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Abstract: The measurements from multistatic radar systems are typically subjected to complicated
data association, noise corruption, missed detection, and false alarms. Moreover, most of the current
multistatic Doppler radar-based approaches in multitarget tracking are based on the assumption
of known detection probability. This assumption can lead to biased or even complete corruption
of estimation results. This paper proposes a method for tracking multiple targets from multistatic
Doppler radar with unknown detection probability. A closed form labeled multitarget Bayes filter
was used to track unknown and time-varying targets with unknown probability of detection in
the presence of clutter, misdetection, and association uncertainty. The efficiency of the proposed
algorithm was illustrated via numerical simulation examples.

Keywords: multitarget tracking; multistatic Doppler radar; unknown detection probability;
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1. Introduction

Initiated from the 1930s from a very simple device for aircraft detection, the radar has been
developed into complicated systems in both civilian applications and modern warfare for the purposes
of prevention as well as interception strategies [1]. As implied from its name, RADAR (RAdio Detection
And Ranging), the main purposes of this system are not only detecting targets or obstacles but also
estimating several parameters like velocity, range, and bearing of these targets from electromagnetic
signals [2]. Since target tracking for radar is subjected to clutter (caused by environment) and various
distortions (due to the signal propagation), the estimation accuracy and detection probability are
limited. An improvement on tracking performance for radar is the use of a multistatic radar system
(MRS). This system is equipped with multiple transmitting and receiving antenna pairs, which are
spatially distributed in a large region of surveillance comparing to the antenna sizes [3] to maximize
the estimate accuracy and probability of detection.

The large geographical separation of transmitters and receivers is an essential feature of
the MRS [4] and leads to a notable increase in potentially useful information. Since different
transmitter-receiver pairs can detect targets at different aspects, each target is observed from
multi-directional perspectives and its accurate recognition is significantly enhanced [1]. Other benefits
of using MRS are the increase of resolution capability, as well as jamming and clutter resistances [5].
In addition, the spatial distribution of radars prevents the whole radar system from physically being
destroyed from attacks.
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The more antennas in the radar system, the more complex the target tracking will be.
First, the whole system needs lines-of-sight between radar stations and targets for information
fusion, not to mention requirements on synchronization, phasing and the positioning of stations,
and transmission of reference frequencies and signals [5]. Second, in multitarget tracking, there are
generic challenges, such as unknown and randomly time-varying number of the targets, detection
uncertainty, clutter, and data association uncertainty [6], as well as nonlinearity and low observability
of the Doppler measurement [7,8]. Both locations and velocities of moving targets must be monitored
from track history to heading continuously for consistent detection. Obviously, the detection using
Doppler effect from stationary radars can only be matched to moving targets, since the reflected signals
from motionless targets (or very slow moving ones) are practically identical to the frequencies of the
transmitted signals. The multitarget tracking problem using a multistatic radar system is, therefore, a
paramount challenge but a greatly attractive field of information fusion study.

The core of multitarget tracking algorithms is to filter the target state from measurements such
that the produced estimates of the multitarget state are as close to the ground truth as possible [9].
Currently, three notable approaches to the problem of multitarget tracking have been proposed, namely:
the Joint Probabilistic Data Association Filter (JPDAF); Multiple Hypothesis Tracking (MHT); and
Random Finite Set (RFS) [6]. Different from the first two, which attempt to modify single target
tracking algorithms to deal with multiple targets via data association, the RFS approach uses several
fundamental concepts in estimation theory, such as multitarget estimation error and Bayes optimality
to provide a top-down formulation of multitarget estimation [10,11].

The RFS approach attracts the attention of the data fusion research community in recent years
thank to its advantages in this field of study [9]. Since the inception of RFS, a suite of multitarget
filters have been developed, e.g., the Probability Hypothesis Density (PHD) filter [12,13], Cardinalized
PHD (CPHD) filter [14,15], multi-Bernoulli filters [16,17], Generalized Labeled Multi-Bernoulli (GLMB)
filter [18,19], Labeled Multi-Bernoulli filter [20], and multi-scan GLMB filter [21]. The most advanced
RFS-based algorithm, the GLMB filter, can output target tracks and can be implemented with linear
complexity in the number of measurements using Gibbs sampling [22]. More recently, the RFS method
has been applied to tracking from merged measurements [23], extended targets [24], maneuvering
targets [25], track-before-detect [26,27], computer vision [28,29], sensor scheduling [30,31], distributed
fusion [32], field robotics [33], cell biology [34], and machine learning [35]. Particularly, as demonstrated
via the tracking of more than one million targets per scan in clutter and in real-time [36], this filter is
currently considered the most effective multitarget tracker [9].

Although many RFS-based filters such as the PHD and multi-Bernoulli filters, have been applied
to Doppler measurements [37,38], they do not produce target tracks and are crude approximations to
the Bayes multitarget filter. In addition, most of these filters consider the probability of detection as a
known parameter. However, this consideration is impractical because in practice this is rarely the case
and the probability of detection need to be manually tuned on a trial-and-error basis. Based on the
RFS approach, this paper proposes a solution to the challenges in using Doppler-only measurement
for multiple marine vessels tracking with unknown detection parameter a priori in a timely manner.
This is an extension of our previous work, reported in Reference [39]. Particularly, in Reference [39],
the probability of detection was assumed to be known in advance, while in this work, we did not
assume that this parameter was known a priori. When this parameter is unknown, assuming a
known probability of detection will degrade the filtering performance. The tracking problem for
unknown detection probability, in the present work, is much more difficult and complicated than
that of the previous one. The proposed filter in current work solved not only the problem of multiple
targets tracking, as mentioned in the previous version, but also the problem of the unknown detection
probability by estimating it on the fly.

Apart from the introduction, the paper includes the following four sections. First, the background
of target detection using multistatic Doppler measurement, along with the labeled RFS approach
to multitarget tracking, is presented. Second, the GLMB filter applied to the multitarget tracking
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multistatic Doppler measurement with bootstrapped unknown detection profile is shown. Third,
validation of the proposed solution is illustrated by numerical simulations on marine ships, followed
by some concluding remarks.

2. Multistatic Doppler Measurement Model

Typically, a passive multistatic radar system is realized with either one receiver and multiple
transmitters or a single transmitter combined with multiple radar receivers. Although the latter is
more costly than the former, its has better observability [40]. An illustration of a multitarget tracking
using a multistatic radar scenario with one transmitter and several receivers is shown in Figure 1. The
time difference of arrival (TDOA) between the transmitter-ith receiver and transmitter-jth target-ith
receiver is proportional to the different range: RTj + RRij − Li, where RTj, RRij, and Li are the distances
of the transmitter-jth target, jth target - ith receiver, and transmitter- ith receiver, respectively. Several
solutions for the problems of localization and target tracking via radar signals have been proposed
in the literature by means of measuring TDOA or the angle of arrival θRij, or the Doppler shift
of the received echo [4]. For instance, some methods for single target localization using target
range and bearing, range and Doppler measurements and Doppler-only measurements are proposed
in Reference [41–43], and [44], respectively. In addition, the combination of range and range rate
measurements—as well as the combination of range, range rate, and elevation measurements—for
multisensor multitarget tracking has been presented in Reference [40].

Figure 1. Multitarget tracking using a multistatic radar system (MRS) scenario.

All the conventional methods using multistatic radar-based target tracking consider the
probability of target detection to be known a priori, while it is typically unknown and time-varying [11].
Such an assumption leads to biased estimation or even complete corruption of filtering results since
this parameter directly influences observability of the target. Recent proposed methods for tackling
unknown detection probability, (see, [45–47] for instance), do not produce target tracks. Tracking
multiple targets using a multistatic radar system is still an attractive field of study.

Taking advantage of the MRS by using a type of MRS, like the multistatic Doppler radar system,
has been used for tracking multiple targets with high accuracy [5,48]. In this work, we considered a
multistatic passive Doppler radar system consisting of one cooperative transmitter and two spatially
stationary distributed receivers (see Figure 1). The Doppler-only measurement method to track targets
based on the RFS approach will also be proposed for further use of the tracking algorithm.
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By using the Doppler effect, the velocity of the target is calculated from analyzing the pulses
of radio signals which are emitted from the transmitter, bouncing off the target then reflecting the
receiver [49]. The Doppler measurement of a target with the state xk at the sth receiver is given by:

z(s)k = −νT
k

(
pk − p(s)r

||pk − p(s)r ||
+

pk − pt

||pk − pt||

)
ft

c
+ wk,

, hk (xk) + wk

(1)

in which the target position pk = [µk, λk]
T and velocity νk =

[
µ̇k, λ̇k

]T are measured in longitudinal and

latitudinal coordinates. pt = [µt, λt]T is the transmitter location, p(s)r = [µ
(s)
r , λ

(s)
r ]T is the sth-receiver

position; T denotes the transpose operation; wk is zero-mean Gaussian noise with covariance Q,
wk ∼ N (0; Qk); and ft and c are the emitted signal frequency of the transmitter and the speed of
light, respectively.

Since targets can move in different directions with nonlinear dynamics, and the information
collected from Doppler radar is subjected to environmental noise, the measurement in Equation (1) is
highly nonlinear.

Several methods have been proposed to tackle those aforementioned challenges using target
range and azimuthal direction [41,42], Range-Doppler maps [43], and Doppler-only measurements [44].
However, they are either applied to detect a single target or estimate target positions without
producing target tracks in which the probability of target detection is assumed to be known a priori.
Hence, a proper method that can produce target tracks with unknown detection probability needs to
be considered.

3. Background

3.1. Labeled RFS

The key point in target tracking is using information collected from sensors to jointly estimate the
number of targets and their states, as well as the target trajectories. However, both the number of the
targets and their states in a multitarget system randomly vary with time, thus it is difficult to follow
the target trajectories. Obviously, using vectors to represent multitarget state is insufficient, since the
targets in a multitarget state are unordered and can be changed over time. A discussion about vector
and finite set representations of multitarget state, given in Reference [16], has shown that a finite set
representation is the most appropriate from an estimation viewpoint. The most appropriate model for
multitarget state is, therefore, an RFS [10].

Individual targets in a multitarget state can distinguished by their labels [10]. Indeed, the key
concept here is the assignment of a uniquely identifying track label ` to each kinematic target state x
(i.e., x = (x, `)). Moreover, this assignment, x = (x, `), can occur only once in the finite subset X [9],
and the labeled finite subset is now denoted as X. By using this concept, the so-called labeled RFS
proposed by Vo and Vo [18,19], the problem of the indistinguished targets can be solved [11].

Definition 1. [18] Let L : X×L→ L be the projection L(x; `) = `, and hence L(X) = {L (x) : x ∈ X}
is the set of labels of X. A labeled RFS with space X and (discrete) label space L is an RFS on X×L such that
each realization X has distinct labels, i.e., |L(X)| = |X|.

It should be mentioned that the unlabeled version of a labeled RFS is obtained by simply
discarding the labels. Unlabeled multitarget filtering formulation does not have the mechanism
to address target tracks and, as a result, heuristic techniques are needed to produce target tracks [9].

In this paper, the unlabeled states are denoted by normal-faced letters to distinguish from labeled
ones, which are denoted by the bold-faced letters (i.e., x, y, X, Y and x, y, X, Y), in which the single
target state and multitarget state are denoted by lower-case letters and upper-case letters, respectively.
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The spaces corresponding to variables are symbolized by blackboard bold letters (e.g., X,Z,L, etc.).
The inclusion function 1S (·) and the Kronecker delta function δS (·) for a set S are given to support
arbitrary arguments X (e.g., sets, vectors, and integers) as follows [19]:

1S (X) =

{
1 if X⊆S

0 otherwise,
δS (X) =

{
1 if X=S

0 otherwise.

The class of finite subsets of S is represented by F (S), and the inner product is denoted by:

〈 f , g〉 , f (x) g (x) dx.

The sequence of variables Xi, Xi+1, . . . , Xj is abbreviated as Xi:j, and the cardinality of a finite set
X is denoted by |X|.

3.2. Bayesian Multitarget Recursion

In classical Bayesian recursion, two assumptions are given, as follows [50]: (i) The hidden states
follow a first-order Markov process on the state space according to a transition density fk|k−1 (xk|xk−1),
and (ii) the observations are conditionally independent of the given states and are characterized by a
likelihood gk (zk|xk). By incorporating prior knowledge and observational evidence of a target, the
Bayesian recursion has been formulated for the problem of single-target single-measurement systems.

Suppose that, at time k, there are nk targets
(
i.e., the individual states are xk,1, . . . , xk,nk

)
, and

the number of measurements is mk (i.e., the individual measurements are zk,1, . . . , zk,mk
), then the

multitarget state and multitarget observation are [19]:

Xk =
{

xk,1, . . . , xk,nk

}
∈ F (X×Lk) ,

Zk =
{

zk,1, . . . , zk,mk

}
⊂ Z.

By using Bayes theorem, it could be seen that, conditioned on the measurement history
Z0:k = (Z0, . . . , Zk), all the information on the set of target trajectories X0:k = (X0, . . . , Xk) can be
captured by the multitarget posterior density, which is given recursively for k ≥ 1 as follows:

π0:k (X0:k|Z0:k) ∝ gk (Zk|Xk) fk|k−1 (Xk|Xk−1)× π0:k−1 (X0:k−1|Z0:k−1) ,

in which gk and fk|k−1 are the multitarget likelihood function and multitarget transition density to
time k, respectively. By using gk and fk|k−1, the underlying models for detection and false alarms and
those for target motions, births, and deaths are encapsulated [19].

Assuming that, at the previous time step k − 1, the multitarget state is distributed according
to a multitarget density πk−1 (·|Z1:k−1). At time k, the measurement Zk is the superposition of
detected targets and false measurements and is modeled by gk (·|·). The multitarget prediction
and the multitarget posterior to time k is given by the Chapman–Kolmogorov equation and Bayes
rule, respectively:

πk|k−1 (Xk|Z1:k−1) =
∫

fk|k−1 (Xk|Xk−1)×πk−1 (Xk−1|Z1:k−1) δXk−1, (2)

πk (Xk|Z1:k) =
gk (Zk|Xk)πk|k−1 (Xk|Z1:k−1)∫
gk (Zk|X)πk|k−1 (X|Z1:k−1) δX

. (3)

Noting that the integral above is a set integral:

∫
f (X) δX =

∞

∑
i=0

1
i!

∫
f ({x1, . . . , xi}) d (x1, . . . , xi) ,
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defined for any function f : F (X×L)→ R.

3.3. Multitarget State Model

For the purpose of RFS-based multitarget tracking, the RFS formulation of the standard multitarget
dynamic model which captures all targets, including appearance, disappearance, and evolution ones
over the time, will be investigated. Let Xk−1 represent the set of all individual target states at time
k− 1. Each target state xk−1 can survive and evolve to a new state xk at time k with survival probability
PS,k (xk−1) or disappear between the time duration of k− 1 and k with probability 1− PS,k (xk−1), not
mention to some new-appear targets at time k (see Figure 2). The complete multitarget state Xk at time
k is the superposition of survivals and births [18]:

Xk =
⋃

xk−1∈Xk−1

Sk|k−1 (xk−1)
⋃

Bk, (4)

in which Sk|k (xk−1) and Bk are the labeled RFS of existing target state from time k− 1 to time k and
that of the new born states at time k, respectively. The labeled Bernoulli RFS Sk|k−1 (xk−1) at current
time k is generated by a given state xk−1 ∈ Xk−1. Since a labeled state xk−1,i = (xk−1,i, `i)∈ Xk−1 can
exist and evolve to a new state xk,i = (xk,i, `i) ∈ Xk with survival probability PS (xk−1,i) and probability
density f (xk,i|xk−1,i, `i) δ`i (`i) (where f (xk,i|xk−1,i, `i) is the single target transition kernel); or can
disappear with probability 1− PS (xk−1,i), we have [18],

fS (S|X) = ∆ (S)∆ (X) 1L(X) (L (S)) [Φ (S; ·)]X , (5)

where fS (S|X) is the distribution function of the surviving target set S the next time, and:

Φ (S; x, `) =

{
PS (xk−1, `) f (xk|xk−1, `) if (xk, `) ∈ S

1− PS (xk−1, `) if ` /∈ L (S)
.

The set Bk of new-born states is distributed according to [19]:

fB (Y) = ∆ (Y)ωB (L (Y)) [pB]
Y , (6)

where ωB and pB are given parameters of the multitarget birth density fB, defined on space X× B.
Whenever the set Y contains an element y with L (y) /∈ B, fB = 0. The birth model (Equation (6))
includes both labeled Poisson and labeled multi-Bernoulli [18].

The multitarget transition density is given by [19]:

f (Xk|Xk−1) = fS (Xk∩ (X×L) |Xk−1) fB (Xk − (X×L)) . (7)

Figure 2. Illustration of the state space model with multitarget state [51].
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3.4. Multitarget Observation Model

Given a target state xk = (x, `), the sth receiver can detect this state with probability p(s)D (x, `)

and generates a measurement z(s)k ∈ Z(s)
k with likelihood g(s)(z(s)k |x, `), or being missed with

probability 1− p(s)D (x, `). Considering the multiple target scenario, the multitarget observation

Z(s)
k =

{
z(s)k,1 , . . . , z(s)k,mk

}
at time k is the superposition of the detected targets and Poisson clutter

with intensity function κ [10], meaning that the information collected by radar includes false alarms.
The probability of target detection, therefore, has a significant effect on the performance of the tracker.
This conclusion is indeed true to RFS-based recursive Bayesian multitarget filtering.

Assuming that condition on X, detections are independent of each other and clutter, the
multitarget likelihood function of sensor s is given as follows [18,19]:

g(s)
(

Z(s)|X
)

∝ ∑
θ(s)∈Θ(s)

1Θ(s)(L(X))

(
θ(s)
)
× ∏

(x,`)∈X
ψ
(s,θ(s)(`))
Z(s) (x, `) , (8)

where Θ(s) is the set of the positive 1-1 maps θ(s) : L →
{

0 : |Z(s)|
}

, i.e., maps such that no distinct

arguments are mapped to the same positive value, Θ(s) (I) is the subset of Θ(s) with domain I; and:

ψ
(s,j)
z

1:M(s)
(x, `) =


p(s)D (x,`)g(s)(zj |x,`)

κ(s)(zj)
, if j = 1 : M(s)

1− p(s)D (x, `) if j = 0
, (9)

where M(s) is the number of measurements from sensor s.
The map θ(s) specifies which object generated which detection from sensor s, i.e., target ` generates

detection zθ(`) ∈ Z(s) with undetected targets assigned to 0. θ(s) is 1–1 on
{
` : θ(s) (`) > 0

}
. The

positive 1-1 property means that each distinct label is only mapped to a distinct positive value.
Therefore, this property ensures that any detection in Z(s) is assigned to, at most, one target.

Followed by Reference [52], the multisensor likelihood is given by:

g (Z|X) =
M

∏
s=1

g(s)
(

Z(s)|X
)

∝ ∑
θ∈Θ

1Θ(L(X)) (θ)× ∏
(x,`)∈X

ψ
(θ(`))
Z (x, `) , (10)

where:

Z = Z(1:N),

θ = θ(1:N),

Θ = Θ(1) × . . .×Θ(N) (I) ,

1Θ(I) (θ) =
N

∏
s=1

1Θ(s)(I) (θ)
(s) ,

ψ
(j(1:N))
Z (x, `) =

N

∏
s=1

ψ
(s,j(s))
Z(s) (x, `) .

N is the sensor observation set. It could be seen that the form of the multisensor likelihood function
and that of the single sensor likelihood function are identical.

Basically, a GLMB density can be rewritten in the following form [18,19]:

π (X) = ∆ (X) ∑
ξ∈Ξ

∑
I⊆L

ω(I,ξ)δI [L (X)]
[

p(ξ)
]X

, (11)

where each ξ = (θ1:k) ∈ Ξ represents each history of multisensor association maps, each ω(I,ξ)

is non-negative satisfying ∑ξ∈Ξ ∑I⊆L ω(I,ξ) = 1, and each p(ξ) (`) is a probability density on X.
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The cardinality distribution, the existence probability, and probability density of track ` ∈ L
are, respectively,

Pr (|X| = n) = ∑
ξ∈Ξ

∑
I⊆L

δn [|I|]ω(I,ξ), (12)

r (`) = ∑
ξ∈Ξ

∑
I⊆L

1I (`)ω(I,ξ), (13)

p (x, `) =
1

r (`) ∑
ξ∈Ξ

∑
I⊆L

1I (`)ω(I,ξ)p(ξ) (x, `) . (14)

Given the GLMB density (Equation (11)), an intuitive multi-object estimator is the multi-Bernoulli
estimator [52]. Given a prescribed threshold existence probability, this estimator determines the set of
labels L ⊆ L which have higher existence probabilities the threshold, then the states of the objects will
be estimated by using mode/mean estimates from the densities p(·, `), ` ∈ L.

3.5. Multisensor GLMB Recursion

Under the standard multitarget dynamic and observation models, the GLMB filter is an analytic
solution to the Bayes single-sensor multitarget filter [18]. In addition, the form of the multisensor
likelihood function is identical to that of a single-sensor likelihood function, as previously concluded,
thus a suggestion on a multisensor GLMB is given as follows [52]: Given the filtering density
(Equation (11)) at time k, the filtering density at time k + 1 is given by:

π+ (X+) ∝ ∆ (X+) ∑
Iξ,I+ ,θ+

ω(I,ξ)ω
(I,ξ,I+ ,θ+)
Z+

δI+ [L (X+)]
[

p(ξ,θ+)
Z+

]X+
, (15)

where I ∈ F (L) , ξ ∈ Ξ, I+ ∈ F (L+) , θ+ ∈ Θ+ (I+), and:

ω
(I,ξ,I+ ,θ+)
Z+

=1Θ+(I+)(θ+)
[
1− P̄(ξ)

S

]I−I+ [
P̄(ξ)

S

]I∩I+
[1− rB,+]

B+−I+ rB+∩I+
B,+

[
ψ̄
(ξ,θ+)
Z+

]I+
(16)

P̄(ξ)
S (`) =〈p(ξ) (·, `) , PS (·, `)〉 (17)

ψ̄
(ξ,θ+)
Z+

(`+) =〈 p̄(ξ)+ (·, `+), ψ
(θ+(`+))
Z+

(·, `+)〉 (18)

p̄(ξ)+ (x+, `+) =1L(`+)
〈PS(·, `+) f+(x+|·, `+), p(ξ)(·, `+)〉

P̄(ξ)
S (`+)

+ 1B+
(`+)pB,+(x+, `+) (19)

p(ξ,θ+)
Z+

(x+, `+) =
p̄(ξ)+ (x+, `+)ψ

(θ+(`+))
Z+

(x+, `+)

ψ̄
(ξ,θ+)
Z+

(`+)
(20)

Obviously, by rewriting Equation (15) as a sum over I+, ξ, θ+ with weights:

ω
(I+ ,ξ,θ+)
+ ∝ ∑

I
ω(I,ξ)ω

(I,ξ,I+ ,θ+)
Z+

, (21)

Equation (15) will have the same form with Equation (11). It means that the GLMB recursion for a
single sensor can be applied to the problem of multiple sensors, and only the components (I+, ξ, θ+)

with weights ω
(I+ ,ξ,θ+)
+ need to be forwardly propagated at the next iteration.

3.6. Adaptive to Unknown Detection Probability

Normally, the probability of detection is assumed to be known a priori, however, this assumption
is impractical. Therefore, the parameter p(s)D in Equation (9) much be estimated simultaneously with
the update steps. It has been illustrated in Reference [28] that, with a specially chosen state space, the
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GLMB filter can be applied to solve the problem of tracking targets under the unknown probability of
detection [47].

In this work, a new method called BpD-GLMB for tracking multitargets was proposed to estimate
the unknown probability of target detection and produce target tracks online. Specifically, the
unknown probability of detection parameter pD was estimated separately, then bootstrapped into the
state-of-the-art GLMB filter for target tracking (see Figure 3).

Figure 3. pD-bootstrapped Generalized Labeled Multi-Bernoulli (BpD-GLMB) filter diagram.

Inspired by Reference [53,54], this paper proposes using the pD-cardinalized PHD filter [11] to
separately estimate the probability of detection, and then bootstrapped this parameter into the update
stage of GLMB filter.

The idea of accommodating the unknown and non-homogeneous detection probability by
incorporating this parameter into the target state variable has been proposed in Reference [11], in
which each usual kinematic state x is replaced by an augmented state x̊ = (a, x), where 0 ≤ a ≤ 1
is the unknown target detection probability of x. Obviously, the augmented state encompasses both
the original kinematic target state x and the corresponding unknown and state-dependent detection
probability (represented by a). Consequently, the augmented multitarget state has the form:

X̊ = {x̊1, . . . , x̊n} ={(a1, x1) , . . . , (an, xn)} , (22)

where n is the number of the target state, and the corresponding set integral has the form [11]:∫
f̊
(
X̊
)

δX̊ = ∑
n≥0

1
n!

f̊ ({x̊1, . . . , x̊n}) dx̊1 . . . dx̊n. (23)

Since the probability of detection is unknown a priori, the filter should estimate this parameter
such that the measurements are well adapted with the underlying target/object model [47]. By using
the augmented state, the augmented space is given by:

X̊ = X̄×X,

where X̄ = [0, 1] and X = Rnx denote the spaces of detection probability and target kinematics,
respectively. The augmented detection probability and single target likelihood function are described
as follows:

p̊(s)D (x̊) = p̊(s)D (a, x) , a (24)

g̊(s)z (x̊) = g̊(s)z (a, x) , g(s)z (x) . (25)

Here, it is assumed that regardless of undetectability, a target will generate the same measurement.
For the purposes of using RFS filters to tackle unknown probability of detection, the simple substitution
of variables has been proposed in Reference [11] as follows: While keeping the likelihood function
unchanged, the target state x and detection probability p(s)D (x) are replaced by (a, x) and a, respectively.
Consequently, the integral

∫
·dx is substituted by

∫∫ 1
0 ·dadx.
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3.7. Implementation

Because the number of terms in a GLMB updated multitarget density grows exponentially
with time, practically only the terms with largest weights should be retained to limit the exhaustive
evaluation of all terms. This work minimizes the L1 approximation error [19] and can be formulated as
a ranked implementation multi-dimensional assignment problem.

Although the K-short path algorithm can be used to compute the best terms of the prediction, it is
easy for tracking loss unless the number of predicted terms is large enough. An alternative algorithm
to mitigate this problem is the use of unscented transformation [55]. By using this algorithm, the
predictions for target births and survivals are performed separately and then combined afterward [19].
For the purpose of reducing the cost of computation in the update state, measurement gating and
pruning are applied in the GLMB filter. For the single-sensor case, two techniques, called the Murty’s
ranked assignment algorithm and Gibbs sampling, have been proposed to perform the truncation
without having to propagate all the components [19,22]. While the Murty’s algorithm can be used
to determine a given number of highest weighted components of the multi-object filtering density
without exhaustively generating all possible mappings, the Gibbs sampler can generate the significant
components of the multi-object filtering density for a large number of targets to be tracked. Since
the problem of tracking with Doppler measurements in this work requires multiple sensors, both
the Murty’s algorithm and Gibbs sampler implementation should be considered. However, the
implementation of the two sensor GLMB filter developed in Reference [56] using Murty’s algorithm
showed that it has a cubic complexity in the product of the number of measurements from the
sensors. Based on the extension of the Gibbs sampler implementation to multiple sensors proposed in
Reference [52], Gibbs sampling is chosen as the most appropriate implementation for this problem.
As a proof of concept of how GLMB filter addresses multistatic Doppler measurements, the simpler
“iterated corrector” implementation that applies single sensor updates once for each sensor, in turn, has
been used. This strategy would yield the exact solution if all components of the multitarget filtering
density are kept.

4. Numerical Studies

In the present work, the problem of tracking 10 nonlinear birth-and-death time-varying marine
ships was considered under the missed-detection-and-clutter observations and unknown detection
probability. Consider the scenario illustrated in Figure 1, where we adopted the generic constant-turn
model to better accommodate the unpredictable maneuvering behaviors of targets. The target state
at time k is modeled using a 5-D vector xk = [px

k , ṗx
k , py

k , ṗy
k , ψk]

T , comprising of its x-coordinate,
x-velocity, y-coordinate, y-velocity, and course. Hence, the marine ship dynamic model can be
expressed as follows:

xk = Fk|k−1 (xk−1) + Gnk, (26)

where:

Fk|k−1 (xk−1) =


1 sin(∆ψk−1)

ψk−1
0 cos(∆ψk−1)−1

ψk−1
0

0 cos (∆ψk−1) 0 − sin (∆ψk−1) 0
0 − cos(∆ψk−1)−1

ψk−1
1 − sin(∆ψk−1)

ψk−1
0

0 sin (∆ψk−1) 0 cos (∆ψk−1) 0
0 0 0 0 1

 xk−1; G =


∆2

2 0 0
∆ 0 0
0 ∆2

2 0
0 ∆ 0
0 0 ∆

 . (27)

In which, ∆ is the sampling period, and nk = [nẋ
k , nẏ

k , nψ
k ]

T is a zero-mean Gaussian noise vector of
velocities and course noise components. σẋ = σẏ = σv is the standard deviation (std.) of the velocity
noise, and σψ is the std. of the course noise. Note that latitude, longitude, and course are measured in
degrees (◦), while distance, velocity, and time are calculated in nautical miles (M), i.e., knots (kn), and
hours (h), respectively.

Remark 1 : The target model with transition matrix F (ψ) given in Equation (27) is based on the
assumption that the surveillance area is located far enough from the North and South Poles.
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The target model parameters, as well as the birth parameters, are given in Table 1. The multitarget
scenario is conducted in the surveillance region [10◦N 30◦N, 100◦E 125◦E] with a total of 10 targets,
which are random in positions, velocities, and the number of appearance (as in Table 2). Target ground
truths and tracking results are depicted in Figure 4. By using BpD-GLMB filter, the results of 2-D
coordinates target tracks are shown in Figure 5. The birth process is assumed as labeled Multi-Bernoulli

RFS with parameters fB(x) =
{

ω
(i)
B , pi

B

}4

i=1
where the common existence probabilities ω

(1,2)
B = 0.01

and ω
(3,4)
B = 0.02 and p(i)B (x) = N (x, x̂(i)B , PB) with:

x̂(1)B = [17.20◦N, 0, 110, 7◦E, 0, 0]T

x̂(2)B = [14.60◦N, 0, 113.0◦E, 0, 0]T

x̂(3)B = [17, 20◦N, 0, 113; 0◦E, 0, 0]T

x̂(4)B = [18.30◦N, 0, 107, 70◦E, 0, 0]T ;

and:
PB = diag([2.0′N, 30(kn), 2.0′E, 30(kn), 6π/180(rad/s)])2.

Table 1. Birth–death and dynamic model parameters.

Parameter Symbol Value

Sample period ∆ 0.15 (h)
Std. of the velocity noise σv 0.3 (kn)
Std. of the course noise σφ π/180 (rad s−1)
Common existence probabilities (pB

1,2; p3,4
B ) (0.01; 0.02)

Survival probability PS 0.98
Number of targets N 10

Figure 4. Multitarget ground truths (black) versus its tracked targets (red).

Ten targets were assumed to be distributed around the birth model with the closest and farthest
latitudinal distances being 2.85 km and 10.73 km, and the corresponding values for longitudinal
distances being 2.6 and 10.6 km, respectively. The absolute velocities of the targets were assumed to be
varied from 2 to 32 kn (approximately 3.5 to 60 km/h). The assumptions on positions of the multistatic
passive Doppler radar transmitter and receivers and transmit frequency ft are given in Table 3.
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Table 2. Initial values of the targets.

Target Init. Position Init. Speed (kn) Init. Course (rad/s) Time of Birth (h) Time of Death (h)

T1 [17◦15′15.66”N, 110◦45′06.84”E] [32, −5] ψ/8 1 150
T2 [14◦37′52.46”N, 113◦05′43.44”E] [13, −9] −ψ/2 5 120
T3 [17◦09′52.45”N, 113◦05′43.44”E] [−18, 5] −ψ 10 140
T4 [14◦37′52.46”N, 112◦53′30.84”E] [2, 32] −ψ/4 20 150
T5 [18◦17′11.54”N, 107◦39′48.60”E] [6, −20] ψ/6 20 150
T6 [18◦23′47.54”N, 107◦43′24.60”E] [−12, −4] ψ/4 30 140
T7 [17◦10′27.66”N, 110◦42′06.84”E] [15, −30] ψ/8 30 130
T8 [14◦38′28.46”N, 113◦05′43.44”E] [−15, 30] −ψ/2 45 135
T9 [17◦14′40.45”N, 113◦05′43.44”E] [28, −30] −ψ/3 55 150

T10 [14◦37′52.46”N, 112◦53′30.84”E] [30, 5] −ψ/4 55 150

Figure 5. Multitarget tracking in latitude and longitude.
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Table 3. Measurement parameters.

Name Symbol Value

Transmitter pt [15◦22′58.82”N, 109◦07′11.52”E]
Receiver 1 pr1 [10◦22′31.28”N, 114◦28′13.45”E]
Receiver 2 pr2 [17◦58′41.87”N, 106◦24′23.98”E]
Transmit frequency ft 900 MHz
Speed of light c 3× 108(m/s)
Initial detection probabilities [pD1, pD2] [0.70; 0.98]
Average clutter rate [c1; c2] [10; 25]

The measurement space for each receiver is [−200 Hz, 200 Hz], and the measurement noise
wk is zero-mean Gaussian noise with the covariance Qk = diag([0.5 Hz2; 0.5 Hz2]). The value of
unknown detection probability pD,k(x) is first estimated by the corresponding pD-CPHD filter, and
then bootstrapped into the GLMB filter. Clutter follows a Poisson RFS with average rates c1 and c2,
as mentioned in Table 3. It can be seen that the tracker can precisely track the targets in latitude and
longitude with respect to the time. There are some delays and missed detection in observations, which
may be due to the distances from the estimated positions and the actual positions. The tracker shows
the effectiveness of the tracking algorithm when the targets are merged or close together.

In this paper, the tracking errors of the filters are evaluated and compared using both the
Optimal Sub-Pattern Assignment (OSPA) [57] and the OSPA−on−OSPA, or OSPA(2) [36] with cut-off
parameter c0 = 100 and p = 1. The OSPA metric is a distance between two sets of points that jointly
account for the dissimilarity in the number of points and the values of the points in the respective
sets. By using OSPA metric, the errors between the true and estimated multitarget states at each time
step is calculated and shown in Figure 6. The OSPA−on−OSPA, or OSPA(2), distance has a different
interpretation to that of the traditional OSPA distance. The OSPA(2) metric used in both GLMB and
BpD-GLMB to capture the errors between the true and estimated sets of tracks over a period of time
with window length set at l = 20 is illustrated in Figure 7. In this paper, we assumed that the GLMB
with known pD = 0.98 as the optimal filter. Further, a comparison of estimated cardinality between the
GLMB and BpD-GLMB is shown in Figure 8. The results demonstrate the capability of our proposed
BpD-GLMB filter, which outperformed the pD-CPHD filter, and its comparability to the GLMB filter
with known pD in tracking accuracy under OSPA and OSPA(2) metrics.
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Figure 6. Comparision of Optimal Sub-Pattern Assignment (OSPA) among pD Cardinalized Probability
Hypothesis Density (CPHD), GLMB, and bootstrapped pD GLMB.
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Figure 7. Comparision of OSPA(2) between GLMB and bootstrapped pD GLMB.
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Figure 8. Comparison of target cardinality estimate between the GLMB and BpD-GLMB.

5. Conclusions

An online multiple targets tracking filter with multistatic Doppler measurements was given in
this work. The unknown probability of detection parameter, which was assumed to vary slowly
compared to the data rate, was estimated and bootstrapped into the state-of-the-art GLMB filter to
output target tracks. The simulation results demonstrate the effectiveness of the proposed method,
the BpD-GLMB, which is comparable to the optimal-GLMB with a known detection probability while
surpassing pD-CPHD significantly. Since the application only involves a small number of targets,
the Murty’s algorithm was applied for the prediction and update performance of the tracker. For
significantly faster implementation with a larger number of targets scenario, the joint prediction and
update introduced in Reference [52] using Gibbs sampling could be used. Evidence has been shown in
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Reference [36] that the GLMB filter can be used to track over one million targets per scan in real time
based on a C++ platform. For strategies of realistic large-scale tracking implementation, MATLAB
code is obviously insufficient, and it should be converted into C++ or Python. The problem of tracking
mobile targets using movable sensors will be further investigated for upcoming consideration.
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