ

For the GMC-based algorithm, both λ and γ should be specified. Since the two parameters are
coupled, we can fix one of them and vary the other to study their impact on the performance of the
method. Specifically, we set γ = 0.8, and varying λ from 0 to 0.6. The resulted RMSE performance of
the algorithm is shown in Figure 10. It can be observed that a better RMSE can be achieved when λ is
chosen in the vicinity of 0.09.
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Figure 10. RMSE versus λ with γ = 0.8.

In Figure 11, we compare the rooted mean square error (RMSE), the percent root mean square
difference (PRD) and the signal-to-noise ratio improvement (SNRimp) achieved by different methods
over different SNRs (20 dB 15 dB 10 dB 5 dB −5 dB −10 dB). The SASS [30], NLM [47] and
CE-EMD-AN [48] algorithms are adopted as references. At each SNR, we average the results of
all 48 data in the MIT-BIH database. It can be observed that the proposed GMC-based algorithm
outperforms the referenced algorithms for all SNRs.
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Figure 11. Performance evaluation over RMSE, PRD and SNRimp criteria.
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To fully demonstrate the performance of the proposed algorithm, we list the SNRimp values
achieved by different algorithms over SNR = 10 dB in Table 1. The results show that the GMC-based
algorithm performs the best of all of the experimented SNRs.

Table 1. Comparison of the SNRimp achieved by different methods with input SNR = 10 dB.

Dateset GMC SASS NLM CEEMDAN Dateset GMC SASS NLM CEEMDAN
mitdb/100 7.656 7.015 6.843 6.046 mitdb/201 8.212 7.505 6.619 6.361
mitdb/101 7.616 7.458 6.567 6.029 mitdb/202 8.530 8.121 7.704 7.596
mitdb/102 6.745 4.713 5.949 5.341 mitdb/203 5.805 5.336 4.537 3.448
mitdb/103 9.083 7.800 7.597 5.675 mitdb/205 8.105 7.196 6.236 5.088
mitdb/104 7.079 6.375 6.559 5.776 mitdb/207 9.252 8.541 8.224 6.721
mitdb/105 8.576 8.267 7.073 3.828 mitdb/208 7.838 8.382 6.324 5.050
mitdb/106 7.912 7.382 5.867 4.992 mitdb/209 7.632 7.276 6.085 4.457
mitdb/107 7.925 8.188 7.450 6.923 mitdb/210 8.183 8.083 7.170 4.965
mitdb/108 6.962 6.921 6.297 4.352 mitdb/212 7.166 7.042 5.938 4.612
mitdb/109 8.326 8.394 7.565 7.559 mitdb/213 8.217 8.158 7.134 4.872
mitdb/111 7.162 6.761 6.200 5.476 mitdb/214 8.410 8.292 7.462 4.706
mitdb/112 8.318 7.826 6.682 5.680 mitdb/215 7.168 7.181 6.116 5.443
mitdb/113 8.668 8.098 7.353 5.224 mitbd/217 7.652 7.688 6.116 5.645
mitdb/114 6.102 6.032 5.371 4.885 mitdb/219 8.667 7.963 7.723 4.377
mitdb/115 9.417 7.948 7.503 6.675 mitdb/220 8.767 7.586 6.653 6.977
mitdb/116 7.825 7.434 6.823 3.651 mitdb/221 8.916 7.632 6.670 5.163
mitdb/117 8.122 8.136 6.506 7.973 mitdb/222 6.596 6.566 5.909 5.200
mitdb/118 7.366 5.043 6.078 5.774 mitdb/223 8.580 7.920 7.540 7.163
mitdb/119 8.575 7.842 7.504 6.274 mitdb/228 6.777 7.549 6.752 6.039
mitdb/121 9.702 8.525 7.598 4.631 mitdb/230 8.209 7.860 6.376 5.844
mitdb/122 7.856 7.401 7.048 7.105 mitdb/231 8.076 7.859 7.225 6.152
mitdb/123 9.007 7.692 7.037 6.093 mitdb/232 2.206 4.824 3.741 3.666
mitdb/124 9.252 8.164 7.374 6.858 mitdb/233 8.973 8.894 6.500 6.305
mitdb/200 8.190 8.134 6.638 5.842 mitdb/234 8.265 8.193 7.014 6.284

In order to more intuitively show the denoising performance of each algorithm, we illustrate in
Figure 12 the values of RMSE, PRD and SNRimp achieved by the algorithms for the data number as
100, 101, 103, 105, 106, 115 and 220 in the database. It is noted that these data are selected because they
were used in literature [47]. In fact, our algorithm can be applied to any ECG data in the database.
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Figure 12. Performance evaluation over RMSE, PRD and SNRimp criteria for different data sources.

To further show performance of the the proposed GMC-based method, we compared the SNRimp
percentage improvement of the GMC algorithm with the three referenced algorithms, i.e., SASS, NLM
and CE-EMD-AN, under different noise levels. The percentage improvement is calculated according
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to the following formula We designed an experiment to calculate the percentage of GMC increase in
SNRimp value relative to other algorithms. The calculation formula is as follows:

Percentage improvement =
SNR_imp of GMC− SNR_imp of the referenced algorithm

SNR_imp of the referenced algorithm
× 100%. (13)

The results are listed in Table 2. It shows that the performance of the proposed algorithm outperforms
the referenced algorithms significantly.

Table 2. Percentage SNRimp improvement relative to the three referenced algorithms.

20 dB 15 dB 10 dB 5 dB −5 dB −10 dB
SASS 21.32 6.60 5.12 13.94 10.68 11.89
NLM 21.59 17.86 15.38 13.04 4.37 2.36

CE-EMD-AN 42.50 30.94 28.67 28.23 18.28 16.37

There is a question that if the proposed algorithm can be applied to the abnormal ECG signals,
such as arrhythmia signal, and how it will perform. To answer this question, we apply the proposed
algorithm to the normal heart beat signal and the arrhythmia signal and results are shown in
Figures 13 and 14, respectively. As can be seen from Figure 13, all the four algorithms can remove noise
effectively for the normal ECG signal. However, there is a huge difference in the type of signal that has
an abnormal heart beat. As shown in Figure 14, after four seconds from the ECG signal (mitdb/230),
the waveform begins to have turbulence and the T wave disappears significantly. After denoising,
the output of the SASS algorithm is not smooth enough; the output of the CE-EMD-AN algorithm
is seriously distorted in the period of 4 s–5 s; the output of the NLM algorithm has obvious sharp
noise in the S-T segment during the 3 s–4 s period. Compared with these referenced algorithms, the
proposed GMC algorithm achieves the best waveform. Therefore, the proposed GMC-based denoising
algorithm can also be used with the arrhythmia signals.
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Figure 13. Comparison of waveform outputs of different algorithms for a normal ECG signal (No.100
in the MIT-BIH database).
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Figure 14. Comparison of waveform outputs of different algorithms for an arrhythmia ECG signal
(No.230 in the MIT-BIH database).
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6. Conclusions

We have investigated the ECG noise reduction techniques based on sparsity recovery in this
paper. Through combining low-pass filtering and sparsity recovery, we proposed a novel sparse ECG
denoising framework. The `1 penalty and the GMC penalty were utilized to construct sparsity recovery
algorithms. Although the GMC penalty function was non-differentiable non-convex itself, it could be
used to construct convex cost function and thus helps to obtain optimal solution. Since the GMC had
the property of penalizing large values more than small values, but the degree of punishment is not as
severe as `1-norm, it was utilized to overcome the drawback of underestimating the high-amplitude
components for the `1-norm penalty. Experimental results demonstrated that the proposed GMC-based
method overcame the underestimating problem of the `1-norm method and classical ECG denoising
methods proposed in literature. Results showed that the GMC-based method outperforms the
conventional algorithms such as the SASS algorithm and the EMD based method with respect to the
SNRimp, RMSE and PRD.

Author Contributions: Z.J. and A.D. conceived the design schemes, made the theoretical derivations and carried
out the experiments and data analysis. M.S. and Y.W. coordinated and supervised the research activity and gave
the guidance of theoretical analysis. All authors have read and approved the final manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China (NSFC)
under Grant 61701269 and Grant 61603224, the Natural Science Foundation of Shandong Province under Grant
ZR2017BF012, the Joint Research Fund for Young Scholars in Qilu University of Technology (Shandong Academy
of Sciences) under Grant 2017BSHZ005 and the Open Research Fund from Shandong provincial Key Laboratory
of Computer Network under Grant SDKLCN-2016-03.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GMC Generalized Minimax Concave Penalty
GSNC Grey Spectral Noise Cancellation
GSNE Grey Spectral Noise Estimation
ECG Electrocardiogram
EMD Empirical Mode Decomposition
SASS Sparsity Assisted Signal Smoothing
NLM Non-local Means
IMFs Intrinsic Mode Functions
LTI Linear Time Invariant
AWGN Additive White Gaussian Noise
LPF Low-pass Filter
HPF High-pass Filter
STFT Short Time Fourier Transform
BPD Basis Pursuit Denoising
FBS Forward-backward Spliting
SNR signal-to-noise ratio
SNRimp signal-to-noise ratio improvement
RMSE average of root mean square error
PRD Percent root mean square difference

Appendix A. Filter Designing

In this paper, we take the LPFs to be zero-phase, non-causal, recursive filters considering that
they filter relatively symmetric signals without introducing shifts in peak locations [29,38,49]. Recently,
a novel procedure for defining such filters is given in [30]. We briefly sketch its key design idea here.
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Given finite-length sequences pn and qn, two banded Toeplitz matrices P and Q are defined as

P =


p1 p2 p3

p1 p2 p3
. . .
p1 p2 p3

 , (A1)

Q =


q1 q2 q3

q1 q2 q3
. . .
q1 q2 q3

 . (A2)

Based on these matrices, a linear filter matrix can be constructed as

H = (QTQ + αPT P)−1QTQ . (A3)

The matrix H is approximately Toeplitz, and it represents approximately an LTI system with the
frequency response

H(ejω) =
|Q(ejω)|2

|Q(ejω)|2 + α|P(ejω)|2
. (A4)

H(ejω) is zero-phase, and its transfer function is written as

H(z) =
Q(z)Q(z−1)

Q(z)Q(z−1) + αP(z)P(z−1)
. (A5)

After implementing Equation (A3) to the input data vector y (e.g., the noisy data), the vectorized
output of the filter is written as

x = Hy . (A6)

An advantage of Equation (A6) is that transient effects at the start and end of the finite-length
signal are intrinsically avoided. This means that the transient end-point artifacts is avoided.

In order to construct the transfer functions of the form Equation (A5), P(z) and Q(z) can be set as

P(z) = (1− z−1)k , (A7)

Q(z) = (1 + z−1)k , (A8)

where k is the order of the filter. It is easy to verify that P(1) = 0 and Q(−1) = 0, H(1) = 1 and
H(−1) = 0. Hence, the frequency response of the filter H has unity gain at ω = 0 and zero at ω = π.

Given Equations (A7) and (A8), the filter H is a discrete-time Butterworth filter with the
frequency response

H(ejω) =
cos2k(ω/2)

cos2k(ω/2) + α sin2k(ω/2)
, (A9)

where α controls the cut-off frequency. For the 3 dB cutoff frequency, i.e., H(ejωc) = 0.5, α can be set as

α = 1/ tan2k(wc/2) . (A10)
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Appendix B. The STFT Used in the Sparsity Recovery

We use the STFT in the sparsity recovery block in Figure 1. Specifically, the input of the sparsity
recovery block is cut as small data segments with length R. The segments are overlapped with a ratio
of 50%. After padding R zeros behind the tail of the data segment, a STFT frame with length N = 2R
is constructed.

The constructed time-domain signal frame d ∈ RN can be represented by the frequency-domain
signal x ∈ CN as

d = Ax , (A11)

where A ∈ CN×N is the inverse discrete Fourier transform (IDFT) matrix defined as

A =
1√
N
[ej 2π

N kn]k=0,...,N−1;n=0,...,N−1 , (A12)

The time-domain representation Equation (A11) can be transformed into the frequency-
representation as

x = AHd . (A13)

It is noted specially that a window function with length R is applied to the segmented time-domain
data, which is defined as

w(n) = sin(
n + 0.5

R
π), n = 0, . . . , R− 1 . (A14)

After the frequency-to-time transform, this window should be removed by multiplexing its
reciprocal.
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