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Abstract: This paper proposes a compact Thévenin model for a rectenna. This model is then applied
to design a high-efficiency radio frequency harvester with a maximum power point tracker (MPPT).
The rectenna under study consists of an L-matching network and a half-wave rectifier. The derived
model is simpler and more compact than those suggested so far in the literature and includes explicit
expressions of the Thévenin voltage (Voc) and resistance and of the power efficiency related with the
parameters of the rectenna. The rectenna was implemented and characterized from −30 to −10 dBm
at 808 MHz. Experimental results agree with the proposed model, showing a linear current–voltage
relationship as well as a maximum efficiency at Voc/2, in particular 60% at −10 dBm, which is a
remarkable value. An MPPT was also used at the rectenna output in order to automatically work
at the maximum efficiency point, with an overall efficiency near 50% at −10 dBm. Further tests
were performed using a nearby transmitting antenna for powering a sensor node with a power
consumption of 4.2 µW.

Keywords: RF harvesting; rectenna; Thévenin model; maximum power point tracking; MPPT;
L-matching network; sensor node

1. Introduction

Radio frequency (RF) energy harvesting has been extensively proposed to power tiny devices
such as RFID tags, autonomous sensors, or Internet of Things (IoT) nodes. RF energy can be harvested
either from dedicated sources, such as in the case of RFID devices [1–4], or from the RF energy already
present in the ambient environment and coming from unintentional sources such as TV, FM radio,
cellular, or WiFi emitters [2,5–10].

Figure 1 shows the block diagram of an RF harvester powering a sensor node. The rectenna
(rectifying antenna) transforms the RF signal to a DC voltage and the maximum power point tracker
(MPPT) provides the optimum load to the rectenna to transfer the maximum power to the sensor node.
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either from dedicated sources, such as in the case of RFID devices [1–4], or from the RF energy already 
present in the ambient environment and coming from unintentional sources such as TV, FM radio, 
cellular, or WiFi emitters [2,5–10]. 

Figure 1 shows the block diagram of an RF harvester powering a sensor node. The rectenna 
(rectifying antenna) transforms the RF signal to a DC voltage and the maximum power point tracker 
(MPPT) provides the optimum load to the rectenna to transfer the maximum power to the sensor node. 
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Figure 1. Block diagram of a radio frequency (RF) harvester powering a sensor node. 
Figure 1. Block diagram of a radio frequency (RF) harvester powering a sensor node.
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The rectenna is composed of an antenna, an impedance matching network, and a rectifier. As the
available power at the antenna decreases so does the generated voltage. Whenever this voltage is not
high enough to properly bias the diodes of the rectifier, power efficiency severely decreases. Several
techniques have been proposed to increase the efficiency at low power levels. One of them consists
of using an L-matching network for boosting the voltage at the rectifier input [1,3,5,10–21]. As for
the MPPT, several works propose its use with rectennas using either commercial chips [6,7] or ad hoc
designs [22–25].

With the aim of gaining more insight into the performance of the rectennas, different analytical
models are proposed. However, the derived expressions, which in some cases seek to model the
rectenna output as an equivalent Thévenin circuit, are rather complex and may require additional
simulations or extensive calculations, which hide the influence of the different parameters of
the rectenna on its performance [12,18,26–28]. At the other extreme, the Thévenin parameters
are sometimes inferred by experimental characterization [25,29–32]. However, in these cases no
relationship with the rectenna parameters is established.

Taking into account the previous limitations, this paper proposes a compact Thévenin model for
the rectenna with the benefit of achieving manageable expressions of the Thévenin parameters as a
function of the parameters of the rectenna so as to gain insight into its operation. In particular, the
rectenna under study consists of an L-matching network and of a half-wave rectifier. The proposed
model is then experimentally verified and the rectenna further tested in a high-efficency RF harvester
with MPPT.

The paper, which continues and expands the work presented in [32], is organized as follows.
Section 2 presents the rectenna and the derived Thévenin equivalent. Section 3 describes the MPPT and
the sensor node. Section 4 presents the materials and methods and Section 5 provides the experimental
results and discussions. Finally, Section 6 concludes the work. Complementarily, two appendices are
included. Appendix A presents an analytical development useful for the derivation of the Thévenin
equivalent and Appendix B shows simulations of the rectenna with and without the matching network.

2. Rectenna and Its Thévenin Model

Figure 2 shows the schematic circuit of the rectenna under study [33], which includes a high-pass
L-matching network (composed of a capacitor Cm and an inductor Lm), a half-wave rectifier, and an
output filtering capacitor (Co). The antenna is modelled by a sinusoidal voltage source va of amplitude
Vap and frequency f o with a series radiation resistance Ra. On the other hand, vin, Zin, and Pin are,
respectively, the sinusoidal voltage, impedance, and power at the input of the rectifier, id is the diode
current, and Vo, Io, and Po are, respectively, the DC voltage, current, and power at the rectenna output.
An equivalent resistance Ro is defined as Vo/Io.
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Figure 2. Schematic circuit of the rectenna under study. 
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Figure 2. Schematic circuit of the rectenna under study.

The amplitude Vap is given by [12] as follows:

Vap = 2
√

2RaPav, (1)
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where Pav is the available power at the antenna. The matching network, at matching conditions, that is,
Zm = Ra (where Zm is defined in Figure 2), boosts the voltage at the input of the rectifier by a voltage
gain, Gt, given by [33] as follows:

Gt =
Vinp

Vap
=

1
2

√
(1 + Q2), (2)

where Vinp is the voltage amplitude of vin and Q is the circuit quality factor given by:

Q =
1

ωoCmRa
, (3)

where ωo = 2πf o. On the other hand, the value of Lm must comply:

Lm =
1

ω2
o

1
Cp + CmQ2/(1 + Q2)

, (4)

where Cp models the parasitic capacitance between node A and ground.
To ease the analysis of the proposed rectenna and also gain more insight into its performance, a

compact Thévenin model is provided here. First, the left-hand equivalent circuit of Figure 3 accounts
for the antenna, the matching network, and the parasitic elements (Rp-Cp) of the coil, diode, and layout
of the circuit. These parasitic elements are derived in Appendix A, where Rp models the losses of the
coil and diode and Cp includes the parasitic capacitance of the diode, coil, and layout.
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Analyzing the left-hand circuit of Figure 3 at f o, we can achieve the Thévenin equivalent
represented by the right-hand circuit of Figure 3, where:

veq = 2Gtva
Rp

4G2
t Ra+Rp

,

Req =
(
4G2

t Ra
)
‖Rp,

Ceq = Cm
Q2

1+Q2 + Cp.

(5)

Next, the Thévenin equivalent of Figure 3 is linked to the next stage of the rectenna, the rectifier,
resulting in the left-hand circuit of Figure 4, where the diode does not include its parasitic elements
since they have been already considered in the previous derivation (they are included in Req and Ceq).
The diode is forward biased when vin, assumed sinusoidal, surpasses Vo. As a result, id is pulsed
and is composed of the fundamental frequency (f o) as well as its harmonics and a DC component (Io).
Impedance Zs (defined in the circuit) is zero at DC (due to the coil Lm) and is equal to Req at f o since
Lm and Ceq form a parallel resonant circuit presenting an infinite impedance. On the other hand, at
the harmonics of f o we have Zs << Req (due to Ceq) whenever Q is high enough. Therefore, only the
current at f o (iin) originates a voltage drop and vin will be sinusoidal, as assumed before. Thus, apart
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from boosting the voltage, the matching network ideally acts as an input band-pass filter that prevents
any of the DC current and harmonics to flow through the antenna resistance and dissipate power.
This leads to an ideal rectenna efficiency of 100%, assuming no losses in the circuit components and
in the diode [34]. Contrariwise, when no matching network is present, maximum rectenna efficiency
decreases to 46%, due to the additional losses at Ra originated by the current harmonics generated by
the diode pulsed current, as demonstrated in [35]. Appendix B confirms these results via simulations.
Finally, the value of Co has to be much higher than the diode junction capacitance (Cj), as explained in
Appendix A, to keep Vo nearly constant, that is, with a low voltage ripple (∆Vo). This second condition
leads to:

Co >
Io

∆Vo fo
. (6)
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The left-hand circuit of Figure 4 leads to the equivalent Thévenin circuit of the rectenna,
represented by the right-hand circuit of Figure 4, by linking their output voltage–current relationship.
For the left-hand circuit, we have:

Vo = Vinp −Vγ, (7)

assuming a fixed forward voltage drop Vγ at the diode and:

Vinp = Veqp − Req Iinp, (8)

where Veqp and Iinp are the amplitudes of veq and iin, respectively. Substituting (8) into (7) provides:

Vo = Veqp −Vγ − Req Iinp. (9)

On the other hand, for the right-hand circuit we have:

Vo = Voc − RT Io. (10)

Then, by equating powers, we obtain:
Pin = Po + Pd, (11)

where
Pin =

Vinp Iinp
2 ,

Po = Vo Io,
Pd = Vγ Io,

(12)

and Pd is the average power dissipated across the diode. Thus, replacing (12) into (11) and using (7),
we arrive at the following:

Iinp = 2Io. (13)
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Finally, using (13) in (9) and equating (9) and (10), we obtain the parameters of the Thévenin model:

Voc = Veqp −Vγ,
RT = 2Req,

(14)

where Veqp can be derived from veq in (5), using Vap instead of va, resulting in:

Veqp = 2GtVap
Rp

4G2
t Ra + Rp

. (15)

Then, using (15) and Req of (5) in (14), we have:

Voc = 2GtVap
Rp

4G2
t Ra+Rp

−Vγ,

RT = 2
[(

4G2
t Ra

)
‖Rp

]
.

(16)

Therefore, from (16), with an increasing Pav and thus Vap, Voc increases whereas RT holds constant.
Next, from (10), we can express Io as:

Io = (Voc −Vo)/RT, (17)

and the output power Po over a load resistor Ro can be simply calculated as:

Po = Vo Io =
VocVo −V2

o
RT

, (18)

being the power efficiency of the rectenna as:

ηrect =
Po

Pav
=

VocVo −V2
o

PavRT
. (19)

Applying the maximum power transfer theorem, maximum power is extracted from the rectenna for
Vo = 0.5Voc, which is known as the maximum power point (MPP) voltage (VMPP). From (19), the
resulting efficiency is as:

ηrect,max =
V2

oc
4PavRT

. (20)

Thus, using (16) in (20), we arrive at:

ηrect,max =
Rp

4G2
t Ra + Rp

(
1− Vγ√

2RaPav

4G2
t Ra + Rp

4GtRp

)2

. (21)

As can be seen from (21), ηrect,max increases with increasing Pav. Obviously, with no losses (Rp = ∞ and
Vγ = 0) ηrect,max = 1 is obtained. On the other hand, the dependence of ηrect,max on Gt is rather more
complex. In [33], an optimum value of Gt was derived arising from the trade-off between the losses
introduced by the coil and that due to the voltage drop of the diode. This optimum gain leads, from
(16), to a particular value of RT.

3. MPPT and Sensor Node

In general, a sensor node directly connected to the output of the rectenna will not provide an
equivalent resistance Ro = RT, at which the rectenna output operates at the MPP. Thus, an impedance
matching stage (in addition to the matching network of the rectenna) is needed between the rectenna
output and the sensor node, which can be implemented by a DC/DC converter. An MPPT, which
consists of a DC/DC converter plus a tracking algorithm, can be used for automatically searching and
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settling that optimum value of Ro, which also corresponds to Vo = VMPP. Thus, the overall power
efficiency of the RF harvester will be given by the following:

ηT = ηrect,maxηMPPT, (22)

where ηMPPT is the efficiency of the MPPT and ηrect = ηrect,max since the MPPT biases the rectenna at
the MPP.

In this work, the fractional open circuit voltage (FOCV) MPPT technique is used, since it leads to
simple and power efficient implementations. In this technique, the open circuit voltage (Voc) of the
energy transducer (a rectenna here) is first measured and a fraction k of Voc is used to operate at VMPP

and thus achieve ηrect,max. Taking into account the analysis in Section 2, a proper choice here is k = 0.5
(Vo = VMPP = 0.5Voc).

Figure 5 presents the block diagram for the implementation of the FOCV MPPT technique, where
CL, CREF, and Cload are capacitors, Roc1 and Roc2 are resistors, S1 and S2 are switches, Vload is the output
voltage used to power the sensor node, and Pload is the power transferred to the sensor node. The
operation is the following. First, S1 closes and S2 opens (sampling period). For high values of Roc1 and
Roc2, the output of the rectenna can be considered as open and thus Vo = Voc. The voltage divider
formed by Roc1 and Roc2 fixes VMPP = kVoc, being k = 0.5 here (i.e., Roc1 = Roc2). The input capacitor
(CL) momentarily stores the incoming harvested energy. Secondly, S1 opens and S2 closes (regulation
period). Thus, VMPP holds constant thanks to CREF, and the DC/DC converter settles Vo around VMPP

and transfers the harvested energy by the rectenna to the sensor node.
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Figure 5. Block diagram for the implementation of the fractional open circuit voltage maximum power
point tracking technique.

In order to periodically update Voc (i.e., a change in Pav changes Voc), the described sequence is
periodically repeated, with the sampling period being much shorter than the regulation period. In this
way, Vo will settle most of time at VMPP. To increase the efficiency at light loads, the DC/DC converter
uses special control techniques such as pulse frequency modulation (PFM) or burst-mode [36].

Taking into account (22), Pload can be related with Pav as follows:

Pload = ηTPav. (23)

The value of Pload and thus of Pav must be enough, in average, to power the sensor node, which
usually includes a rechargeable storage unit. This unit accounts for the variability of Pav, gathering or
providing energy whenever Pav is higher or lower than required. Storage units can be supercapacitors,
batteries, or a combination of both [37]. On the other hand, the required value of Pload and thus of
Pav can be reduced by operating the sensor node in sleep mode most of the time and minimizing its
active time.
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4. Materials and Methods

The rectenna shown in Figure 2 was implemented on a printed circuit board with Rogers substrate
and with the following components: Cm = 0.5 pF (AVX, Fountain Inn, SC, USA), Lm = 27 nH (0603CS
model, Coilcraft, Cary, IL, USA), Co = 1 nF, and a Schottky HSMS-2850 diode (Avago Technologies, San
Jose, CA, USA) [33]. The selected value of Co comfortably accomplished, in order to theoretically have
a small ripple (below 1 mV) with the values of Io shown later in Section 5, as well as the condition
stated in Appendix A (Co >> Cj). The circuit of Figure 2 was used for the rectenna characterization,
where an RF generator (Agilent E4433B, Santa Clara, CA, USA) was connected at the input instead
of the antenna and a Source Measure Unit (SMU, Agilent B2901A, Santa Clara, CA, USA) configured
as a voltage sink (quadrant IV) at the output. The generator was set at a tuned optimal frequency of
808 MHz and at different values of Pav (−30 dBm, −20 dBm, and −10 dBm). For each value of Pav, the
SMU was set at different values of Vo while measuring Po. Then, ηrect was obtained as Po/Pav.

As for the FOCV MPPT, a BQ25504 chip (Texas Instruments, Dallas, TX, USA) was used, and in
particular an evaluation board provided by the manufacturer. The chip contains a boost converter with
PFM control and the board includes, in reference to Figure 5, CL = 4.8 µF (combination of two ceramic
capacitors of 4.7 µF and 100 nF placed in parallel), CREF = 10 nF, and Cload = 104.8 µF (combination of
three ceramic capacitors of 100 µF, 4.7 µF, and 100 nF placed in parallel). The default values of Roc1

and Roc2 were modified to 10 MΩ in order to fix k = 0.5 (the default value is set to 0.78). The sampling
and regulation periods are prefixed by the chip to 256 ms and 16 s, respectively. Then, the efficiency of
the whole RF harvester (rectenna plus MPPT) was characterized by using the RF generator at the input
of the rectenna and the SMU set at 3 V at the output of the MPPT (Vload). The RF generator was set
at different values of Pav, from −20 dBm to −5 dBm in steps of 1 dBm, and for each value the SMU
measured the output power Pload. Then, from (23), ηT was estimated.

For demonstration purposes, the RF harvester including the MPPT was also employed to power a
sensor node intended to upgrade a mechanical gas meter to a smart device [38]. For these tests, the
node was programmed to stay in a standby mode, consuming 1.4 µA. The input power (Pav) was set to
keep the voltage supply of the sensor node (Vload) at 3 V, thus Pload = 4.2 µW. As for the RF harvester
input, two configurations were used: (1) an RF generator and (2) a receiving monopole antenna. In the
second case, another identical monopole antenna was connected to a nearby RF generator, jointly
acting as a wireless energy transmitter. The antennas showed an insertion loss higher than 10 dB at
808 MHz. Figure 6 shows pictures of both setups.
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5. Experimental Results and Discussion

As for the proposed rectenna, Figure 7 shows the measured values (in dots) of Io (blue circles) and
ηrect (red squares) as a function of Vo at different values of Pav. A least-squares fitting of (17) to the
experimental data of Io was performed (blue continuous line) to obtain the Thévenin parameters (Voc

and RT) at each power level, which are shown in Table 1. Calculated values of Vap, from (1), and of
Veqp, from (15), are also included in Table 1. This fitting differs from that performed in [32], where the
efficiency data (ηrect) were used instead, which leads to slight differences in the Thévenin parameters.
The new fitting procedure was considered more convenient as both Voc and RT can be more easily
inferred from the fitting curve. As can be seen, the fitting curves match well the experimental data, and
more at the highest power of −10 dBm, which confirms that the rectenna can be well approximated by
a Thévenin equivalent circuit. Then, Voc and RT were used to obtain ηrect using (19), and the resulting
curves are also represented in Figure 7 (red continuous line). The match with the experimental data is
good, and again better at −10 dBm.
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Figure 7. Measured values (dots) and least-squares fittings (continuous lines) of Io and ηrect versus Vo

for the rectenna at Pav equal to (a) −10 dBm, (b) −20 dBm, and (c) −30 dBm.

Table 1. Inferred values of Voc and RT and calculated values of Veqp at different values of Pav.

Pav (dBm) Vap (mV) Voc (mV) RT (kΩ) Veqp (mV)

−10 200 mV 937 3.56 1183

−20 63.2 mV 268 4.29 374

−30 20.0 mV 56.6 5.51 118.3

With Cm = 0.5 pF, Ra = 50 Ω, and f o = 808 MHz, Q = 7.88 results from (3), and Gt = 3.97 from
(2). Then, from (16) and assuming the value of Rp = 9.21 kΩ derived in Appendix A, RT = 4.7 kΩ is
obtained, which is within the range of values found in Table 1. The inferred values of RT moderately
change with Pav due to the relative low value of Q, which limits the accuracy of the rectenna model
proposed in Section 2. However, a higher value of Q, which could be obtained using a lower value
of Cm and appropriately readjusting Lm, does not lead to the optimum gain Gt [33], thus decreasing
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the power efficiency. On the other hand, Voc in Table 1 increases with increasing Pav and thus Vap,
which agrees with (16). The values of Voc can be estimated in advance, when necessary, from (16) by
calculating Veqp from (15), shown in Table 1, and inferring a value of Vγ from the manufacturer data
or from simulations.

From the measured data of ηrect (red squares in Figure 7), Table 2 shows the achieved ηrect,max

and its corresponding voltage (VMPP,exp), as well as the experimental open circuit voltage (Voc,exp) of
the rectenna. In Figure 7, ηrect,max, VMPP,exp, and Voc,exp are also marked for Pav = −20 dBm. As can be
seen, ηrect,max increases with increasing Pav, ranging from 13.6% at −30 dBm to 60.3% at −10 dBm,
which agrees with (21). The values of ηrect,max can be estimated in advance, when necessary, from
(21) and inferring a value of Vγ from the manufacturer data or from simulations. One particular case
is the upper limit, which would be achieved for Pav→∞ (or Vγ→0), in our case 74%. The resulting
efficiencies (ηrect,max) are among the highest published in the literature for similar designs [33]. On the
other hand, Voc from Table 1 nearly matches Voc,exp. Finally, VMPP,exp equates or nearly matches
0.5 Voc,exp, the regulated voltage at the input of the MPPT. Thus, the proposed and implemented MPPT
will be able to extract the maximum power (or nearly) from the rectenna.

Table 2. Experimental values of ηrect,max, VMPP,exp, and Voc,exp at different values of Pav.

Pav (dBm) ηrect,max (%) VMPP,exp (mV) Voc,exp (mV)

−10 60.3 480 960

−20 39.3 130 280

−30 13.6 27 60

As for the whole RF harvester (rectenna plus the MPPT), Figure 8 shows the experimental values
of ηT versus Pav. At −20 dBm, ηrect,max = 39.3% (Table 2) but ηT = 6.5%, resulting, from (22), in
ηMPPT = 16.5%. This low value of ηMPPT is due to both a low input voltage value (140 mV = 0.5 Voc,exp)
and a low value of Po (3.9 µW = ηrect,maxPav). Contrariwise, at −10 dBm, ηrect,max = 60.3% and
ηT = 48.6%, resulting in ηMPPT = 80.6%, which agrees with the data from the BQ25504 chip’s datasheet.
At higher values of Pav (−5 dBm), ηT reached a value of 55.6%. Compared to [6], where a similar chip
for the MPPT was used, ηT is quite higher.
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When powering the sensor node, the required value of Pav was −17.6 dBm. This value fits well
with (23), considering the corresponding efficiency in Figure 8 (≈24%). This performance was also
tested with the antennas at a distance of 0.5 and 1 m. The power output of the remote RF generator
was tuned at appropriate values so as to operate the node, resulting in 8.0 and 13.2 dBm, respectively.
These values accounted for the respective link budgets.
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6. Conclusions

This work proposed a compact Thévenin model for a rectenna and its application for designing
a high-efficiency RF harvester. The rectenna under study consists of an L-matching network and a
half-wave rectifier. Explicit expressions for the Thévenin voltage and resistance were derived that
offer insight into the operation of the rectenna. An expression was also provided for the power
efficiency. The rectenna was implemented and characterized from −30 to −10 dBm at 808 MHz and
the results mainly agreed with the derived model, with differences arising from the limited Q factor
of the matching network. High efficiencies were obtained, in particular 60% at −10 dBm. Then, an
ensuing MPPT was also added, where the behavior of the rectenna as an equivalent Thévenin circuit
allowed the use of a simple FOCV technique. The whole RF harvester (rectenna plus MPPT) showed
an overall efficiency near 50% at −10 dBm. Further tests were performed with a nearby transmitting
antenna for powering a sensor node with a power consumption of 4.2 µW.
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Appendix A. Parallel Circuit Model of the Inductor and Diode

The use of a matching network leads to sinusoidal voltage and current waveforms at f o, as
mentioned in Section 2. Here, the equivalent circuit model at f o is derived from the manufacturer
models of the diode (https://docs.broadcom.com/docs/AV02-1377EN) and inductor (https://www.
coilcraft.com/pdfs/spice_0603cs.pdf) used for the implemented rectenna and reported in Section 4.
This model will be used in the left-hand circuit of Figure 3.

First, the left-hand circuit in Figure A1 shows the equivalent linear circuit model of the diode,
connected between node A and the Vo node at Figure 2, together with the output capacitor Co, where
Rs is the parasitic series resistance, Cj is the parasitic junction capacitance, and Rj is the junction
resistance. Rj depends inversely on the bias current and makes only sense for modelling small current
variations around a bias current. In our case, the diode current is pulsed and thus the inclusion of Rj is
not appropriate. Instead, a constant voltage drop will be assumed in Section 2 for the analysis of the
circuit of Figure 4.
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Figure A1. Equivalent linear circuit model of the HSMS-2850 diode together with (left) the output
capacitor Co and (right) its parallel equivalent circuit.
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Using the series-to-parallel equivalent circuit transformation for the left-hand circuit of Figure A1
without Rj and considering Co >> Cj, the right-hand circuit results, where:

Rsp = Rs
R2

s C2
j ω2

o + 1

R2
s C2

j ω2
o

, (A1)

Cjp =
Cj

R2
s C2

j ω2
o + 1

. (A2)

From the diode datasheet, Rs = 25 Ω and Cjo = 0.18 pF (Cjo is Cj at zero bias and will be the assumed
value for Cj hereafter). With f o = 808 MHz, Rsp = 47.9 kΩ results from (A1) and Cjp ≈ Cj = 180 fF results
from (A2).

As for the inductor, connected between node A and ground at Figure 2, the left-hand circuit
of Figure A2 shows the manufacturer model, where Rv = k

√
fo. Using the series-to-parallel circuit

transformation, the circuit in the middle is obtained, where:

Lmp = Lm

[
1 +

(
Rv

ωoLm

)2
]

. (A3)

Rvp = Rv

[
1 +

(
ωoLm

Rv

)2
]

, (A4)

R1p = R1
R2

1C2
1ω2

o + 1
R2

1C2
1ω2

o
, (A5)

C1p =
C1

R2
1C2

1ω2
o + 1

. (A6)

From the coil datasheet, R1 = 17 Ω, R2 = 30 mΩ, C1 = 49 fF, Lm = 27 nH, and k = 5.75 × 10−5.
At 808 MHz, Rv = 1.63 Ω and from (A3) to (A6), Lmp ≈ Lm = 27 nH, Rvp = 11.5 kΩ, R1p = 950 kΩ,
and C1p ≈ C1 = 49 fF. Then, neglecting R2, since it is very small, the right-hand circuit of Figure A2 is
obtained, where RLp = Rvp‖R1p = 11.4 kΩ.
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Joining the right-hand circuits in Figures A1 and A2, and considering the parasitic capacitance
from node A to ground arising from the layout (Clay), the circuit in Figure A3 is obtained, where:

Rp = Rsp‖RLp = 9.21 kΩ, (A7)

Cp = Cjp + C1p + Clay. (A8)
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This equivalent circuit is used in the left-hand circuit of Figure 3.

Appendix B. Simulations of the Rectenna Efficiency with and without an L-Matching Network

In order to highlight the benefits of using a matching network, we report simulation results of the
rectenna efficiency with and without an L-matching network. For the simulations, the ADS software
(Version 2017, Keysight, Santa Rosa, CA, USA) was used. The simulated circuit with the matching
network was that of Figure 2 with a resistor Ro connected at its output, in parallel with Co. Ideal
components were used for the matching network with the values reported in Section 4. The diode
was modelled without parasitic elements (null series resistance and junction capacitance) but with
a saturation current of 3 µA (that corresponding to the HSMS-2850 diode used for the implemented
rectenna). For the RF source, a frequency of 808 MHz (that used for the experiments) was used with
Pav ranging from −10 to 50 dBm in steps of 20 dB. For the circuit without the matching network, the
right terminal of Ra was directly connected to the diode anode (node A). For both circuits, a harmonic
balance analysis was performed with Pav and Ro as sweeping parameters.

Figure A4 shows the simulation results of the rectenna efficiency (ηrect = Po/Pav) plotted against
Ro for different values of Pav. The left graph shows the results for the circuit with the L-matching
network. As can be seen, ηrect steeply increases for increasing values of Pav, achieving around 99% at
Pav = 50 dBm. At −10 dBm, efficiency is higher than the corresponding results of Figure 7 because
ideal components were used for the simulation. On the other hand, the right graph shows the results
for the circuit without the L-matching network. As can be seen, ηrect steeply increases for increasing
values of Pav but now reaches a maximum value around 46%, as predicted theoretically in [35], due to
the additional losses at Ra originated by the current harmonics generated by the diode pulsed current.
At −10 dBm, efficiency is lower than 4%. Therefore, the use of the matching network allows a notable
increase in the rectenna efficiency, because it provides voltage gain and prevents any of the DC current
and harmonics to flow through the antenna resistance.
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